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Abstract

The crossing number cr(G) of a graph G = (V,E) is the smallest number of edge crossings
over all drawings of G in the plane. For any k ≥ 1, the k-planar crossing number of G, crk(G),
is defined as the minimum of cr(G0)+cr(G1)+. . .+cr(Gk−1) over all graphs G0, G1, . . . , Gk−1

with ∪k−1
i=0Gi = G. It is shown that for every k ≥ 1, we have crk(G) ≤

(
2
k2 − 1

k3

)
cr(G). This

bound does not remain true if we replace the constant 2
k2 − 1

k3 by any number smaller than 1
k2 .

Some of the results extend to the rectilinear variants of the k-planar crossing number.

1 Introduction

Selfridge (see [9]) noticed that by Euler’s polyhedral formula K11, the complete graph on 11 vertices,
cannot be written as the union of two planar graphs. Later Battle, Harary, and Kodama [1] and
independently Tutte [21] proved that the same is true for K9, but not for K8. This led Tutte [22]
to introduce a new parameter, the thickness of a graph G, which is the minimum number of planar
graphs that G can be decomposed into. The notion turned out to be relevant for VLSI chip design,
where it corresponds to the number of layers required for realizing a network so that there is no
crossing within a layer. Consult Mutzel, Odenthal, and Scharbrodt [12] for a survey. If the thickness
of G is at most 2, G is called biplanar. Mansfield proved that it is an NP-complete problem to
decide whether a graph is biplanar; see [2, 11].

A drawing of a graph G = (V,E) is a planar representation of G such that every vertex
v ∈ V corresponds to a point of the plane and every edge uv ∈ E is represented by a simple
continuous curve between the points corresponding to u and v, which does not pass through any
point representing a vertex of G. We always assume for simplicity that (1) no two curves share
infinitely many points, (2) no two curves are tangent to each other, and (3) no three curves pass
through the same point. The crossing number of G is defined as the minimum number of edge
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crossings in a drawing of G, and is denoted by cr(G). For a survey, see [17, 20]. Clearly, G is
planar if and only if cr(G) = 0.

The biplanar crossing number, cr2(G), of G was defined by Owens [13] as the minimum sum
of the crossing numbers of two graphs, G0 and G1, whose union is G. For the VLSI applications,
we imagine that G0 and G1 are drawn (realized) in different planes. If G is biplanar, its biplanar
crossing number is 0. The biplanar crossing number of random graphs was studied by Spencer [19].
Czabarka, Sýkora, Székely, and Vrťo [5] proved that for every graph G, we have

cr2(G) ≤ 3

8
cr(G).

They also showed [4] that this inequality does not remain true if the constant 3
8 = 0.375 is replaced

by anything less than 8
119 ≈ 0.067.

Shahrokhi et al. [18] extended the notion of biplanar crossing number as follows. For any positive
integer k ≥ 1, define the k-planar crossing number of G as the minimum of cr(G0) + cr(G1) +
. . . + cr(Gk−1), where the minimum is taken over all graphs G0, G1, . . . , Gk−1 whose union is G,
that is, ∪k−1i=0E(Gi) = E(G). This number is denoted by crk(G). Obviously, cr1(G) = cr(G) and
we have cri(G) ≥ cri+1(G) for all i ∈ N and every graph G.

In the present note, we investigate the relationship between the k-planar crossing number and
the (ordinary) crossing number of a graph. For every k ≥ 1, let

αk = sup
crk(G)

cr(G)
,

where the supremum is taken over all nonplanar graphs G. The above mentioned results yield
0.067 < α2 ≤ 3

8 = 0.375. The next theorem implies that αk = Θ(k−2).

Theorem. For every positive integer k, we have

1

k2
≤ αk ≤

2

k2
− 1

k3
.

2 Proof of Theorem

Upper bound. First we prove the upper bound. Let G be a graph with vertex set V (G), edge
set E(G), and fix an optimal drawing of G in the plane with precisely cr(G) crossings. We describe
a randomized procedure to partition (the edge set of) G into k subgraphs G0, . . . , Gk−1 such that
the expected value of the sum of their crossing numbers is at most ( 2

k2
− 1

k3
)cr(G). We think of

each Gi as a graph drawn independently so that edges of different subgraphs do not cross.

The idea of the proof is the following. We start by randomly partitioning the vertex set of
G into k roughly equal classes. We associate with each class a vertex of a complete graph Kk.
We consider a factorization of Kk into maximal matchings and then use these matchings to divide
E(G) into k classes, G0, . . . , Gk−1. It will follow from the definition that every Gi can be drawn
independently in such a way that no two edges that correspond to distinct edges of the underlying
matching of Kk will cross.

Let the vertex set of G be V = V (G) = {1, 2, . . . , n}. Assign independent random variables ξv
to the vertices v ∈ V such that each ξv takes each of the values 0, 1, . . . , k− 1 with probability 1/k.
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For every i(0 ≤ i < k), let Vi = {v ∈ V | ξv = i}, and define a subgraph Gi as follows. Let
V (Gi) = V and let the edge set E(Gi) of Gi consist of all edges uv ∈ E(G) for which

ξu + ξv ≡ i mod k.

Obviously, we have ∪k−1i=0E(Gi) = E(G).

We define the type of an edge uv to be the unordered pair (ξu, ξv). For each i (0 ≤ i < k), first
we draw Gi in the ith plane as it was drawn in the original drawing of G. Notice that for every
index g, there is precisely one index h = h(g) such that Gi has an edge connecting a vertex in Vg to
a vertex in Vh. Thus, every connected component of Gi consists of edges of the same type. In the
ith plane, we can translate the connected components of Gi sufficiently far from each other so that
no two edges of different types intersect, and during the procedure no new crossings are introduced.

Calculate the expected value of the total number of crossings in the resulting drawing of Gi over
all i (0 ≤ i < k). Every crossing arises from a crossing between two edges in the original drawing
of G. Consider two edges uv, u′v′ ∈ E(G) that cross each other in the original drawing. A crossing
between these edges will be present in the final drawing of one of the Gis if and only uv and u′v′

are of the same type. For every index g, this happens with probability Pr[type(uv) = (g, g)] = 1
k2

.
For distinct indices g and h (g 6= h), we have Pr[type(uv) = (g, h)] = 2

k2
.

Summing over all possible pairs of types, we obtain

Pr[type(uv) = type(u′v′)] =

(
k

2

)
· 2

k2
· 2

k2
+ k · 1

k2
· 1

k2
=

2

k2
− 1

k3
.

Consequently, the expected value of the total number of crossings in the resulting drawings of all
Gis is ( 2

k2
− 1

k3
)cr(G). Hence, there exists a partition of (the edges of) G into G0, . . . , Gk−1 where

cr(G0) + . . .+ cr(Gk−1) ≤
(

2

k2
− 1

k3

)
cr(G).

This completes the proof of the upper bound in the Theorem.

Lower bound. Next we establish the lower bound. For two functions f(n) and g(n), we write

f(n) � g(n), if limn→∞
f(n)
g(n) = 0. Let κ(n, e) denote the minimum crossing number of a graph G

with n vertices and at least e edges. That is,

κ(n, e) = min
n(G) = n
e(G) ≥ e

cr(G).

It was shown in [16] that there exists a positive constant K such that if n� e� n2, the limit

lim
n→∞

κ(n, e)
n2

e3

exists and is equal to K. The constant K > 0 is called the midrange crossing constant. The best
known bounds for K are 0.032 ≤ K ≤ 0.09; see [14, 15]. This result can be rephrased as follows.

Lemma. For every ε (0 < ε < 1), there exists a constant N = Nε satisfying the following condition.

For every positive integers n and e with min(n, en ,
n2

e ) ≥ N , we have κ(n, e) > K − ε, and there is

a graph G with n vertices and e edges such that cr(G) < (K + ε) e3

n2 .
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Let ε > 0 be fixed, let

min

(
n,
e

n
,
n2

e

)
>
k

ε
Nε,

and let G be a graph with n vertices and e edges such that cr(G) < (K+ ε) e3

n2 . Decompose G into
k graphs G = G0 ∪ G1, · · · ∪ Gk−1 such that cr(G0) + cr(G1) + · · · + cr(Gk−1) = crk(G). For
simplicity, write ei for |E(Gi)|.

We may assume, without loss of generality, that there is an integer t (0 < t ≤ k) such that
ei ≥ ε

ke for i = 0, 1, . . . , t− 1, and ei <
ε
ke for i = t, t+ 1, . . . , k − 1.

For every i < t, we have min(n, ein ,
n2

ei
) > Nε, so we can apply the Lemma to conclude that

cr(Gi) ≥ (K − ε) e3i
n2 . Using that

∑k−1
i=t ei ≤ εe, we have

∑t−1
i=0 ei ≥ (1− ε)e.

Hence, Jensen’s inequality yields

crk(G) ≥
t−1∑
i=0

cr(Gi) ≥
t−1∑
i=0

(K − ε) e
3
i

n2

≥ t(K − ε) · ((1− ε)e/t)3

n2
>

(1− 3ε)(K − ε)
k2

· e
3

n2
.

Using that cr(G) < (K + ε) e3

n2 , the last inequality implies

crk(G)

cr(G)
≥ (1− 3ε)

K − ε
K + ε

· 1

k2
.

As ε→ 0, the lower bound in the Theorem follows.

3 Rectilinear Variants

Rectilinear k-planar crossing numbers. The rectilinear crossing number, rcr(G), of a graph
G is the minimum number of crossings over all straight-line drawings of G, in which the edges are
represented by line segments. Obviously, we have cr(G) ≤ rcr(G) for every graph G. For every
t ≥ 4, Bienstock and Dean [3] constructed families of graphs whose crossing number is at most t
and whose rectilinear crossing number is unbounded.

Similarly to crk(G), we define the rectilinear k-planar crossing number of a graph G, denoted
rcrk(G), as the minimum of rcr(G0) + rcr(G1) + . . .+ rcr(Gk−1), where the minimum is taken
over all graphs G0, G1, . . . , Gk−1 whose union is G. It is clear that crk(G) ≤ rcrk(G) for every
k ∈ N. However, we do not know of any graph G where crk(G) < rcrk(G) and k ≥ 2.

The analogue of αk for every k ∈ N is

βk = sup
rcrk(G)

rcr(G)
,

where the supremum is taken over all nonplanar graphs G. The proof of our main theorem carries
over verbatim to this variant, and yields

1

k2
≤ βk ≤

2

k2
− 1

k3
.

Specifically, the upper bound starts from a fixed straight-line drawing of G with exactly rcr(G)
crossings. Our randomized procedure decomposes G into k graphs G0, . . . , Gk−1, each of which
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consists of k vertex-disjoint subgraphs induced by the k edge types. These k2 subgraphs can be
translated independently to avoid any crossings between edges of different subgraphs, but maintain
a straight-line drawing for each. The lower bound relies on the existence of a midrange crossing
constant K > 0 for the rectilinear crossing number, which is established by the argument in [16]
even though the constants K and K are not necessarily the same.

Geometric k-planar crossing numbers. The geometric thickness, introduced by Kainen [10],
is the smallest positive integer k such that G admits a k-edge-coloring and a straight-line drawing
in which edges of the same color do not cross. The color classes define a decomposition of G into
k planar graph G0, . . . , Gk−1 each of which admits a crossing-free straight-line drawing in such a
way that corresponding vertices are represented by the same point in the plane. A straight-line
drawing of a graph G is called biplane if G admits a 2-edge-coloring such that no two edges of
the same color cross in this drawing; see [8]. Eppstein [7] constructed graphs with thickness 3 and
geometric thickness at least t for every t > 0. Determining the geometric thickness of a graph is
also an NP-hard problem [6].

The geometric thickness motivates the following variant of the k-planar crossing number. The
geometric k-planar crossing number of a graph G, denoted gcrk(G), is the minimum number
of crossings between edges of the same color over all k-edge-colorings of G and all straight-line
drawings of G. It is clear that crk(G) ≤ rcrk(G) ≤ gcrk(G) for every graph G and every k ∈ N.

The analogue of αk for every k ∈ N is

γk = sup
gcrk(G)

rcr(G)
,

where the supremum is taken over all nonplanar graphs G. The lower bound of our main theorem
carries over verbatim to this variant, since it relies on density results, namely the (rectilinear)
midrange crossing number. But the upper bound argument does not extend to this variant. Our
randomized procedure partitions the edge set E(G) into k color classes E(G0), . . . , E(Gk−1), and
crossings between edges of different colors do not count. But each color class consists of edges of up
to k different types, and the crossings between edges of the same color and different types cannot
be eliminated. A weaker upper bound easily follows from a uniform random k-coloring of the edges,
and yields

1

k2
≤ γk ≤

1

k
.
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[4] É. Czabarka, O. Sýkora, L. A. Székely, and I. Vrťo, Crossing numbers and biplanar crossing
numbers I: a survey of problems and results, in: More Sets, Graphs and Numbers (E. Győri, G.
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