
Chapter 2

PROBLEMS AND RESULTS ON
GEOMETRIC PATTERNS

Peter Brass
János Pach

Abstract Many interesting problems in combinatorial and computational geome-
try can be reformulated as questions about occurrences of certain pat-
terns in finite point sets. We illustrate this framework by a few typical
results and list a number of unsolved problems.

1. Introduction: Models and problems
We discuss some extremal problems on repeated geometric patterns in

finite point sets in Euclidean space. Throughout this paper, a geometric
pattern is an equivalence class of point sets in d-dimensional space under
some fixed geometrically defined equivalence relation. Given such an
equivalence relation and the corresponding concept of patterns, one can
ask several natural questions:
(1) What is the maximum number of occurrences of a given pattern

among all subsets of an n-point set?
(2) How does the answer to the previous question depend on the partic-

ular pattern?
(3) What is the minimum number of distinct k-element patterns deter-

mined by a set of n points?
These questions make sense for many specific choices of the underlying
set and the equivalence relation. Hence it is not surprising that sev-
eral basic problems of combinatorial geometry can be studied in this
framework (Pach and Agarwal, 1995).

In the simplest and historically first examples, due to Erdős (1946),
the underlying set consists of point pairs in the plane and the defining
equivalence relation is the isometry (congruence). That is, two point
pairs, {p1, p2} and {q1, q2}, determine the same pattern if and only if
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|p1 − p2| = |q1 − q2|. In this case, (1) becomes the well-known Unit
Distance Problem: What is the maximum number of unit distance pairs
determined by n points in the plane? It follows by scaling that the
answer does not depend on the particular distance (pattern). For most
other equivalence relations, this is not the case: different patterns may
have different maximal multiplicities. For k = 2, question (3) becomes
the Problem of Distinct Distances: What is the minimum number of
distinct distances that must occur among n points in the plane? In spite
of many efforts, we have no satisfactory answers to these questions. The
best known results are the following.

Theorem 2.1 (Spencer et al., 1984) Let f(n) denote the maximum
number of times the same distance can be repeated among n points in
the plane. We have

neΩ(log n/ log log n) ≤ f(n) ≤ O(n4/3).

Theorem 2.2 (Katz and Tardos, 2004) Let g(n) denote the mini-
mum number of distinct distances determined by n points in the plane.
We have

Ω(n0.8641) ≤ g(n) ≤ O

(
n√
logn

)
.

In Theorems 2.1 and 2.2, the lower and upper bounds, respectively, are
conjectured to be asymptotically sharp. See more about these questions
in Section 3.

Erdős and Purdy (1971, 1977) initiated the investigation of the anal-
ogous problems with the difference that, instead of pairs, we consider
triples of points, and call two of them equivalent if the corresponding
triangles have the same angle, or area, or perimeter. This leads to ques-
tions about the maximum number of equal angles, or unit-area resp.
unit-perimeter triangles, that can occur among n points in the plane,
and to questions about the minimum number of distinct angles, trian-
gle areas, and triangle perimeters, respectively. Erdős’s Unit Distance
Problem and his Problem of Distinct Distances has motivated a great
deal of research in extremal graph theory. The questions of Erdős and
Purdy mentioned above and, in general, problems (1), (2), and (3) for
larger than two-element patterns, require the extension of graph the-
oretic methods to hypergraphs. This appears to be one of the most
important trends in modern combinatorics.

Geometrically, it is most natural to define two sets to be equivalent
if they are congruent or similar to, or translates, homothets or affine
images of each other. This justifies the choice of the word “pattern”
for the resulting equivalence classes. Indeed, the algorithmic aspects
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Figure 2.1. Seven coloring of the plane showing that χ(R2) ≤ 7

of these problems have also been studied in the context of geometric
pattern matching (Akutsu et al., 1998; Brass, 2000; Agarwal and Sharir,
2002; Brass, 2002). A typical algorithmic question is the following.
(4) Design an efficient algorithm for finding all occurrences of a given

pattern in a set of n points.
It is interesting to compare the equivalence classes that correspond to

the same relation applied to patterns of different sizes. If A and A′ are
equivalent under congruence (or under some other group of transforma-
tions mentioned above), and a is a point in A, then there exists a point
a′ ∈ A′ such that A \ {a} is equivalent to A′ \ {a′}. On the other hand,
if A is equivalent (congruent) to A′ and A is large enough, then usually
its possible extensions are also determined: for each a, there exist only
a small number of distinct elements a′ such that A∪{a} is equivalent to
A′ ∪ {a′}. Therefore, in order to bound the number of occurrences of a
large pattern, it is usually sufficient to study small pattern fragments.

We have mentioned above that one can rephrase many extremal prob-
lems in combinatorial geometry as questions of type (1) (so-called Turán-
type questions). Similarly, many Ramsey-type geometric coloring prob-
lems can also be formulated in this general setting.
(5) Is it possible to color space with k colors such that there is no mono-

chromatic occurrence of a given pattern?
For point pairs in the plane under congruence, we obtain the famous Had-
wiger – Nelson problem (Hadwiger, 1961): What is the smallest number
of colors χ(R2) needed to color all points of the plane so that no two
points at unit distance from each other get the same color?

Theorem 2.3 4 ≤ χ(R2) ≤ 7.
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Another instance of question (5) is the following open problem from
Erdős et al. (1973): Is it possible to color all points of the three-dimen-
sional Euclidean space with three colors so that no color class contains
two vertices at distance one and the midpoint of the segment determined
by them? It is known that four colors suffice, but there exists no such
coloring with two colors. In fact, Erdős et al. (1973) proved that for
every d, the Euclidean d-space can be colored with four colors without
creating a monochromatic triple of this kind.

2. A simple sample problem: Equivalence under
translation

We illustrate our framework by analyzing the situation in the case
in which two point sets are considered equivalent if and only if they
are translates of each other. In this special case, we know the (almost)
complete solution to problems (1) – (5) listed in the Introduction.

Theorem 2.4 Any set B of n points in d-dimensional space has at most
n + 1 − k subsets that are translates of a fixed set A of k points. This
bound is attained if and only if A = {p, p + v, . . . , p + (k − 1)v} and
B = {q, q + v, . . . , q + (n− 1)v} for some p, q, v ∈ Rd.

The proof is simple. Notice first that no linear mapping ϕ that keeps
all points of B distinct decreases the maximum number of translates: if
A + t ⊂ B, then ϕ(A) + ϕ(t) ⊂ ϕ(B). Thus, we can use any projec-
tion into R, and the question reduces to the following one-dimensional
problem: Given real numbers a1 < · · · < ak, b1 < . . . , bn, what is the
maximum number of values t such that t + {a1, . . . , ak} ⊂ {b1, . . . bn}.
Clearly, a1 + t must be one of b1, . . . , bn−k+1, so there are at most
n + 1 − k translates. If there are n + 1 − k translates t + {a1, . . . , ak}
that occur in {b1, . . . bn}, for translation vectors t1 < · · · < tn−k+1,
then ti = bi − a1 = bi+1 − a2 = bi+j − a1+j , for i = 1, . . . , n− k + 1 and
j = 0, . . . , k−1. But then a2−a1 = bi+1−bi = aj+1−aj = bi+j−bi+j−1,
so all differences between consecutive aj and bi are the same. For higher-
dimensional sets, this holds for every one-dimensional projection, which
guarantees the claimed structure. In other words, the maximum is at-
tained only for sets of a very special type, which answers question (1).

An asymptotically tight answer to (2), describing the dependence on
the particular pattern, was obtained in Brass (2002).

Theorem 2.5 Let A be a set of points in d-dimensional space, such
that the rational affine space spanned by A has dimension k. Then the
maximum number of translates of A that can occur among n points in
d-dimensional space is n−Θ(n(k−1)/k).
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Any set of the form {p, p+v, . . . , p+(k−1)v} spans a one-dimensional
rational affine space. An example of a set spanning a two-dimensional
rational affine space is {0, 1,√2}, so for this set there are at most n −
Θ(n1/2) possible translates. This bound is attained, e.g., for the set
{i+ j

√
2 | 1 ≤ i, j ≤ √

n}.
In this case, it is also easy to answer question (3), i.e., to determine the

minimum number of distinct patterns (translation-inequivalent subsets)
determined by an n-element set.

Theorem 2.6 Any set of n points in d-dimensional space has at least(
n−1
k−1

)
distinct k-element subsets, no two of which are translates of each

other. This bound is attained only for sets of the form {p, p + v, . . . ,
p+ (n− 1)v} for some p, v ∈ Rd.

By projection, it is again sufficient to prove the result on the line.
Let f(n, k) denote the minimum number of translation inequivalent k-
element subsets of a set of n real numbers. Considering the set {1, . . . , n},
we obtain that f(n, k) ≤ (

n−1
k−1

)
, since every equivalence class has a unique

member that contains 1. To establish the lower bound, observe that, for
any set of n real numbers, there are

(
n−2
k−2

)
distinct subsets that con-

tain both the smallest and the largest numbers, and none of them is
translation equivalent to any other. On the other hand, there are at
least f(n− 1, k) translation inequivalent subsets that do not contain the
last element. So we have f(n, k) ≥ f(n− 1, k) +

(
n−2
k−2

)
, which, together

with f(n, 1) = 1, proves the claimed formula. To verify the structure
of the extremal set, observe that, in the one-dimensional case, an ex-
tremal set minus its first element, as well as the same set minus its last
element, must again be extremal sets, and for n = k + 1 it follows from
Theorem 2.4 that all extremal sets must form arithmetic progressions.
Thus, the whole set must be an arithmetic progression, which holds, in
higher-dimensional cases, for each one-dimensional projection.

The corresponding algorithmic problem (4) has a natural solution:
Given two sets, A = {a1, . . . , ak} and B = {b1, . . . , bn}, we can fix any
element of A, say, a1, and try all possible image points bi. Each of them
specifies a unique translation t = bi − a1, so we simply have to test for
each set A+(bi−a1) whether it is a subset of B. This takes Θ(kn logn)
time. The running time of this algorithm is not known to be optimal.

Problem 1 Does there exist an o(kn)-time algorithm for finding all real
numbers t such that t + A ⊂ B, for every pair of input sets A and B
consisting of k and n reals, respectively?

The Ramsey-type problem (5) is trivial for translates. Given any set A
of at least two points a1, a2 ∈ A, we can two-color Rd without generating
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any monochromatic translate of A. Indeed, the space can be partitioned
into arithmetic progressions with difference a2 − a1, and each of them
can be colored separately with alternating colors.

3. Equivalence under congruence in the plane
Problems (1) – (5) are much more interesting and difficult under con-

gruence as the equivalence relation. In the plane, considering two-
element subsets, the congruence class of a pair of points is determined
by their distance. Questions (1) and (3) become the Erdős’s famous
problems, mentioned in the Introduction.

Problem 2 What is the maximum number of times the same distance
can occur among n points in the plane?

Problem 3 What is the minimum number of distinct distances deter-
mined by n points in the plane?

The best known results concerning these questions were summarized
in Theorems 2.1 and 2.2, respectively. There are several different proofs
known for the currently best upper bound in Theorem 2.1 (see Spencer et
al., 1984; Clarkson et al., 1990; Pach and Agarwal, 1995; Székely, 1997),
which obviously does not depend on the particular distance (congruence
class). This answers question (2). As for the lower bound of Katz and
Tardos (2004) in Theorem 2.2, it represents the latest improvement over
a series of previous results (Solymosi and Tóth, 2001; Székely, 1997;
Chung et al., 1992; Chung, 1984; Beck, 1983; Moser1952).

The algorithmic problem (4) can now be stated as follows.

Problem 4 How fast can we find all unit distance pairs among n points
in the plane?

Some of the methods developed to establish the O(n4/3) bound for
the number of unit distances can also be used to design an algorithm
for finding all unit distance pairs in time O(n4/3 log n) (similar to the
algorithms for detecting point-line incidences; Matoušek, 1993).

The corresponding Ramsey-type problem (5) for patterns of size two
is the famous Hadwiger – Nelson problem; see Theorem 2.3 above.

Problem 5 What is the minimum number of colors necessary to color
all points of the plane so that no pair of points at unit distance receive
the same color?

If we ask the same questions for patterns of size k rather than point
pairs, but still in the plane, the answer to (1) does not change. Given
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Figure 2.2. A unit equilateral triangle and a lattice section containing many congru-
ent copies of the triangle

a pattern A = {a1, . . . , ak}, any congruent image of A is already deter-
mined, up to reflection, by the images of a1 and a2. Thus, the maximum
number of congruent copies of a set is at most twice the maximum num-
ber of (ordered) unit distance pairs. Depending on the given set, this
maximum number may be smaller, but no results of this kind are known.
As n tends to infinity, the square and triangular lattice constructions
that realize nec log n/ log log n unit distances among n points also contain
roughly the same number of congruent copies of any fixed set that is a
subset of a square or triangular lattice. However, it is likely that this
asymptotics cannot be attained for most other patterns.

Problem 6 Does there exist, for every finite set A, a positive constant
c(A) with the following property: For every n, there is a set of n points
in the plane containing at least nec(A) log n/ log log n congruent copies of A?

The answer is yes if |A| = 3.
Problem (3) on the minimum number of distinct congruence classes

of k-element subsets of a point set is strongly related to the Problem of
Distinct Distances, just like the maximum number of pairwise congruent
subsets was related to the Unit Distance Problem. For if we consider
ordered k-tuples instead of k-subsets (counting each subset k! times),
then two such k-tuples are certainly incongruent if their first two points
determine distinct distances. For each distance s, fix a point pair that
determines s. Clearly, any two different extensions of a point pair by
filling the remaining k− 2 positions result in incongruent k-tuples. This
leads to a lower bound of Ω(nk−2+0.8641) for the minimum number of
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distinct congruence classes of k-element subsets. Since a regular n-gon
has O(nk−1) pairwise incongruent k-element sets, this problem becomes
less interesting for large k.

The algorithmic question (4) can also be reduced to the corresponding
problem on unit distances. Given the sets A and B, we first fix a1, a2 ∈ A
and use our algorithm developed for detecting unit distance pairs to find
all possible image pairs b1, b2 ∈ B whose distance is the same as that
of a1 and a2. Then we check for each of these pairs whether the rigid
motion that takes ai to bi (i = 1, 2) maps the whole set A into a subset
of B. This takes O∗(n4/3k) time, and we cannot expect any substantial
improvement in the dependence on n, unless we apply a faster algorithm
for finding unit distance pairs. (In what follows, we write O∗ to indicate
that we ignore some lower order factors, i.e., O∗(nα) = O(nα+ε) for every
ε > 0).

Many problems of Euclidean Ramsey theory can be interpreted as
special cases of question (5) in our model. We particularly like the
following problem raised in Erdős et al. (1975).

Problem 7 Is it true that, for any triple A = {a1, a2, a3} ⊂ R2 that
does not span an equilateral triangle, and for any coloring of the plane
with two colors, one can always find a monochromatic congruent copy of
A?

It was conjectured in Erdős et al. (1975) that the answer to this ques-
tion is yes. It is easy to see that the statement is not true for equilateral
triangles A. Indeed, decompose the plane into half-open parallel strips
whose widths are equal to the height of A, and color them red and blue,
alternately. On the other hand, the seven-coloring of the plane, with no
two points at unit distance whose colors are the same, shows that any
given pattern can be avoided with seven colors. Nothing is known about
coloring with three colors.

Problem 8 Does there exist a triple A = {a1, a2, a3} ⊂ R2 such that
any three-coloring of the plane contains a monochromatic congruent copy
of A?

4. Equivalence under congruence in higher
dimensions

All questions discussed in the previous section can also be asked in
higher dimensions. There are two notable differences. In the plane,
the image of a fixed pair of points was sufficient to specify a congruence.
Therefore, the number of congruent copies of any larger set was bounded
from above by the number of congruent pairs. In d-space, however, one
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has to specify d image points to determine a congruence, up to reflection.
Hence, estimating the maximum number of congruent copies of a k-point
set is a different problem for each k = 2, . . . , d.

The second difference from the planar case is that starting from four
dimensions, there exists another type of construction, discovered by
Lenz, that provides asymptotically best answers to some of the above
questions. For k = bd/2c, choose k concentric circles of radius 1/

√
2

in pairwise orthogonal planes in Rd and distribute n points on them as
equally as possible. Then any two points from distinct circles are at dis-
tance one, so the number of unit distance pairs is

(
1
2 − 1/(2k)+ o(1)

)
n2,

which is a positive fraction of all point pairs. It is known (Erdős, 1960)
that this constant of proportionality cannot be improved. Similarly, in
this construction, any three points chosen from distinct circles span a
unit equilateral triangle, so if d ≥ 6, a positive fraction of all triples can
be congruent. In general, for each k ≤ bd/2c, Lenz’s construction shows
that a positive fraction of all k-element subsets can be congruent. Ob-
viously, this gives the correct order of magnitude for question (1). With
some extra work, perhaps even the exact maxima can be determined,
as has been shown for k = 2, d = 4 in Brass (1997) and van Wamelen
(1999).

Even for k > d/2, we do not know any construction better than Lenz’s,
but for these parameters the problem is not trivial. Now one is forced
to pick several points from the same circle, and only one of them can be
selected freely. So, for d = 3, in the interesting versions of (1), we have
k = 2 or 3 (now there is no Lenz construction). For d ≥ 4, the cases
bd/2c < k ≤ d are nontrivial.

Problem 9 What is the maximum number of unit distances among n
points in three-dimensional space?

Here, the currently best bounds are Ω(n4/3 log log n) (Erdős, 1960)
and O∗(n3/2) (Clarkson et al., 1990).

Problem 10 What is the maximum number of pairwise congruent tri-
angles spanned by a set of n points in three-dimensional space?

Here the currently best lower and upper bounds are Ω(n4/3) (Erdős et
al., 1989; Ábrego and Fernández-Merchant, 2002) and O∗(n5/3) (Agar-
wal and Sharir, 2002), respectively. They improve previous results in
Akutsu et al. (1998) and Brass (2000). For higher dimensions, Lenz’s
construction or, in the odd-dimensional cases, a combination of Lenz’s
construction with the best known three-dimensional point set (Erdős et
al., 1989; Ábrego and Fernández-Merchant, 2002), are most likely to be
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optimal. The only results in this direction, given in Agarwal and Sharir
(2002), are for d ≤ 7 and do not quite attain this bound.

Problem 11 Is it true that, for any bd/2c ≤ k ≤ d, the maximum
number of congruent k-dimensional simplices among n points in d-di-
mensional space is O(nd/2) if d is even, and O(nd/2−1/6) if d is odd?

Very little is known about problem (2) in this setting. For point
pairs, scaling again shows that all two-element patterns can occur the
same number of times. For three-element patterns (triangles), the afore-
mentioned Ω(n4/3) lower bound in Erdős et al. (1989) was originally es-
tablished only for right-angle isosceles triangles. It was later extended in
Ábrego and Fernández-Merchant (2002) to any fixed triangle. However,
the problem is already open for full-dimensional simplices in 3-space. An
especially interesting special case is the following.

Problem 12 What is the maximum number of orthonormal bases that
can be selected from n distinct unit vectors?

The upper bound O(n4/3) is simple, but the construction of Erdős
et al. (1989) that gives O(n4/3) orthogonal pairs does not extend to
orthogonal triples.

Question (3) on the minimum number of distinct patterns is largely
open. For two-element patterns, we obtain higher-dimensional versions
of the Problem of Distinct Distances. Here the upper bound O(n2/d) is
realized, e.g., by a cubic section of the d-dimensional integer lattice. The
general lower bound of Ω(n1/d) was observed already in Erdős (1946).
For d = 3, this was subsequently improved to Ω∗(n77/141) (Aronov et
al., 2003) and to Ω(n0.564) (Solymosi and Vu, 2005). For large values of
d, Solymosi and Vu (2005) got very close to finding the best exponent
by establishing the lower bound Ω(n2/d−2/(d(d+2))). This extends, in the
same way as in the planar case, to a bound of Ω(nk−2+2/d−2/(d(d+2))) for
the minimum number of distinct k-point patterns of an n-element set,
but even for triangles, nothing better is known. Lenz-type constructions
are not useful in this context, because they span Ω(nk−1) distinct k-point
patterns, as do regular n-gons.

As for the algorithmic problem (4), it is easy to find all congruent
copies of a given k-point pattern A in an n-point set. For any k ≥ d,
this can be achieved in O(ndk logn) time: fix a d-tuple C in A, and
test all d-tuples of the n-point set B, whether they could be an image
of C. If yes, test whether the congruence specified by them maps all
the remaining k − d points to elements of B. It is very likely that
there are much faster algorithms, but, for general d, the only published
improvement is by a factor of log n (de Rezende and Lee, 1995).
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The Ramsey-type question (5) includes a number of problems of Eu-
clidean Ramsey theory, as special cases.

Problem 13 Is it true that for every two-coloring of the three-dimen-
sional space, there are four vertices of the same color that span a unit
square?

It is easy to see that if we divide the plane into half-open strips of
width one and color them alternately by two colors, then no four vertices
that span a unit square will receive the same color. On the other hand,
it is known that any two-coloring of four-dimensional space will contain
a monochromatic unit square (Erdős et al., 1975). Actually, the (vertex
set of a) square is one of the simplest examples of a Ramsey set, i.e.,
a set B with the property that, for every positive integer c, there is a
constant d = d(c) such that under any c-coloring of the points of Rd there
exists a monochromatic congruent copy of B. All boxes, all triangles
(Frankl and Rödl, 1986), and all trapezoids (Křiž, 1992) are known to
be Ramsey. It is a long-standing open problem to decide whether all
finite subsets of finite dimensional spheres are Ramsey. If the answer
is in the affirmative, this would provide a perfect characterization of
Ramsey sets, for all Ramsey sets are known to be subsets of a sphere
(Erdős et al., 1973).

The simplest nonspherical example, consisting of an equidistant se-
quence of three points along the same line, was mentioned at the end of
the Introduction.

5. Equivalence under similarity
If we consider problems (1) – (5) with similarity (congruence and scal-

ing) as the equivalence relation, again we find that many of the re-
sulting questions have been extensively studied. Since any two point
pairs are similar to each other, we can restrict our attention to patterns
of size at least three. The first interesting instance of problem (1) is
to determine or to estimate the maximum number of pairwise similar
triangles spanned by n points in the plane. This problem was almost
completely solved in Elekes and Erdős (1994). For any given triangle,
the maximum number of similar triples in a set of n point in the plane
is Θ(n2). If the triangle is equilateral, we even have fairly good bounds
on the multiplicative constants hidden in the Θ-notation (Ábrego and
Fernández-Merchant, 2000). In this case, most likely, suitable sections
of the triangular lattice are close to being extremal for (1). In general,
the following construction from Elekes and Erdős (1994) always gives a
quadratic number of similar copies of a given triangle {a, b, c}. Inter-
preting a, b, c as complex numbers 0, 1, z, consider the points (i1/n)z,
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i2/n+(1− i2/n)z, and (i3/n)z+(1− i3/n)z2, where 0 < i1, i2, i3 ≤ n/3.
Then any triangle (β −α)z, α+ (1−α)z, βz + (1− β)z2 is similar to 0,
1, z, which can be checked by computing the ratios of the sides. Thus,
choosing α = i2/n, β = i3/n, we obtain a quadratic number of similar
copies of the triangle 0, 1, z.

The answer to question (1) for k-point patterns, k > 3, is more or
less the same as for k = 3. Certain patterns, including all k-element
subsets of a regular triangular lattice, permit Θ(n2) similar copies, and
in this case a suitable section of the triangular lattice is probably close
to being extremal. For some other patterns, the order Θ(n2) cannot be
attained. All patterns of the former type were completely characterized
in Laczkovich and Ruzsa (1997): for any pattern A of k ≥ 4 points,
one can find n points containing Θ(n2) similar copies of A if and only if
the cross ratio of every quadruple of points in A, interpreted as complex
numbers, is algebraic. Otherwise, the maximum is slightly subquadratic.
This result also answers question (2).

In higher dimensions, the situation is entirely different: we do not
have good bounds for question (1) in any nontrivial case. The first open
question is to determine the maximum number of triples in a set of n
points in 3-space that induce pairwise similar triangles. The trivial upper
bound, O(n3), was reduced to O(n2.2) in Akutsu et al. (1998). On the
other hand, we do not have any better lower bound than Ω(n2), which
is already valid in the plane. These estimates extend to similar copies
of k-point patterns, k > 3, provided that they are planar.

Problem 14 What is the maximum number of pairwise similar trian-
gles induced by n points in three-dimensional space?

For full-dimensional patterns, no useful constructions are known. The
only lower bound we are aware of follows from the lattice L which, in
three dimensions, spans Ω(n4/3) similar copies of the full-dimensional
simplex formed by its basis vectors or, in fact, of any k-element subset
of lattice points. However, to attain this bound, we do not need to allow
rotations: L spans Ω(n4/3) homothetic copies.

Problem 15 In three-dimensional space, what is the maximum number
of quadruples in an n-point set that span pairwise similar tetrahedra?

For higher dimensions and for larger pattern sizes, the best known
lower bound follows from Lenz’s construction for congruent copies, which
again does not use the additional freedom of scaling. Since, for d ≥ 3, we
do not know the answer to question (1) on the maximum number occur-
rences, there is little hope that we would be able to answer question (2)
on the dependence of this maximum number on the pattern.
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Problem (3) on the minimum number of pairwise inequivalent patterns
under similarity is an interesting problem even in the plane.

Problem 16 What is the minimum number of similarity classes of tri-
angles spanned by a set of n points in the plane?

There is a trivial lower bound of Ω(n): if we choose two arbitrary
points, and consider all of their n − 2 possible extensions to a triangle,
then among these triangles each (oriented) similarity class will be repre-
sented only at most three times. Alternatively, we obtain asymptotically
the same lower bound Ω(n) by just using the pigeonhole principle and
the fact that the maximum size of a similarity class of triangles is O(n2).
On the other hand, as shown by the example of a regular n-gon, the num-
ber of similarity classes of triangles can be O(n2). This leaves a huge
gap between the lower and upper bounds.

For higher dimensions and for larger sets, our knowledge is even more
limited. In three-dimensional space, for instance, we do not even have an
Ω(n) lower bound for the number of similarity classes of triangles, while
the best known upper bound, O(n2), remains the same. For four-element
patterns, we have a linear lower bound (fix any triangle, and consider
its extensions), but we have no upper bound better than O(n3) (con-
sider again a regular n-gon). Here we have to be careful with the precise
statement of the problem. We have to decide whether we count similar-
ity classes of full-dimensional simplices only, or all similarity classes of
possibly degenerate four-tuples. A regular (n−1)-gon with an additional
point on its axis has only Θ(n2) similarity classes of full-dimensional sim-
plices, but Θ(n3) similarity classes of four-tuples. In dimensions larger
than three, nothing nontrivial is known.

In the plane, the algorithmic question (4) of finding all similar copies
of a fixed k-point pattern is not hard: trivially, it can be achieved in time
O(n2k logn), which is tight up to the log n-factor, because the output
complexity can be as large as Ω(n2k) in the worst case. For dimensions
three and higher, we have no nontrivial algorithmic results. Obviously,
the problem can always be solved in O(ndk log n) time, by testing all
possible d-tuples of the underlying set, but this is probably far from
optimal.

The Ramsey-type question (5) has a negative answer, for any finite
number of colors, even for homothetic copies. Indeed, for any finite set
A and for any coloring of space with a finite number of colors, one can
always find a monochromatic set similar (even homothetic) to A. This
follows from the Hales – Jewett theorem (Hales and Jewett, 1963), which
implies that every coloring of the integer lattice Zd with a finite number
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Figure 2.3. Three five-point patterns of different rational dimensions and three sets
containing many of their translates

of colors contains a monochromatic homothetic copy of the lattice cube
{1, . . . ,m}d (Gallai – Witt theorem; Rado, 1943; Witt, 1952).

6. Equivalence under homothety or affine
transformations

For homothety-equivalence, questions (1) and (2) have been com-
pletely answered in all dimensions (van Kreveld and de Berg, 1989;
Elekes and Erdős, 1994; Brass, 2002). The maximum number of ho-
mothetic copies of a set that can occur among n points is Θ(n2); the
upper bound O(n2) is always trivial, since the image of a set under a
homothety is specified by the images of two points; and a lower bound
of Ω(n2) is attained by the homothetic copies of {1, . . . , k} in {1, . . . , n}.
The maximum order is attained only for this one-dimensional example.
If the dimension of the affine space induced by a given pattern A over
the rationals is k, then the maximum number of homothetic copies of A
that can occur among n points is Θ(n1+1/k), which answers question (2).

Question (3) on the minimum number of distinct homothety classes
of k-point subsets among n points, seems to be still open. As in the case
of translations, by projection, we can restrict our attention to the one-
dimensional case, where a sequence of equidistant points {0, . . . , n− 1}
should be extremal. This gives Θ(nk−1) distinct homothety classes. To
see this, notice that as the size of the sequence increases from n − 1 to
n, the number of additional homothety classes that were not already
present in {0, . . . n − 2}, is Θ(nk−2). (The increment certainly includes
the classes of all k-tuples that contain 0, n − 1, and a third number
coprime to n − 1.) Unfortunately, the pigeonhole principle gives only
an Ω(nk−2) lower bound for the number of pairwise dissimilar k-point
patterns spanned by a set of n numbers.
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Problem 17 What is the minimum number of distinct homothety
classes among all k-element subsets of a set of n numbers?

The algorithmic problem (4) was settled in van Kreveld and de Berg
(1989) and Brass (2002). In O(n1+1/dk logn) time, in any n-element set
of d-space one can find all homothetic copies of a given full-dimensional
k-point pattern. This is asymptotically tight up to the logn-factor.
As mentioned in the previous section, the answer to the corresponding
Ramsey-type question (5), is negative: one cannot avoid monochromatic
homothetic copies of any finite pattern with any finite number of colors.

The situation is very similar for affine images. The maximum number
of affine copies of a set among n points in d-dimensional space is Θ(nd+1).
The upper bound is trivial, since an affine image is specified by the
images of d + 1 points. On the other hand, the d-dimensional “lattice
cube,” {1, . . . , n1/d}d, contains Ω(nd+1) affine images of {0, 1}d or of any
other small lattice-cube of fixed size.

The answer to question (2) is not so clear.

Problem 18 Do there exist, for every full-dimensional pattern A in d-
space, n-element sets containing Ω(nd+1) affine copies of A?

Problem 19 What is the minimum number of affine equivalence classes
among all k-element subsets of a set of n points in d-dimensional space?

For the algorithmic problem (4), the brute force method of trying all
possible (d+ 1)-tuples of image points is already optimal. The Ramsey-
type question (5) has again a negative answer, since every homothetic
copy is also an affine copy.

7. Other equivalence relations for triangles in
the plane

For triples in the plane, several other equivalence relations have been
studied. An especially interesting example is the following. Two ordered
triples are considered equivalent if they determine the same angle. It
was proved in Pach and Sharir (1992) that the maximum number of
triples in a set of n points in the plane that determine the same angle
α is Θ(n2 logn). This order of magnitude is attained for a dense set of
angles α. For every other angle α, distribute as evenly as possible n− 1
points on two rays that emanate from the origin and enclose angle α,
and place the last point at the origin. Clearly, the number of triples
determining angle α is Ω(n2), which “almost” answers question (2). As
for the minimum number of distinct angles determined by n points in
the plane, Erdős conjectured that the answer to the following question
is in the affirmative.
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Problem 20 Is it true that every set of n points in the plane, not all
on a line, determine at least n− 2 distinct angles?

This number is attained for a regular n-gon and for several other
configurations.

The corresponding algorithmic question (4) is easy: list, for each point
p of the set, all lines ` through p, together with the points on `. Then we
can find all occurrences of a given angle in time O(n2 logn + a), where
a is the number of occurrences of that angle. Thus, by the above bound
from Pach and Sharir (1992), the problem can be solved in O(n2 log n)
time, which is optimal. The negative answer to the Ramsey-type ques-
tion (5) again follows from the analogous result for homothetic copies:
no coloring with a finite number of colors can avoid a given angle.

Another natural equivalence relation classifies triangles according to
their areas.

Problem 21 What is the maximum number of unit-area triangles that
can be determined by n points in the plane?

An upper bound of O(n7/3) was established in Pach and Sharir (1992),
while it was pointed out in (Erdős and Purdy, 1971) that a section of the
integer lattice gives the lower bound Ω(n2 log log n). By scaling, we see
that all areas allow the same multiplicities, which answers (2). However,
problem (3) is open in this case.

Problem 22 Is it true that every set of n points in the plane, not all
on a line, spans at least b(n−1)/2c triangles of pairwise different areas?

This bound is attained by placing on two parallel lines two equidis-
tant point sets whose sizes differ by at most one. This construction is
conjectured to be extremal (Erdős and Purdy, 1977; Straus, 1978). The
best known lower bound, 0.4142n−O(1), follows from Burton and Purdy
(1979), using Ungar (1982).

The corresponding algorithmic problem (4) is to find all unit-area
triangles. Again, this can be done in O(n2 log n + a) time, where a
denotes the number of unit area triangles. First, dualize the points to
lines, and construct their arrangement, together with a point location
structure. Next, for each pair (p, q) of original points, consider the two
parallel lines that contain all points r such that pqr is a triangle of
unit area. These lines correspond to points in the dual arrangement,
for which we can perform a point location query to determine all dual
lines containing them. They correspond to points in the original set that
together with p and q span a triangle of area one. Each such query takes
logn time plus the number of answers returned.
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Concerning the Ramsey-type problem (4), it is easy to see that, for
any 2-coloring of the plane, there is a monochromatic triple that spans
a triangle of unit area. The same statement may hold for any coloring
with a finite number of colors.

Problem 23 Is it true that for any coloring of the plane with a finite
number of colors, there is a monochromatic triple that spans a triangle
of unit area?

The perimeter of triangles was also discussed in the same paper (Pach
and Sharir, 1992), and later in Pach and Sharir (2004), where an up-
per bound of O(n16/7) was established, but there is no nontrivial lower
bound. The lattice section has Ω(nec log n/ log log n) pairwise congruent
triangles, which, of course, also have equal perimeters, but this bound is
probably far from being sharp.

Problem 24 What is the maximum number of unit perimeter triangles
spanned by n points in the plane?

By scaling, all perimeters are equivalent, answering (2). By the pi-
geonhole principle, we obtain an Ω(n5/7) lower bound for the number of
distinct perimeters, but again this is probably far from the truth.

Problem 25 What is the minimum number of distinct perimeters as-
sumed by all

(
n
3

)
triangles spanned by a set of n points in the plane?

Here neither the algorithmic problem (4) nor the Ramsey-type prob-
lem (5) has an obvious solution. Concerning the latter question, it is
clear that with a sufficiently large number of colors, one can avoid unit
perimeter triangles: color the plane “cellwise,” where each cell is too
small to contain a unit perimeter triangle, and two cells of the same
color are far apart. The problem of determining the minimum num-
ber of colors required seems to be similar to the question addressed by
Theorem 2.3.
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