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Abstract

Let 𝒫𝑑 denote the family of all polynomials of degree at most 𝑑 in one variable 𝑥, with
real coefficients. A sequence of positive numbers 𝑥1 ≤ 𝑥2 ≤ . . . is called 𝒫𝑑-controlling
if there exist 𝑦1, 𝑦2, . . . ∈ R such that for every polynomial 𝑝 ∈ 𝒫𝑑 there exists an index
𝑖 with |𝑝(𝑥𝑖)−𝑦𝑖| ≤ 1. We settle an problem of Makai and Pach (1983) by showing that
𝑥1 ≤ 𝑥2 ≤ . . . is 𝒫𝑑-controlling if and only if

∑︀∞
𝑖=1

1
𝑥𝑑
𝑖

is divergent. The proof is based

on a statement about covering the Euclidean space with translates of slabs, which is
related to Tarski’s plank problem.

1 Introduction

Let ℱ be a class of real functions R → R. We say that a sequence of positive numbers
𝑥1, 𝑥2, . . . is ℱ-controlling if there exist reals 𝑦1, 𝑦2, . . . with the property that for every
𝑓 ∈ ℱ , one can find an 𝑖 with

|𝑓(𝑥𝑖)− 𝑦𝑖| ≤ 1.

In other words, a sequence 𝑥1, 𝑥2, . . . is ℱ -controlling if we can find 𝑦1, 𝑦2, . . . ∈ R such that
the points 𝑝1 = (𝑥1, 𝑦1), 𝑝2 = (𝑥2, 𝑦2), . . . ∈ R2 simultaneously approximate all functions in
ℱ , in the sense that the graph of every member 𝑓 ∈ ℱ gets (vertically) closer than 1 to at
least one point 𝑝𝑖. In this paper, we address the following question raised in [11]. Given
a class of functions ℱ , how sparse a ℱ -controlling sequence can be? A similar question,
motivated by a problem of László Fejes Tóth [5], was studied in [4].

Let 𝒫𝑑 denote the class of polynomials R → R of degree at most 𝑑. It was shown by
Makai and Pach [11] that if a sequence of positive numbers 𝑥1 ≤ 𝑥2 ≤ . . . is 𝒫𝑑-controlling,
then the infinite series 1

𝑥𝑑
1
+ 1

𝑥𝑑
2
+ . . . is divergent. They conjectured that this condition is also

sufficient for a sequence 𝑥1 ≤ 𝑥2 ≤ . . . to be 𝒫𝑑-controlling (see Conjecture 3.2.B in [11]).
The aim of this note is to prove this statement.
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Theorem 1. Let 𝑑 be a positive integer and 𝑥1 ≤ 𝑥2 ≤ . . . be a monotone increasing
infinite sequence of positive numbers. The sequence 𝑥1, 𝑥2, . . . is 𝒫𝑑-controlling if and only
if 1

𝑥𝑑
1
+ 1

𝑥𝑑
2
+ 1

𝑥𝑑
3
. . . = ∞.

We also generalize this result to other finitely generated function classes. Given 𝑑 + 1
real functions, 𝑓0, 𝑓1, . . . , 𝑓𝑑 : R+ → R+, let ℒ = ℒ(𝑓0, . . . , 𝑓𝑑) denote the set of all functions
that can be obtained as linear combinations of them with real coefficients. That is,

ℒ = {𝑎0𝑓0 + . . .+ 𝑎𝑑𝑓𝑑 : 𝑎0, . . . , 𝑎𝑑 ∈ R}.

Here R+ stands for the set of positive reals.

Theorem 2. Let 𝑑 ≥ 1 be an integer, 𝑥0 > 0, 𝜖 > 0, and let 𝑓0, 𝑓1, . . . , 𝑓𝑑 : R+ → R+

be real functions that are monotone increasing for 𝑥 ≥ 𝑥0 and bounded over every bounded
subinterval of R+. Assume that the functions 𝐹𝑗(𝑥) = 𝑓𝑗(𝑥)/(𝑓𝑑(𝑥))

1−𝜖 (𝑗 = 0, . . . , 𝑑−1) are
monotone decreasing for 𝑥 ≥ 𝑥0 and tend to 0 as 𝑥→ ∞.

An increasing sequence of positive numbers 𝑥1 ≤ 𝑥2 ≤ . . . is ℒ(𝑓0, . . . , 𝑓𝑑)-controlling if
and only if

∑︀∞
𝑖=1

1
𝑓𝑑(𝑥𝑖)

= ∞.

Obviously, the functions 𝑓𝑖(𝑥) = 𝑥𝑖 (𝑖 = 0, 1, . . . , 𝑑)) meet the above requirements, so
that Theorem 2 implies Theorem 1.

For the proof of Theorem 1, we will rephrase the question as a covering problem for
slabs. A slab (sometimes called plank or strip) is the set of points 𝑆 lying between two
parallel hyperplanes in R𝑑. The distance 𝑤 between these two hyperplanes is called the
width of the slab. We can write 𝑆 as

𝑆 = {x ∈ R𝑑 : 𝑏− 𝑤

2
≤ ⟨v,x⟩ ≤ 𝑏+

𝑤

2
},

for some unit vector v and real number 𝑏. We say that a sequence of slabs 𝑆1, 𝑆2, . . . permits
a translative covering of a subset R𝑑 if there are suitable translates 𝑆 ′

𝑖 of 𝑆𝑖 (𝑖 = 1, 2, . . .)
such that ∪∞

𝑖=1𝑆
′
𝑖 = R𝑑.

As it was shown in [11], Theorem 1 (and, in fact, Theorem 2, too) would easily follow
from

Conjecture 1. ([11], [3]) Let 𝑑 be a positive integer. A sequence of slabs in R𝑑 with widths
𝑤1, 𝑤2, . . . permits a translative covering of R𝑑 if and only if

∑︀∞
𝑖=1𝑤𝑖 = ∞.

The fact that this condition is necessary follows, for example, from Tarski’s result [12]
which states that the total width of any system of slabs the union of which covers a disk of
unit diameter is at least 1. Tarski’s “plank problem,” whether this statement remains true
in higher dimensions, remained open for almost twenty years. In 1950, Bang [1, 2] answered
this question in the affirmative. For 𝑑 = 2, Conjecture 1 was proved by Makai and Pach [11]
and, according to [6], independently, by Erdős and Straus (unpublished). (See [7, 8] for
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some refinements.) For 𝑑 ≥ 3, the problem is open. Groemer [6] proved that any sequence
of slabs in R𝑑 with widths 𝑤1, 𝑤2, . . . satisfying

∞∑︁
𝑖=1

𝑤
𝑑+1
2

𝑖 = ∞

permits a translative covering of R𝑑. Recently, the authors of the present note [9] have come
close to settling Conjecture 1 by replacing Groemer’s sufficient condition with the weaker
assumption

lim sup
𝑛→∞

𝑤1 + 𝑤2 + . . .+ 𝑤𝑛

log(1/𝑤𝑛)
> 0.

In particular, any sequence of slabs of widths 1, 1
2
, 1
3
, . . . permits a translative covering of

space.

To establish Theorem 1, it is enough to verify Conjecture 1 for special sequences of slabs,
whose normal vectors lie on a moment curve. We will do precisely this in Section 2, by
exploring the natural ordering of these vectors. In Section 3, we generalize our arguments
to establish Theorem 2. The last section contains a few concluding remarks.

Figure 1: Controlling polynomials of degree at most 𝑑.

2 Proof of Theorem 1

We only have to prove the “if” part of the theorem.
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Let 𝑥1 ≤ 𝑥2 ≤ . . . be a monotone increasing sequence of positive numbers with
∑︀

𝑖
1
𝑥𝑑
𝑖
=

∞. We have to find a sequence of reals 𝑦1, 𝑦2, . . . such that for any polynomial 𝑝(𝑥) =∑︀𝑑
𝑗=0 𝑎𝑗𝑥

𝑗 with real coefficients 𝑎𝑗, there exists a positive integer 𝑖 with |𝑝(𝑥𝑖) − 𝑦𝑖| ≤ 1.

Write 𝑝(𝑥) in the form 𝑝(𝑥) = ⟨x, a⟩, where x = (1, 𝑥, . . . , 𝑥𝑑), a = (𝑎0, 𝑎1, . . . , 𝑎𝑑) ∈ R𝑑+1,
and ⟨.⟩ stands for the scalar product. Using this notation, we have x𝑖 = (1, 𝑥𝑖, . . . , 𝑥

𝑑
𝑖 ) and

the inequality |𝑝(𝑥𝑖)− 𝑦𝑖| ≤ 1 can be rewritten as

𝑦𝑖 − 1 ≤ ⟨x𝑖, a⟩ ≤ 𝑦𝑖 + 1.

For a fixed 𝑖, the locus of points a ∈ R𝑑+1 satisfying this double inequality is a slab 𝑆𝑖 ⊂ R𝑑+1

of width 𝑤𝑖 =
2

‖x𝑖‖ = 2

(
∑︀𝑑

𝑗=0 𝑥
2𝑗
𝑖 )1/2

, with normal vector x𝑖. See Fig. 1. The sequence 𝑥1, 𝑥2, . . .

is 𝒫𝑑-controlling if and only if the sequence of slabs 𝑆1, 𝑆2, . . . permits a translative covering
of R𝑑+1.

If 𝑥𝑖 ≤ 3 for infinitely many (and, hence, for all) positive integers 𝑖, then for the widths of
the corresponding slabs 𝑆𝑖 we have 𝑤𝑖 >

1
3𝑑
. Thus, these slabs permit a translative covering

of R𝑑+1, because each of them can be translated to cover any ball of diameter 1
3𝑑
.

Therefore, we can assume that 𝑥𝑖 > 3 for all 𝑖 ≥ 𝑚. In fact, we can assume without loss
of generality that 𝑥𝑖 > 3 for all 𝑖 ≥ 1, otherwise we simply discard the first 𝑚− 1 members
of the sequence, and prove the theorem for the resulting sequence 𝑥𝑚 ≤ 𝑥𝑚+1 ≤ . . ..

We are going to exploit the fact that the normal vectors x𝑖 = (1, 𝑥𝑖, . . . , 𝑥
𝑑
𝑖 ) of the slabs

𝑆𝑖 lie on the moment curve (1, 𝑥, 𝑥2, . . . , 𝑥𝑑). First, we need an auxiliary lemma.

Lemma 1. Let 𝑑 be a positive integer, let 3 ≤ 𝑥1 ≤ 𝑥2 ≤ . . . be a finite or infinite sequence
of reals, and let x𝑖 = (1, 𝑥𝑖, 𝑥

2
𝑖 , . . . , 𝑥

𝑑
𝑖 ) for every 𝑖. Then there exist 𝑑+1 linearly independent

vectors u1, . . . ,u𝑑+1 ∈ R𝑑+1 such that for every 𝑖 (𝑖 = 1, 2, . . .) and 𝑗 (𝑗 = 1, 2, . . . , 𝑑 + 1),
we have

(𝑖)
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

,

(𝑖𝑖) ⟨x𝑖,u𝑗⟩ ≥
1

3
‖x𝑖‖‖u𝑗‖.

Proof. Take the standard basis e1, . . . , e𝑑+1 in R𝑑+1, i.e., let 𝑒𝑖 denote the all-zero vector
with a single 1 at the 𝑖-th position. Set u𝑗 := e𝑑+1−𝑗+e𝑑+1 for 𝑗 = 1, . . . , 𝑑 and u𝑑+1 := e𝑑+1.

Condition (i) trivially holds for 𝑗 = 1 and very easy to check for 𝑗 = 𝑑+1. For 𝑗 = 2, . . . , 𝑑,
it reduces to

𝑥𝑑−1
𝑖+1 + 𝑥𝑑𝑖+1

𝑥𝑑−1
𝑖 + 𝑥𝑑𝑖

≤
𝑥𝑑−𝑗
𝑖+1 + 𝑥𝑑𝑖+1

𝑥𝑑−𝑗
𝑖 + 𝑥𝑑𝑖

,

which is equivalent to

(𝑥𝑑−1
𝑖+1 + 𝑥𝑑𝑖+1)(𝑥

𝑑−𝑗
𝑖 + 𝑥𝑑𝑖 ) ≤ (𝑥𝑑−𝑗

𝑖+1 + 𝑥𝑑𝑖+1)(𝑥
𝑑−1
𝑖 + 𝑥𝑑𝑖 ).
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The last inequality can be rewritten as

𝑥𝑑−𝑗
𝑖+1𝑥

𝑑−𝑗
𝑖 (𝑥𝑖+1 − 𝑥𝑖)(

𝑗−1∑︁
𝑘=0

𝑥𝑘𝑖+1𝑥
𝑗−1−𝑘
𝑖 +

𝑗−2∑︁
𝑘=0

𝑥𝑘𝑖+1𝑥
𝑗−2−𝑘
𝑖 − 𝑥𝑗−1

𝑖+1𝑥
𝑗−1
𝑖 ) ≤ 0,

or, dividing both sides by 𝑥𝑑−𝑗
𝑖+1𝑥

𝑑−𝑗
𝑖 (𝑥𝑖+1 − 𝑥𝑖), as

𝑗−1∑︁
𝑘=0

𝑥𝑘𝑖+1𝑥
𝑗−1−𝑘
𝑖 +

𝑗−2∑︁
𝑘=0

𝑥𝑘𝑖+1𝑥
𝑗−2−𝑘
𝑖 − 𝑥𝑗−1

𝑖+1𝑥
𝑗−1
𝑖 ≤ 0.

Using the fact 𝑥𝑖+1 ≥ 𝑥𝑖, and bounding from above each sum by its largest term multiplied
by the number of terms, we obtain that the left-hand side of the last inequality is at most

𝑗𝑥𝑗−1
𝑖+1 + (𝑗 − 1)𝑥𝑗−2

𝑖+1 − 𝑥𝑗−1
𝑖+1𝑥

𝑗−1
𝑖 < 𝑥𝑗−1

𝑖+1 (2𝑗 − 1− 𝑥𝑗−1
𝑖 ).

As 𝑥𝑖 ≥ 3, the right-hand side of this inequality is always negative and (ii) holds.

It remains to verify condition (ii). Taking into account that 𝑥𝑖 ≥ 3, we have

⟨x𝑖,u𝑑+1⟩ = 𝑥𝑑𝑖 ≥
1

2
‖x𝑖‖ =

1

2
‖x𝑖‖‖u𝑑+1‖.

On the other hand, for 𝑗 = 1, . . . , 𝑑, we obtain

⟨x𝑖,u𝑗⟩ = 𝑥𝑑−𝑗
𝑖 + 𝑥𝑑𝑖 ≥

1

2
‖x𝑖‖ ≥ 1

3
‖x𝑖‖‖u𝑗‖.

This completes the proof of Lemma 1.

In order to establish Theorem 1, it is enough to prove that there is a constant 𝑐 = 𝑐(𝑑+1)
such that any system of slabs 𝑆𝑖 (𝑖 = 1, . . . , 𝑛) in R𝑑+1 whose normal vectors are (1, 𝑥𝑖, . . . , 𝑥

𝑑
𝑖 )

for some 3 ≤ 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛 and whose total width is at least 𝑐, permits a translative
covering of a ball of unit diameter. This is an immediate corollary of Lemma 1 and the
following assertion.

Lemma 2. For every positive integer 𝑑, for any system of 𝑑+1 linearly independent vectors
u1, . . . ,u𝑑+1 in R𝑑+1, and for any 𝛾 > 0, there is a constant 𝑐 with the following property.

Given any system of slabs 𝑆𝑖 (𝑖 = 1, . . . , 𝑛) in R𝑑+1, whose normal vectors x𝑖 satisfy the
conditions

(𝑖)
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

,

(𝑖𝑖) ⟨x𝑖,u𝑗⟩ ≥ 𝛾‖x𝑖‖‖u𝑗‖

for every 𝑖 and 𝑗, and whose total width
∑︀𝑛

𝑖=1𝑤𝑖 is at least 𝑐, the slabs 𝑆𝑖 permit a translative
covering of a (𝑑+ 1)-dimensional ball of unit diameter.
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Figure 2: We place the slabs one by one.

Proof. Instead of covering a ball of unit diameter, it will be more convenient to cover the
simplex Δ with one vertex in the origin 0 and the others at the points (vectors) u𝑗 (𝑗 =
1, . . . , 𝑑+1). By properly scaling these vectors, if necessary, we can assume that Δ contains
a ball of unit diameter.

We place the slabs one by one. See Fig. 2. We place 𝑆 ′
1, a translate of 𝑆1, so that one

of its boundary hyperplanes passes through 0 and the other one cuts a simplex Δ1 out of
the cone Γ of all linear combinations of the vectors u1, . . . ,u𝑑+1 with positive coefficients.
According to our assumptions, we have ⟨x1,u𝑗⟩ > 0 for every 𝑗. Therefore, 𝑆 ′

1 does not
separate Γ into two cones: 𝑆 ′

1 ∩ Γ is indeed a simplex Δ1.

Suppose that we have already placed 𝑆 ′
1, . . . , 𝑆

′
𝑖, the translates of 𝑆1, . . . , 𝑆𝑖, so that their

union covers a simplex Δ𝑖 with one vertex at the origin, and the others along the 𝑑 + 1
half-lines that span the cone Γ. We also assume that the facet of Δ𝑖 opposite to the origin
is a boundary hyperplane of 𝑆 ′

𝑖. Let p𝑖(𝑗) denote the vertex of Δ𝑖 that belongs to the open
half-line parallel to u𝑗 emanating from 0 (𝑗 = 1, . . . , 𝑑+ 1).

Next, we place a translate 𝑆 ′
𝑖+1 of 𝑆𝑖+1 so that one of its boundary hyperplanes, denoted

by 𝜋, passes through p𝑖(1), and the other one, 𝜋′, cuts the half-line parallel to u1 at a point
p𝑖+1(1) with ‖p𝑖+1(1)‖ > ‖p𝑖(1)‖. That is, p𝑖+1(1) is further away from the origin than
p𝑖(1) is. Let p𝑖+1(2), . . . ,p𝑖+1(𝑑+ 1) denote the intersection points of 𝜋′ with the half-lines
parallel to u2, . . . ,u𝑑+1, respectively, and let Δ𝑖+1 be the simplex induced by the vertices
0,p𝑖+1(1), . . . ,p𝑖+1(𝑑+ 1).

We have to verify that Δ𝑖+1 is entirely covered by the slabs 𝑆 ′
1, . . . , 𝑆

′
𝑖+1. By the induction

hypothesis, Δ𝑖 was covered by the slabs 𝑆 ′
1, . . . , 𝑆

′
𝑖. Thus, it is sufficient to check that the
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hyperplane 𝜋 intersects every edge 0p𝑖(𝑗) of Δ𝑖, for 𝑗 = 1, . . . , 𝑑 + 1. Let 𝛼𝑗u𝑗 be the
intersection point of 𝜋 with the half-line parallel to u𝑗, and let p𝑖(𝑗) = 𝛽𝑗u𝑗. We have to
prove that 𝛼𝑗 ≤ 𝛽𝑗.

By definition, we have ⟨x𝑖+1,p𝑖(1) − 𝛼𝑗u𝑗⟩ = 0 and ⟨x𝑖,p𝑖(1) − 𝛽𝑗u𝑗⟩ = 0. From here,
we get

𝛼𝑗

𝛽𝑗
=

⟨x𝑖+1,p𝑖(1)⟩
⟨x𝑖+1,u𝑗⟩

⧸︁⟨x𝑖,p𝑖(1)⟩
⟨x𝑖,u𝑗⟩

=
⟨x𝑖+1,p𝑖(1)⟩
⟨x𝑖,p𝑖(1)⟩

⧸︁⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

=
⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

⧸︁⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

.

In view of assumption (i) of the lemma, the right-hand side of the above chain of equations
is at most 1, as required.

Observe that during the whole procedure the uncovered part of the cone Γ always remains
convex and, hence, connected. In the 𝑛th step, ∪𝑛

𝑖=1𝑆
′
𝑖 ⊃ Δ𝑛. By the construction, p𝑖(1) lies

at least 𝑤𝑖 farther away from the origin along the half-line parallel to u1 than p𝑖−1(1) does.
Thus, we have

‖pn(1)‖ ≥
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ 𝑐.

Using the fact that ⟨x𝑛,p𝑛(𝑗) − p𝑛(1)⟩ = 0 for every 𝑗 ≥ 2, and taking into account
assumption (ii), we obtain

‖p𝑛(𝑗)‖ ≥ ⟨x𝑛,p𝑛(𝑗)⟩
‖x𝑛‖

=
⟨x𝑛,p𝑛(1)⟩

‖x𝑛‖
≥ 𝛾‖pn(1)‖ ≥ 𝛾𝑐.

Thus, if 𝑐 is sufficiently large, we have ‖p𝑛(𝑗)‖ ≥ ‖u𝑗‖. This means that Δ𝑛 contains the
simplex Δ defined in the first paragraph of this proof. Hence, it also contains a ball of unit
diameter, as required.

3 Proof of Theorem 2

In this section, we extend the technique used in the proof of Theorem 1 to establish Theo-
rem 2.

As in the proof Theorem 1, we can write any function 𝑙 =
∑︀𝑑

𝑘=0 𝑎𝑘𝑓𝑘 ∈ ℒ(𝑓0, . . . , 𝑓𝑑) as
𝑙(𝑥) = ⟨x, a⟩, where x = (𝑓0(𝑥), 𝑓1(𝑥), . . . , 𝑓𝑑(𝑥)) and a = (𝑎0, 𝑎1, . . . , 𝑎𝑑) ∈ R𝑑+1. As before,
we only have to prove the “if” part of the theorem, which is equivalent to the fact that the
slabs 𝑆𝑖 ⊂ R𝑑+1 with normal vector x𝑖 = (𝑓0(𝑥𝑖), . . . , 𝑓𝑑(𝑥𝑖)) and width

𝑤𝑖 =
2

‖𝑥𝑖‖
=

2

(
∑︀𝑑

𝑘=0 𝑓
2
𝑘 (𝑥𝑖))

1/2
≥ 2√

𝑑𝑓𝑑(𝑥𝑖)
,

for 𝑖 = 1, 2, . . ., permit a translative covering of R𝑑+1. Again, it is enough to consider the
case when lim𝑖→∞ 𝑥𝑖 = ∞, otherwise each slab 𝑆𝑖 contains a ball of diameter at least

2√
𝑑𝑓𝑑(lim𝑖→∞ 𝑥𝑖)

> 0.
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We follow the scheme of the proof of Theorem 1. According to Lemma 2, it is enough to
show that there exist 𝑑+1 linearly independent vectors u1, . . . ,ud+1 that satisfy conditions
(i) and (ii) with x𝑖 = (𝑓0(𝑥𝑖), . . . , 𝑓𝑑(𝑥𝑖)) and with a suitable constant 𝛾 > 0. We can assume
without loss of generality that 𝑥1, and hence all 𝑥𝑖s, are so large that they satisfy 𝑥1 ≥ 𝑥0
and the inequalities

𝑓𝑗(𝑥)

𝑓𝑑(𝑥)
≤ 𝑓𝑗(𝑥1)

𝑓𝑑(𝑥1)
≤ 1√

𝑑
, (1)

for every 𝑥 ≥ 𝑥1 and 𝑗 = 0, . . . , 𝑑 − 1. To see this, observe that 𝑓𝑗(𝑥)/𝑓𝑑(𝑥) = 𝐹𝑗(𝑥)/𝑓
𝜖
𝑑(𝑥)

is monotone decreasing in 𝑥, because 𝐹𝑗 is monotone decreasing, while 𝑓𝑑 is monotone
increasing.

Let e1, . . . , e𝑑+1 be the standard basis in R𝑑+1. For 1 ≤ 𝑗 ≤ 𝑑+ 1, set

u𝑗 :=
𝑑+1∑︁
𝑘=1

e𝑘 −
1

2
e𝑑+2−𝑗.

In other words, all coordinates of u𝑗 are 1, with the exception of the (𝑑+2−𝑗)-th coordinate,
which is 1

2
.

By definition, we have ⟨x𝑖,u𝑗⟩ ≥ 1
2
𝑓𝑑(𝑥𝑖) and ‖u𝑗‖ <

√
𝑑+ 1. It follows from (1) that

𝑓𝑗(𝑥𝑖)

𝑓𝑑(𝑥𝑖)
≤ 1√

𝑑
for 𝑗 ̸= 𝑑, so that

‖x𝑖‖ ≤

(︃
𝑑∑︁

𝑘=0

𝑓 2
𝑘 (𝑥𝑖)

)︃1/2

≤
√
2𝑓𝑑(𝑥𝑖).

Hence, for every 𝑖 and 𝑗,

⟨x𝑖,u𝑗⟩ ≥
1

2
𝑓𝑑(𝑥𝑖) ≥

1

2
√
2
‖x𝑖‖ ≥ 1

2
√︀

2(𝑑+ 1)
‖x𝑖‖‖u𝑗‖.

Therefore, condition (ii) in Lemma 2 is satisfied with 𝛾 = 1

2
√

2(𝑑+1)
.

It remains to verify condition (i). For the rest of the argument, fix 𝑗 (1 ≤ 𝑗 ≤ 𝑑+1). We
have to show that for every 𝑖 (𝑖 = 1, 2, . . .), the inequality

⟨x𝑖+1,u1⟩
⟨x𝑖,u1⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

holds. For 𝑗 = 1, the statement is trivial. Therefore, we may suppose that 𝑗 > 1. Next, we
want to get rid of 𝑓𝑑(𝑥) in the left hand side, keeping both the numerator and denominator
positive. The above inequality equivalent to the following:

⟨x𝑖+1,u1⟩ − 1
2
⟨x𝑖+1,u𝑗⟩

⟨x𝑖,u1⟩ − 1
2
⟨x𝑖,u𝑗⟩

≤ ⟨x𝑖+1,u𝑗⟩
⟨x𝑖,u𝑗⟩

.
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Using the notation

𝜑(𝑥) =
1

2

𝑑−1∑︁
𝑘=0

𝑓𝑘(𝑥) +
1

4
𝑓𝑑+1−𝑗(𝑥), 𝜓(𝑥) =

𝑑−1∑︁
𝑘=0

𝑓𝑘(𝑥)−
1

2
𝑓𝑑+1−𝑗(𝑥),

the above inequality may be rewritten as

𝜑(𝑥𝑖+1)

𝜑(𝑥𝑖)
≤ 𝑓𝑑(𝑥𝑖+1) + 𝜓(𝑥𝑖+1)

𝑓𝑑(𝑥𝑖) + 𝜓(𝑥𝑖)
. (2)

Before checking that (2) is true, let us summarize the properties of the functions 𝜑 and
𝜓 we need:

1. 𝜑(𝑥𝑖+1)/𝜑(𝑥𝑖) ≤ 𝑓 1−𝜖
𝑑 (𝑥𝑖+1)/𝑓

1−𝜖
𝑑 (𝑥𝑖) for the constant 𝜖 > 0 from Theorem 2,

2. 𝜓(𝑥𝑖+1) ≤ 𝑐𝑓 1−𝜖
𝑑 (𝑥𝑖+1) for a constant 𝑐 > 0, and

3. 𝜓(𝑥𝑖+1) ≥ 𝜓(𝑥𝑖).

By the monotonicity of 𝐹𝑘, we have 𝑓𝑘(𝑥𝑖+1)/𝑓𝑘(𝑥𝑖) ≤ 𝑓 1−𝜖
𝑑 (𝑥𝑖+1)/𝑓

1−𝜖
𝑑 (𝑥𝑖), for 𝑘 =

0, . . . , 𝑑−1. Now property 1 follows from the fact that, if 𝑎0, . . . , 𝑎𝑑−1, 𝑏0, . . . , 𝑏𝑑−1, 𝑡 are posi-
tive numbers satisfying 𝑎0/𝑏0 ≤ 𝑡, . . . , 𝑎𝑑−1/𝑏𝑑−1 ≤ 𝑡, then (𝑎0+. . .+𝑎𝑑−1)/(𝑏0+. . .+𝑏𝑑−1) ≤ 𝑡.
Using that lim𝑥→∞ 𝐹𝑘(𝑥) = 0 for 𝑘 = 0, . . . , 𝑑− 1, we get property 2. Property 3 is a direct
consequence of our assumption that each 𝑓𝑘 (𝑘 = 0, 1, . . .) is monotone increasing for 𝑥 ≥ 𝑥0.

We have to verify (2). In view of property 1, it is sufficient to show

𝑓 1−𝜖
𝑑 (𝑥𝑖+1)

𝑓 1−𝜖
𝑑 (𝑥𝑖)

≤ 𝑓𝑑(𝑥𝑖+1) + 𝜓(𝑥𝑖+1)

𝑓𝑑(𝑥𝑖) + 𝜓(𝑥𝑖)
,

which is equivalent to

𝜓(𝑥𝑖)𝑓
1−𝜖
𝑑 (𝑥𝑖+1)− 𝜓(𝑥𝑖+1)𝑓

1−𝜖
𝑑 (𝑥𝑖) ≤ 𝑓𝑑(𝑥𝑖)𝑓

1−𝜖
𝑑 (𝑥𝑖+1)

(︂(︁𝑓𝑑(𝑥𝑖+1)

𝑓𝑑(𝑥𝑖)

)︁𝜖
− 1

)︂
,

or, in a slightly different form,

𝜓(𝑥𝑖)𝑓
1−𝜖
𝑑 (𝑥𝑖+1)−𝜓(𝑥𝑖+1)𝑓

1−𝜖
𝑑 (𝑥𝑖) ≤ 𝑓𝑑(𝑥𝑖)𝑓

1−𝜖
𝑑 (𝑥𝑖+1)

(︂(︁
1+

𝑓 1−𝜖
𝑑 (𝑥𝑖+1)− 𝑓 1−𝜖

𝑑 (𝑥𝑖)

𝑓 1−𝜖
𝑑 (𝑥𝑖)

)︁ 𝜖
1−𝜖 − 1

)︂
.

Replacing the left-hand side by a larger quantity (taking property 3 into account) and
the right-hand side by a smaller one (applying the inequality (1+ 𝑥)𝛼 ≥ 1+𝛼𝑥, valid for all
𝛼, 𝑥 ≥ 0), we obtain the stronger inequality

𝜓(𝑥𝑖+1)(𝑓
1−𝜖
𝑑 (𝑥𝑖+1)− 𝑓 1−𝜖

𝑑 (𝑥𝑖)) ≤ 𝑓𝑑(𝑥𝑖)𝑓
1−𝜖
𝑑 (𝑥𝑖+1)

(︁ 𝜖

1− 𝜖

𝑓 1−𝜖
𝑑 (𝑥𝑖+1)− 𝑓 1−𝜖

𝑑 (𝑥𝑖)

𝑓 1−𝜖
𝑑 (𝑥𝑖)

)︁
. (3)
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Thus, it is sufficient to prove (3). Rearranging the terms, we obtain

𝜓(𝑥𝑖+1) ≤
𝜖

1− 𝜖
𝑓 𝜖
𝑑(𝑥𝑖)𝑓

1−𝜖
𝑑 (𝑥𝑖+1).

By property 2, we have 𝜓(𝑥𝑖+1) ≤ 𝑐𝑓 1−𝜖
𝑑 (𝑥𝑖+1), so that it is enough to check that

𝑐𝑓 1−𝜖
𝑑 (𝑥𝑖+1) ≤

𝜖

1− 𝜖
𝑓 𝜖
𝑑(𝑥𝑖)𝑓

1−𝜖
𝑑 (𝑥𝑖+1),

that is, 𝑐 ≤ 𝜖
1−𝜖

𝑓 𝜖
𝑑(𝑥𝑖). As 𝑓𝑑(𝑥) is an increasing function for 𝑥 ≥ 𝑥0, the last inequality is

satisfied if we choose 𝑥1 (and, hence, all other 𝑥𝑖) sufficiently large.
This completes the proof of (3), (2), and so the proof of Theorem 2.

4 Concluding remarks

1. As was mentioned in the Introduction, Conjecture 1 is known to be true in the plane.
Moreover, in [11] a stronger statement was proved: there exists a constant 𝑐 such that every
collection of strips with total width at least 𝑐 permits a translative covering of a disk of
diameter 1. In view of this, one can make the following even bolder conjecture.

Conjecture 2. For any positive integer 𝑑, there exists a constant 𝑐 = 𝑐(𝑑) such that every
collection of slabs in R𝑑 of total width at least 𝑐 permits a translative covering of a unit
diameter 𝑑-dimensional ball.

Suppose Conjecture 1 is true for a positive integer 𝑑. Answering a question in [11], Imre
Z. Ruzsa [10] proved that then, for the same value of 𝑑, Conjecture 2 also holds. Thus, the
two conjectures are equivalent.

2. Given a class ℱ of functions R → R, we say that a sequence of positive numbers
𝑥1 ≤ 𝑥2 ≤ . . . is strongly ℱ-controlling if there exist reals 𝑦1, 𝑦2, . . . with the property that,
for every 𝜀 > 0 and every 𝑓 ∈ ℱ , one can find an 𝑖 with

|𝑓(𝑥𝑖)− 𝑦𝑖| ≤ 𝜀.

It is easy to see that the condition in Theorem 1 is sufficient to guarantee that the sequence
𝑥1, 𝑥2, . . . is strongly 𝒫𝑑-controlling. Theorem 2 can also be strengthened analogously.

3. The aim of this paper was to find necessary and sufficient conditions for a sequence of
numbers to be ℒ-controlling, where ℒ = ℒ(𝑓1, . . . , 𝑓𝑑) is the class of functions that can be
obtained as linear combinations of 𝑓1, . . . , 𝑓𝑑. We reduced this problem to a question about
covering R𝑑 with translates of certain slabs. However, the two problems are not necessarily
equivalent. For example, we have noticed that the slabs obtained at this reduction had some
special properties: apart from their widths, their normal vectors were also prescribed. This
enabled us to cover R𝑑 with their translates, even if we do not know whether such a covering
exists for every system of slabs with the same widths.

Nevertheless, in a more complicated sense, the two problems are equivalent.
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Theorem 3. Given a positive integer 𝑑, and a sequence of positive numbers 𝑥1, 𝑥2, . . ., define
a family ℱ = ℱ(𝑑, 𝑥1, 𝑥2, . . .) of 𝑑-tuples of functions 𝑓1, . . . , 𝑓𝑑 : R → R as

ℱ = {(𝑓1, . . . , 𝑓𝑑) :
𝑑∑︁

𝑗=1

𝑓 2
𝑗 (𝑥𝑖) = 𝑥2𝑖 for all 𝑖}.

Then a sequence of slabs with widths 𝑥1, 𝑥2, . . . permits a translative covering of R𝑑 if and
only if 𝑥1, 𝑥2, . . . is ℒ(𝑓1, . . . , 𝑓𝑑)-controlling for every 𝑑-tuple (𝑓1, . . . , 𝑓𝑑) ∈ ℱ , where

ℒ(𝑓1, . . . , 𝑓𝑑) = {𝑎1𝑓1 + . . .+ 𝑎𝑑𝑓𝑑 : 𝑎1, . . . , 𝑎𝑑 ∈ R}.
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[12] A. Tarski, Uwagi o stopniu równoważności wieloka̧tów (in Polish), Parametr 2 (1932),
310–314.

11


	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Concluding remarks

