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Abstract

Let P be a set oh points in R3, not all of which are in a plane and no three on a line. We partially
answer a question of Scott (Amer. Math. Monthly 77 (1970) 502) by showing that the connecting
lines of P assume at leasu2- 3 different directions ifiis even and at leasi2- 2 if nis odd. These
bounds are sharp. The proof is based on a far-reaching generalization of Ungar’s theorem concerning
the analogous problem in the plane.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Erdds[7] pointed out the following immediate consequence of the celebrated Gallai—
Sylvester theorem on ordinary lines (see Borwein and Mdd4grfor a survey):n
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non-collinear points in the plane determine at laaslifferent connecting lines. Equal-
ity is attained if and only if all but one of the points are collinear.
In the same spirit, Scofl6] posed two similar questions in 1970:

1. Is it true that the minimum number of different directions assumed by the connecting
lines ofn > 4 non-collinear points in the plane i$2/2]?

2. Is it true that the minimum number of different directions assumed by the connecting
lines ofn > 6 non-coplanar points in 3-space is 2 3if nisevenand2 — 2 if nis
odd?

Twelve years later, the first question was answered in the affirmative by [ligjaHis
proofis areal gem, a brilliant application of the metho@dkdwable sequenceasvented by
Goodman and Pollad®,10]. Moreover, it solves the problem in an elegant combinatorial
setting, for “pseudolines”, as was suggested independently by Goodman and Pollack and
by Cordovil[6]. For evem, Ungar's theorem generalizes B8¥ above mentioned result.
However, in contrast to Ea$’s result, here there is an overwhelming diversity of extremal
configurations, for which equality is attained. Four infinite families and more than 100
sporadic configurations were catalogued by Jamison and il (see alsd13] for an
excellent survey).

Progress on the second question of Scott has been much slower. As JAr8]smticed,
unless we impose some further restriction on the point set, fondtdd number of directions
determined by points in 3-space can be as small as-5. Indeed, equality is attained, e.g.,
for the n-element set obtained from the vertex set of a reg@ar 3)-gon P,_3 (or from
any other centrally symmetric extremal configuration for the planar problem) by adding its
centerc and two other points whose midpointdgnd whose connecting line is orthogonal
to the plane ofP,_s.

Blokhuis and Sereg8] introduced a natural condition excluding the above configura-
tions: they assumed that no three points are collinear. Under this assumption, they proved
that every non-coplanar set nfpoints in 3-space determines at leastsh — 2 different
directions.

The aim of the present paper is to answer Scott’'s second question in the affirmative, using
the same assumption as Blokhuis and Seress.

Theorem 1.1. Every set of: > 6 points inR*, not all of which are on a plane and no three
are on a line determines at least + 2[n/2] — 3 different directions. This bound is sharp.

Removing the center from the configuration described above that determines %
directions, we obtain a set of even size= n — 1 with 2« — 3 directions and no three
collinear points (see Fid(a)). Ifthe number of points is even, then this construction provides
the only known infinite family for which Theorerh.1is sharp. In addition, there are four
known sporadic extremal configurations, each of which is a subset of the 14-element set
depicted in Fig1(b).

According to a beautiful result of Motzkifil5], Rabin, and Chakeriafb] (see also
[1]), any set ofh non-collinear points in the plane, colored with two coloed andgreen
determines a monochromatic line. Motzkin and GriinbgLthinitiated the investigation of
biasedcolorings, i.e., colorings without monochromatic red lines. Their motivation was to
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Fig. 1. Two examples of sets with an even numbeaf points, not all on a plane and no three coplanar, that
determine 2 — 3 different directions.

justify the intuitive feeling that if there are many red points in such a coloring and not all of
them are collinear, then the number of green points must also be rather large. Denoting the
sets of red and green points ByandG, respectively, it is a challenging unsolved question

to decide whether the “surplusR| — |G| of the coloring can be arbitrarily large. We do

not know any example where this quantity exceeftX.

The problem of biased colorings was rediscovered byo&mtid Purdy8], who for-
mulated it as follows: What is the smallest numbgi) of points necessary to represent
(i.e., stab) all lines spanned lmnon-collinear points in the plane, if the generating points
cannot be used. AQ(n) lower bound follows from the “weak Dirac conjecture” proved by
Szemerédi and Trottdl 7] and Beck{2], according to which there is a point that lies on
Q(n) different connecting lines. Each of these connecting lines has to be represented by a
different point.

In Section 2, we reduce Theorelrl to a statement (Theoreth2) showing that under
some further restrictions the surplus is indeed bounded. More precisely, if there is no con-
necting line whose leftmost and rightmost points are both red, then we@ave2| |R|/2],
so in particulafR| — |G| < 1.

Another way of rephrasing Ungar’s theorem is that from all closed segments whose
endpoints belong to a non-collinear setropoints in the plane, one can always select at
least 2n/2] such that no two of them are parallel. Unless we explicitly state it otherwise,
everysegmentised in this paper is assumed todesed Our proof of Theoren2.2is based
on a far-reaching generalization of Ungar’s result. To formulate this statement, we need to
relax the condition of two segments beiparallel.

Definition 1.2. Two segments belonging to distinct lines are called avoiding if one of the
following two conditions is satisfied (see Fig):

(i) they are parallel, or
(ii) the intersection of their supporting lines does not belong to any of the segments.

An alternative definition is that two segments are avoiding if and only if they are disjoint
and their convex hull is a quadrilateral.
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Fig. 2. Avoiding and non-avoiding segments.

The main result of this paper, which implies Theorelnsand?2.2 (stated in the next
section), is the following strengthening of Ungar’s theorem, which is ofindependent interest.

Theorem 1.3. From all closed segments determined by a set of n non-collinear points in the
plang one can always select at leg&jtn /2| pairwise non-avoiding onesying on distinct
lines.

Theoreml.3is established in Sections 3 and 4.
This paper leaves open the problem of extending Thedréno the general case, where
the given point set may contain triples of collinear points.

2. Reduction of Theorem 1.1 to a planar problem

Let P be a set of points inR® such that not all of them lie in a common plane and no
three of them are collinear. Lgp be anextremepoint of P, i.e., a vertex of the convex hull
of P. Consider a supporting plane Roat pg, and translate it into a new positionso that
P lies in the slab bounded by these two planes. Note that no translateanf fully contain
the non-coplanar sé. Project frompg all points of P \ {po} onton. We obtain a seR
of n — 1 distinct points inz, not all on a line, and we will refer to the elementsPas
redpoints. Each red point corresponds to a direction determingd byd some other point
of P.

For each pair of elemenis p’ € P\ {po}, take a line parallel tpp’ that passes through
po- Color with greenthe intersection point of this line with, unless it has already been
colored red. The set of all green points is denote@bBy definition, we haveR N G = @.
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Fig. 3. Proving the existence of a green pointZoim extreme position.

We need the following simple property of the s&sand G, which implies that along
every line passing through at least two red points either the leftmost or the rightmost point
belonging toR U G is green.

Lemma 2.1. Every line connecting two red pointsr’ € R passes through at least one
green pointg € G that does not belong to tHelosed segmentr’.

Proof. Let¢ be aline int passing through at least two red points’ € R. Assume without
loss of generality that andr’ are the leftmost and rightmost red points al@énget p and
p’ denote those elements Bfwhose projections ta arer andr’, respectively. Observe
that in the plane induced by and¢, the direction ofpp’ does not belong to the convex
cone enclosed by the rayg p andpgp’, so the line througtpg parallel topp” will cross?

in a green poing meeting the requirements. See RBg. [

To establish Theorer.], it is sufficient to verify the following result.

Theorem 2.2. Let R be a set of: red points in the planenot all collinear, and letG be
a set ofm green points such thak N G = ¢ and every lineg connecting at least two red
points in R passes through a green paine G that does not belong to any segment,
forr,r” e RN L.

Then we haver > 2|n/2].

Indeed, to prove Theorefinlitis enough to notice thatin our setting we ha¢ =n—1
and that the number of different directions determinedPliy equal to

n—1 n
|R|+|G|Zn—1+2{TJ=n+2’7§-‘—3.

Thus, applying Theorer®.2, Theoreml.limmediately follows.

Itis interesting to note that TheoreZr? also implies Ungar’s above-mentioned theorem.
To see this, regard the elements of our given planar point setdagind the directions
determined by them as green points on the line at infinity, and apply Theag:ifif we
wish, we can perform a projective transformation and avoid the use of points at infinity.)
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Fig. 4. Two possible kinds of avoiding double wedges.

It remains to prove Theore2 However, as mentioned in the introduction, this result
can be easily deduced from TheorétB, which is a further extension of Ungar’s theorem:

Proof of Theorem 2.2(using Theorem 1.3Applying Theoreml.3to the seR, we obtain

2|n/2] segments with red endpoints that lie in distinct lines and no pair of them are avoiding.
By the condition in Theorer.2, the continuation of each of these segments passes through

a green point. Assign such a green point to each segment. Observe that these points are
all distinct. Indeed, if we can assign the same green point to two different segments, then
they must be avoiding, by definition. This completes the proof of The@@mand hence

of Theoreml.1 [

3. Junctions and stations—proof of Theorem 1.3

The aim of this and the next section is to establish an equivdieaiversion of Theorem
1.3 Fix an(x, y)-coordinate system in the plane. We apply a standard duality transform
that maps a point = (p1, p2) to the linep* with equationy + p1x + p2 = 0. Vice versa,
a non-vertical lind with equationy + l1x + I = 0 is mapped to the poirdt = (I1, I2).
Consequently, any two parallel lines are mapped into points having thexseowedinate.
It is often convenient to imagine that the dual picture lies in another, so-ahilgdplane,
different from the original one, which is referred to as fingnal plane.

The above mapping is incidence and order preserving, in the sengdigsmabove, on,
or below¢ if and only£* lies above, on, or beloyw*, respectively. The points of a segment
e = ab in the primal plane are mapped to the set of all lines in the claosedble wedge
¢*, which is bounded by* andb* and does not contain the vertical direction. All of these
lines pass through the poigt= «* N b*, which is called the@pexof the double wedge*.
All double wedges used in this paper are assumed to be closed, and they never contain the
vertical direction.

Definition 3.1. We call two double wedgessoidingif their apices are distinct and the apex
of neither of them is contained in the other (see Bjg.

Itis easy to see that, according to this definition, two non-collinear segments in the primal
plane are avoiding if and only if they are mapped to avoiding double wedges.
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Switching to the dual plane, Theorelr8 can now be reformulated as follows.

Theorem 3.2. Let L be a set ofi pairwise non-parallel lines in the planaot all of which
pass through the same point. Then the set of all double wedges bounded by pairs of lines in
L has at leas®|n/2| pairwise non-avoiding elements with different apices.

Note that the definition of double wedges depends on the choice of the coordinate system,
so a priori Theoren8.2 gives a separate statement in each coordinate frame. However,
each of these statements is equivalent to Thedr&rand that result does not depend on
coordinates. Therefore, we are free to use whatever coordinate system we like. In the final
part of the analysis (given in Section 4), we will exploit this property. But until then, no
restriction on the coordinate system is imposed.

Suppose that a set ofi2/2] double wedges meets the conditions in TheoBe2nClearly,
we can replace each element of this set, bounded by a pair ofdinés € L, by the
maximaldouble wedge with the same apex, i.e., the double wedge bounded by those
lines through¢y N ¢2 which have thesmallestand largestslopes. If every pair of dou-
ble wedges in the original set was non-avoiding, then this property remains valid after the
replacement.

It is sufficient to prove Theorer8.2for the case when is even, because for oddthe
statement trivially follows.

The proof is constructive. LetZ(L) denote thearrangementof L, consisting of all
vertices, edges, and faces of the planar map induceld Mye will construct a set of
vertices of.oZ(L) with distinctx-coordinates, and show that the maximal double wedges
whose apices belong to this set are pairwise non-avoiding.

We start by defining a sequendeof verticesvi, vo, ..., which will be referred to as
junctions.Let L~ (resp.,L™) denote the subset &f consisting of the:/2 lines with the
smallest (resp., largest) slopes. If we wish to simplify the picture, we can apply an affine
transformation that keeps the vertical direction fixed and carries the elements arfid
L™ to lines of negative and positive slopes, respectively (whence the choice of notation).
However, we will never use this property explicitly (although the figures will reflect this
convention).

The construction proceeds as follows.

Step1:Set:=1landL] =L, L} :=L".

Step 2: IfL; = L} = ¢, the construction of terminates. Otherwise, as we will see,
neither set is empty. Lat; be theleftmostintersection point between a line Iy and a
line in L;. Letd;” (andd;") denote the number of elementsiof (andL;", respectively)
incident tov;, and put; = min{d;", d;"}. DefineL, , (andL;" ,) as the set of lines obtained
from L (resp.,L;r) by deleting from it thed; elements that are incident i¢ and have
the smallest (resp., largest) slopes among those incident lines. (That;is=fd;", then
all lines incident tov; are deleted; otherwise, if, say, > dl.+, we are left withd;” — al;r
lines throughy; that belong ta;” and separate the deleted elements ofrom the deleted
elements ole?“. See Fig5.) Seti :=i + 1, and repeat Step 2.

LetJ = (v1, v2, ..., vr) denote the resulting sequence.

It is easy to verify the following properties of this construction.
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Fig. 5. Choosing the first junctiom in J. The dashed lines, two from~ and two fromL™, are removed. The
next junctionvy is also shown.

Claim 3.3.()) |L; | =|L;| foreachi =1,... k.
(i) Foreveryl < i < j < k, the junctiony; lies in the left unbounded facg; of
.pi(LJT U L}L) which separates. andL;.r atx = —oo (whose rightmost vertex ig).
v; lies in the interior off; if d;” = di*; otherwise it may lie on the boundary ¢f.

(i) Yi_idi =n/2

Next, between any two consecutive junctiansandv; 1, for 1 < i < k, we specify
d; + dj4+1 — 1 further vertices of/ (L), calledstations

Fix anindex 1< i < k, and consider the vertical slab betwegm@andv; 1. By Claim3.3
(i), v; lies inside or on the boundary of the fagg 1 of ;zf(LHrl U L,erl) whose rightmost
vertex isv; 1. See Fig6. Hence, the segmeat= v;v; 1 is contained in the closure g¢f 1.
Now at least one of the following two conditions is satisfied: (a) alldhénes removed

from LJr and all thed; 1 lines removed from_;_ , pass above, or (b) all thed; lines
removed fromL;” and all thed; ;1 lines removed fronL 11 pass belove. Whene belongs
to the boundary off; +1, say its containing line belongs loH, case (b) cannot arise, but

case (a) does arise: Since L, all lines of L;” pass below it, and sindewasnotremoved
atv; (it was removed at; 1), all the removed lines pass above it.
Assume, by symmetry, that (a) holds. Denote the lines removedZfpiy €7, .. ., £, ,

listed according to increasing slopes, and those removedfrogby ¢; , ..., €, ., listed
according to decreasing slopes. Define the setatfonss; in the vertical slab between
andv; 11 as the collection of all intersection pomts&jtf withthelinesty, ..., edm’ andall
intersection points od‘_ W|th the Imes@f, e E;Z. Clearly, we haveS;| = d; +d;11—1

such points; see Fr@.

Finally, we consider the portions of the plane to the lefbpfnd to the right o, and
collect there a sef;, of di + d1 — 1 additionalstations Actually, exploiting the fact that we
can (almost) freely select the coordinate system used for the duality transform, we will be
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Fig. 6. Collecting stations (shown highlighted) betweerandv; 1. The dashed lines are those removed;at
and the dashed-dotted ones are those removgd at The figure depicts the subcase where afitieat has been
removed ab; 1 also passes through. In this case the lines df;” deleted ab; and the lines oLi++1 deleted at
v;4+1 do notgenerate enough stations.

able to selectl;y + d1 — 1 suitable stations, so that all of them, or all but one, lie to the left
of v1. The proper choice of the coordinate system as well as the details of the construction
of Sy are described in the next section.

Let Q = J U (Uf_;S;). In view of Claim3.3(iii), the total numbet Q| of junctions and
stations equals

k
101=171+>_ISil
i=1
k-1
=k+ ) (i +diy1— D) + (d +d1— 1)
i=1

To complete the proof of Theore2 (and hence of Theorefh3), we need to verify.

Claim 3.4. Associate with each elemeqte Q the maximaldouble wedgéV (¢) (not
containing the vertical line through), which is bounded by a pair of lines passing through
g. Then the resulting set afdouble wedges has no two avoiding elements.

We close this section by verifying the last claim for the set of wed@é&)|q € O\ Sk}.
The extension to the general case is postponed to the last section,Syhedefined.

Letu,v € Q\ Sx with ulying to the left ofv. We distinguish three cases:

Case A: Bothu andv are junctions.

Putu = v; andv = vj, withi < j. ThenW(v) is bounded by a liné¢ L]f and by a
line ¢’ € L/*. By Claim 3.3(ii), v; lies between these two lines, and thus belong#' to).

Case Buis a junction and/ is a station not irf.
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Fig. 7. lllustrating Case C of the proof thét(z) and W (v) cannot be avoiding.

Putu = v; and letS; be the set of stations that containsvherei < j. ThenW (v) is
bounded by two line, ¢', where either € L and¢’ € L7, ;,0r¢ € L7, andt’ € L.
By construction, we have in both cases Ly and?’ e L;F, and the analysis is completed
as in Case A.

Case Cuis a station not ir§; andv is a junction or a station not ifi.

Let S; be the set of stations containingThe arguments in Case A and Case B imply that
v; € W(v). If vis also a station irf; or v = v; 11 then it is easy to verify, by construction,
that W (1) and W (v) are non-avoiding (see Fi§). Suppose then thatlies to the right of
vi11. Then bothy; andv; 1 lie in the left wedge oW (v), andu is incident to a linel of
positive slope that passes throughand to a linel’ of negative slope that passes through
vit1. If u ¢ W(v) then aboundary line d¥ (v) must separatefrom v; andv; 41, in which
casev € W(u); see Fig-7.

4. Wrapping up—the end of the proof

In this section, we define the missing set of statiSpsand extend the proof of Claim
3.4to handle also elements 6f. We need an elementary geometric fact that is easier to
formulate in the primal setting.

Lemma 4.1. LetR be a set ot non-collinear points in the planéetn be evepand letr be

any vertex of the convex hull &. Then there exists a partition @& into twon/2-element
subsets R~ and R, whose convex hulls are disjoint and which have a common inner
tangentmng passing through.r

Proof. Rotate a directed liné counterclockwise about, starting with all the points of
R\ {r} lying to the left of¢, until the closed halfplane to the right 6tontains for the first
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Fig. 8. The primal construction gt~ andR ™.

time more tham /2 points. DefineR™ to be the seRq of points in the open halfplane to
the right of¢, plus the firstz/2 — | Rg| points of¢ N R along?. mg coincides with the final
position of¢. See Fig8. U

Letm1 denote the other inner tangent of the convex hullRofandR*. Now choose an
orthogonal(x, y)-coordinate system whoseaxis is a line strictly separating~ andR™.
Suppose without loss of generality that

(a) R™ andR™ are to the left and to the right of theaxis, respectively,

(b) r € R~,and

(c) mo is oriented fronr away from the other contact point(s), and the posigiirection
lies counterclockwise to it. See Fig.

In the dual pictureR~ and R™ becomen/2-element sets of lined,” and L™, having
negative and positive slopes, respectively. Applying the construction described in the pre-
vious section ta. := L~ U L, we obtain a sequence of junctiolis= (v1, vo, ..., v¢)
and sets of station$y, ..., Si—1.

Sincem is the line with theargestslope connecting a point g™ and a point ofR~,
our duality implies that:}, the dual ofn1, is theleftmostintersection point between a line
of L* and a line ofL~. Hence, we have; = mj. As our construction sweeps the dual
plane from left to right, we collect junctions and stations whose dual lines rotate clockwise
from m1 onwards.

Claim 4.2. At least one of the following two conditions will be satisfied

(i) The last junctionu, is identical tomg, the dual ofmo.
(i) r*, the dual ofr € R, passes throughy and is the unique element af~ deleted
during the procedure aty (so thatd;, = 1).
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"y

Fig. 9. The segments and¢” £* must be avoiding.

Proof. Suppose that during the proceduieis deleted at a junction;, for somej < k.
Clearly,v} passes throughand through at least one point RT.

If in the primal planev;f passes through another poiit£ r of R, then v;‘f = mo
(otherwise it has to lie clockwise t@g and then it cannot meet any point &f*). In
this case, in the dual plane there cannot be any intersection point between a fine of
and a line of L™ to the right ofv;, so thatj = k. That is, we have; = mg, and (i)
holds.

If in the primal planev* does not pass through any elemehe R~ other tharr, then
we haved; = 1. If j = k, then condition (i) is satisfied. Let us assume, by contradiction,
thatj < k andv; # mo. Take any two line$_ € L~ and¢,. € L™ in the dual plane that
are deleted during the procedure at the last junctiorBy assumption and construction,
we havel* # r, and the slope of the segmefit¢* C v; connecting their duals in the
primal plane (i.e., the slope of) is smaller than that of the segmentBy duality, these
slopes appear in the reverse order oftfmordinates oty andv;.

We claim that the two segment$ ¢* C v andtr C v} are avoiding. Indeed;’ £*
must meetng to the left ofr, or elser would not be an extreme point & (it would lie
in the relative interior of the segment connectifigZ* N mg to a point inR™ N mo; see
Fig.9). Since the slope of’ £* is larger than that of the inner tangemg, this implies that
¢* lies aboveng, and thatr lies belowe? ¢* . Now if £* lied beIOWU;f, which is the line
supportingtr, then it would have to lie in theght wedgedetermined byw* andmg, with
apex at, which implies that cannot be extreme iR; see Fig9(b). We thus conclude that
£* must lie above’. These facts, together with the slope relationship betwéemdv;;,
imply that the two segments are avoiding. This, in turn, implies that the wailgeg and
W (v;) are avoiding, contradicting Clai®4 (Case A). [

The above argument is valid for any coordinate system whesds strictly separates
the setsR~ andR*. We specify a coordinate system with this property as follows.



J. Pach et al. / Journal of Combinatorial Theory, Series A 108 (2004) 1-16 13

== - - - -
<

R*
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Fig. 10. The case; = m(; of the construction ofy. (a) The primal structure. (b) The stationssip (highlighted
to the left ofvy).

(b)

Fig. 11. The case; # m{ of the construction o8y (&) The choice of the coordinate frame. (b) The dual picture.

Choose thg-axis to be very close tag, so that, in the dual plane the slope of every line
of L passing througlmg has smaller absolute value than the slope of any other ling of
that is, thex-coordinates of the points @fp N R have smaller absolute values than those of
any other point oR. See Figs10(a) and11(a).

Now we are in a position to define the set of statiGpsPass to the dual plane. The first
junction, vy, lies inside or on the boundary of the fageof .«7 (L, U L,j), whose rightmost
vertex isvg, so that the segmeat= v1v; is contained in the closure ¢f,.

Suppose first that, = m{. We can assume by symmetry that in the dual plane all the
dy lines removed fronl; = L~ during the procedure pass belewand all thedy lines of
L, pass above (as in the preceding section, this statement is not totally obvious when
lies on the boundary dj. Let¢y , ..., ¢, andiy, ..., 4, denote the removed lines bf

and ofL, , respectively, listed in the decreasing order of their slopes. By the special choice
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of our coordinate system, each ling intersects every Iinéjf to the left ofv1. Indeed, the
slope of the primal segme(vtjf)*(ei‘)* is larger than that af1, becausegijf)* € mo lies
belowm; and to the left of(¢;")* € my; see Fig.10(a). (We note that the assumption that
all lines in L] pass strictly belowy implies thatc := mg N my is not dual to any line in
L7, implying that eacr()v;)* does indeed lie to the left of eve(y; )*.) Define the last set

of stations S, as the collection of all intersection points@l with the linesiy, ..., i;k,
and all intersection points dgk withthe linesty, ..., ¢, See Figl10(b). Clearly, we have

|Sk| = dr + d1 — 1 such points, all lying to the left af;.

Suppose nextthag, # m. In this case, according to Clain2, v lies onr* anddy, = 1.
Refer to Fig.11 Again, let¢y, ..., ¢, denote the lines removed froly = L™ atvy,
listed in the decreasing order of their slopes. In the dual plane, the*lipasses above
and, by the choice of the coordinate system, it intersects éyety the left ofvy, with the
possible exception af; . The intersection™ N ¢; can lie to the right ob; (and ofvy) only
if the pointc := mg N m1 belongs toR~ and is dual to a line removed a4, in which case
that line must be; = ¢*. Note that in this caseg* N £] = r* N ¢* is identical to the point
m§ dual tomg, and the choice of the coordinate system implies that this is the rightmost
vertex of.«Z(L) onr*. We defineS; to be the set of intersection points between the lines
Oty andr*.1 Thus, either all points afy, or all but one (namelyng) lie to the left
of v1. Clearly, we havesSy| = d1 = dy + d1 — 1, as required.

We have to complete the proof of Claigrd. It remains to show the following:

Claim 4.3. Foranyu € Q andany € S, the maximal wedge® (1) andW (v) associated
with them are non-avoiding.

Proof. If both uandv belong toS, then the claim is obviously true. From now on suppose
thatu ¢ Sx. Then we have € {v;} U S; U {v;11}, for some 1< i < k.

We start with the case, = m{. Letv € S; be the intersection point of two lineéand
A, passing through; andvy, respectively, which, without loss of generality, we assume to
belong toL . If uis contained in the double wedge bounded layd/, thenu € W (v), so
thatW (1) andW (v) are non-avoiding. Otherwise, singdies to the left ofv1, u lies either
above/ or belowd. If uis abovel, then itis not a junction, so it must be the crossing point
ofaline¢™ e L™ and alinet~ € L~ which are removed during the procedure at junction
v; and at junctiorv; 1, respectively. See Fig2(a). Bothv; andv; 1 lie on or below#, so
that the left portion of the double wedge boundedbyand¢* containsv. Thus, we have
v € W(u). If, on the other handj is below¢?, as in Fig.12(b), then it is either a junction or
a station, and it is the crossing point of a liftlee L~ and alinef™ € L™, each of which is
removed at junctiom; or at junctionv; 1. Now £~ must pass above (or througty) (as do
alllines of L~, by construction), and hence abayavhile £ must pass below (or through)
v1 (again, by construction). This, combined with the fact thpasses througty and that

1 Note the asymmetry between this case, where the stations are constructed usingZinesnity, and the
previous case, where the stations can be constructed using either lihesasflines of L*, depending on the
relative position of the lines incident tg anduvy.
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(@)

Fig. 12. The proof tha () and W (v) are non-avoiding whemnis a station to the left of.

¢ has positive slope whereahas negative slope, imply thét passes below (see Fig.
12(b)). Again we can conclude that the left portion of the double wedge boundéd éyd
¢*, and thusW (1), containsv.
If v # mg, the above argument can be repeatexbatim unlessn( € S, andv = mg;
so assume this to be the case. Now it is simplest to establish the claim in the primal plane,
by noting that the segment dualWd(v) lies on the lineng, and that, by construction (since
u ¢ Sr), the segment dual t# («) must connect a point &~ to a point ofR™*, and thus
must intersecing, showing that these two segments are non-avoiding.

By verifying the last claim, we have completed the proof of Cl@m and hence of
Theorem3.2 This was our last debt.
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