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Abstract

Let P be a set ofn points inR3, not all of which are in a plane and no three on a line. We partially
answer a question of Scott (Amer. Math. Monthly 77 (1970) 502) by showing that the connecting
lines ofP assume at least 2n− 3 different directions ifn is even and at least 2n− 2 if n is odd. These
bounds are sharp. The proof is based on a far-reaching generalization of Ungar’s theorem concerning
the analogous problem in the plane.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Erdős [7] pointed out the following immediate consequence of the celebrated Gallai–
Sylvester theorem on ordinary lines (see Borwein and Moser[4] for a survey): n
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non-collinear points in the plane determine at leastn different connecting lines. Equal-
ity is attained if and only if all but one of the points are collinear.

In the same spirit, Scott[16] posed two similar questions in 1970:

1. Is it true that the minimum number of different directions assumed by the connecting
lines ofn ≥ 4 non-collinear points in the plane is 2�n/2�?

2. Is it true that the minimum number of different directions assumed by the connecting
lines ofn ≥ 6 non-coplanar points in 3-space is 2n − 3 if n is even and 2n − 2 if n is
odd?

Twelve years later, the first question was answered in the affirmative by Ungar[18]. His
proof is a real gem, a brilliant application of the method ofallowable sequencesinvented by
Goodman and Pollack[9,10]. Moreover, it solves the problem in an elegant combinatorial
setting, for “pseudolines”, as was suggested independently by Goodman and Pollack and
by Cordovil [6]. For evenn, Ungar’s theorem generalizes Erd˝os’s above mentioned result.
However, in contrast to Erd˝os’s result, here there is an overwhelming diversity of extremal
configurations, for which equality is attained. Four infinite families and more than 100
sporadic configurations were catalogued by Jamison and Hill[14] (see also[13] for an
excellent survey).

Progress on the second question of Scott has been much slower. As Jamison[13] noticed,
unless we impose some further restriction on the point set, for oddn, the number of directions
determined bynpoints in 3-space can be as small as 2n−5. Indeed, equality is attained, e.g.,
for then-element set obtained from the vertex set of a regular(n − 3)-gonPn−3 (or from
any other centrally symmetric extremal configuration for the planar problem) by adding its
centerc and two other points whose midpoint isc and whose connecting line is orthogonal
to the plane ofPn−3.

Blokhuis and Seress[3] introduced a natural condition excluding the above configura-
tions: they assumed that no three points are collinear. Under this assumption, they proved
that every non-coplanar set ofn points in 3-space determines at least 1.75n − 2 different
directions.

The aim of the present paper is to answer Scott’s second question in the affirmative, using
the same assumption as Blokhuis and Seress.

Theorem 1.1. Every set ofn ≥ 6 points inR3, not all of which are on a plane and no three
are on a line, determines at leastn+ 2�n/2� − 3 different directions. This bound is sharp.

Removing the centerc from the configuration described above that determines 2n − 5
directions, we obtain a set of even sizen′ = n − 1 with 2n′ − 3 directions and no three
collinear points (see Fig.1(a)). If the number of points is even, then this construction provides
the only known infinite family for which Theorem1.1 is sharp. In addition, there are four
known sporadic extremal configurations, each of which is a subset of the 14-element set
depicted in Fig.1(b).

According to a beautiful result of Motzkin[15], Rabin, and Chakerian[5] (see also
[1]), any set ofn non-collinear points in the plane, colored with two colorsred andgreen,
determines a monochromatic line. Motzkin and Grünbaum[11] initiated the investigation of
biasedcolorings, i.e., colorings without monochromatic red lines. Their motivation was to
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Fig. 1. Two examples of sets with an even numbern of points, not all on a plane and no three coplanar, that
determine 2n − 3 different directions.

justify the intuitive feeling that if there are many red points in such a coloring and not all of
them are collinear, then the number of green points must also be rather large. Denoting the
sets of red and green points byRandG, respectively, it is a challenging unsolved question
to decide whether the “surplus”|R| − |G| of the coloring can be arbitrarily large. We do
not know any example where this quantity exceeds 6[12].

The problem of biased colorings was rediscovered by Erd˝os and Purdy[8], who for-
mulated it as follows: What is the smallest numberm(n) of points necessary to represent
(i.e., stab) all lines spanned byn non-collinear points in the plane, if the generating points
cannot be used. An�(n) lower bound follows from the “weak Dirac conjecture” proved by
Szemerédi and Trotter[17] and Beck[2], according to which there is a point that lies on
�(n) different connecting lines. Each of these connecting lines has to be represented by a
different point.

In Section 2, we reduce Theorem1.1 to a statement (Theorem2.2) showing that under
some further restrictions the surplus is indeed bounded. More precisely, if there is no con-
necting line whose leftmost and rightmost points are both red, then we have|G| ≥ 2�|R|/2�,
so in particular|R| − |G| ≤ 1.

Another way of rephrasing Ungar’s theorem is that from all closed segments whose
endpoints belong to a non-collinear set ofn points in the plane, one can always select at
least 2�n/2� such that no two of them are parallel. Unless we explicitly state it otherwise,
everysegmentused in this paper is assumed to beclosed. Our proof of Theorem2.2is based
on a far-reaching generalization of Ungar’s result. To formulate this statement, we need to
relax the condition of two segments beingparallel.

Definition 1.2. Two segments belonging to distinct lines are called avoiding if one of the
following two conditions is satisfied (see Fig.2):

(i) they are parallel, or
(ii) the intersection of their supporting lines does not belong to any of the segments.

An alternative definition is that two segments are avoiding if and only if they are disjoint
and their convex hull is a quadrilateral.
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Fig. 2. Avoiding and non-avoiding segments.

The main result of this paper, which implies Theorems1.1 and2.2 (stated in the next
section), is the following strengthening of Ungar’s theorem, which is of independent interest.

Theorem 1.3. From all closed segments determined by a set of n non-collinear points in the
plane, one can always select at least2�n/2� pairwise non-avoiding ones, lying on distinct
lines.

Theorem1.3 is established in Sections 3 and 4.
This paper leaves open the problem of extending Theorem1.1to the general case, where

the given point set may contain triples of collinear points.

2. Reduction of Theorem 1.1 to a planar problem

Let P be a set ofn points inR3 such that not all of them lie in a common plane and no
three of them are collinear. Letp0 be anextremepoint ofP, i.e., a vertex of the convex hull
of P. Consider a supporting plane toP atp0, and translate it into a new position� so that
P lies in the slab bounded by these two planes. Note that no translate of� can fully contain
the non-coplanar setP. Project fromp0 all points ofP \ {p0} onto�. We obtain a setR
of n − 1 distinct points in�, not all on a line, and we will refer to the elements ofR as
redpoints. Each red point corresponds to a direction determined byp0 and some other point
of P.

For each pair of elementsp, p′ ∈ P \ {p0}, take a line parallel topp′ that passes through
p0. Color with greenthe intersection point of this line with�, unless it has already been
colored red. The set of all green points is denoted byG. By definition, we haveR∩G = ∅.
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Fig. 3. Proving the existence of a green point on�, in extreme position.

We need the following simple property of the setsR andG, which implies that along
every line passing through at least two red points either the leftmost or the rightmost point
belonging toR ∪ G is green.

Lemma 2.1. Every line connecting two red pointsr, r ′ ∈ R passes through at least one
green pointg ∈ G that does not belong to the(closed) segmentrr ′.

Proof. Let� be a line in� passing through at least two red pointsr, r ′ ∈ R. Assume without
loss of generality thatr andr ′ are the leftmost and rightmost red points along�. Let p and
p′ denote those elements ofP whose projections to� arer andr ′, respectively. Observe
that in the plane induced byp0 and�, the direction ofpp′ does not belong to the convex
cone enclosed by the raysp0p andp0p

′, so the line throughp0 parallel topp′ will cross�
in a green pointg meeting the requirements. See Fig.3. �

To establish Theorem1.1, it is sufficient to verify the following result.

Theorem 2.2. LetR be a set ofn red points in the plane, not all collinear, and letG be
a set ofm green points such thatR ∩ G = ∅ and every line� connecting at least two red
points in R passes through a green pointg ∈ G that does not belong to any segmentrr ′,
for r, r ′ ∈ R ∩ �.

Then we havem ≥ 2�n/2�.

Indeed, to prove Theorem1.1it is enough to notice that in our setting we have|R| = n−1
and that the number of different directions determined byP is equal to

|R| + |G| ≥ n − 1 + 2

⌊
n − 1

2

⌋
= n + 2

⌈n
2

⌉
− 3.

Thus, applying Theorem2.2, Theorem1.1 immediately follows.
It is interesting to note that Theorem2.2also implies Ungar’s above-mentioned theorem.

To see this, regard the elements of our given planar point set asred, and the directions
determined by them as green points on the line at infinity, and apply Theorem2.2. (If we
wish, we can perform a projective transformation and avoid the use of points at infinity.)
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Fig. 4. Two possible kinds of avoiding double wedges.

It remains to prove Theorem2.2. However, as mentioned in the introduction, this result
can be easily deduced from Theorem1.3, which is a further extension of Ungar’s theorem:

Proof of Theorem 2.2(using Theorem 1.3).Applying Theorem1.3to the setR, we obtain
2�n/2� segments with red endpoints that lie in distinct lines and no pair of them are avoiding.
By the condition in Theorem2.2, the continuation of each of these segments passes through
a green point. Assign such a green point to each segment. Observe that these points are
all distinct. Indeed, if we can assign the same green point to two different segments, then
they must be avoiding, by definition. This completes the proof of Theorem2.2 and hence
of Theorem1.1. �

3. Junctions and stations—proof of Theorem 1.3

The aim of this and the next section is to establish an equivalentdualversion of Theorem
1.3. Fix an (x, y)-coordinate system in the plane. We apply a standard duality transform
that maps a pointp = (p1, p2) to the linep∗ with equationy + p1x + p2 = 0. Vice versa,
a non-vertical linel with equationy + l1x + l2 = 0 is mapped to the pointl∗ = (l1, l2).
Consequently, any two parallel lines are mapped into points having the samex-coordinate.
It is often convenient to imagine that the dual picture lies in another, so-calleddual, plane,
different from the original one, which is referred to as theprimal plane.

The above mapping is incidence and order preserving, in the sense thatp lies above, on,
or below� if and only�∗ lies above, on, or belowp∗, respectively. The points of a segment
e = ab in the primal plane are mapped to the set of all lines in the closeddouble wedge
e∗, which is bounded bya∗ andb∗ and does not contain the vertical direction. All of these
lines pass through the pointq = a∗ ∩ b∗, which is called theapexof the double wedgee∗.
All double wedges used in this paper are assumed to be closed, and they never contain the
vertical direction.

Definition 3.1. We call two double wedgesavoidingif their apices are distinct and the apex
of neither of them is contained in the other (see Fig.4).

It is easy to see that, according to this definition, two non-collinear segments in the primal
plane are avoiding if and only if they are mapped to avoiding double wedges.
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Switching to the dual plane, Theorem1.3can now be reformulated as follows.

Theorem 3.2. LetL be a set ofn pairwise non-parallel lines in the plane, not all of which
pass through the same point. Then the set of all double wedges bounded by pairs of lines in
L has at least2�n/2� pairwise non-avoiding elements with different apices.

Note that the definition of double wedges depends on the choice of the coordinate system,
so a priori Theorem3.2 gives a separate statement in each coordinate frame. However,
each of these statements is equivalent to Theorem1.3, and that result does not depend on
coordinates. Therefore, we are free to use whatever coordinate system we like. In the final
part of the analysis (given in Section 4), we will exploit this property. But until then, no
restriction on the coordinate system is imposed.

Suppose that a set of 2�n/2� double wedges meets the conditions in Theorem3.2. Clearly,
we can replace each element of this set, bounded by a pair of lines�1, �2 ∈ L, by the
maximal double wedge with the same apex, i.e., the double wedge bounded by those
lines through�1 ∩ �2 which have thesmallestand largest slopes. If every pair of dou-
ble wedges in the original set was non-avoiding, then this property remains valid after the
replacement.

It is sufficient to prove Theorem3.2 for the case whenn is even, because for oddn the
statement trivially follows.

The proof is constructive. LetA(L) denote thearrangementof L, consisting of all
vertices, edges, and faces of the planar map induced byL. We will construct a set ofn
vertices ofA(L) with distinct x-coordinates, and show that the maximal double wedges
whose apices belong to this set are pairwise non-avoiding.

We start by defining a sequenceJ of verticesv1, v2, . . ., which will be referred to as
junctions.Let L− (resp.,L+) denote the subset ofL consisting of then/2 lines with the
smallest (resp., largest) slopes. If we wish to simplify the picture, we can apply an affine
transformation that keeps the vertical direction fixed and carries the elements ofL− and
L+ to lines of negative and positive slopes, respectively (whence the choice of notation).
However, we will never use this property explicitly (although the figures will reflect this
convention).

The construction proceeds as follows.
Step 1: Seti := 1 andL−

1 := L−, L+
1 := L+.

Step 2: IfL−
i = L+

i = ∅, the construction ofJ terminates. Otherwise, as we will see,
neither set is empty. Letvi be theleftmostintersection point between a line inL−

i and a
line in L+

i . Let d−
i (andd+

i ) denote the number of elements ofL−
i (andL+

i , respectively)
incident tovi , and putdi = min{d−

i , d
+
i }. DefineL−

i+1 (andL+
i+1) as the set of lines obtained

from L−
i (resp.,L+

i ) by deleting from it thedi elements that are incident tovi and have
the smallest (resp., largest) slopes among those incident lines. (That is, ifd−

i = d+
i , then

all lines incident tovi are deleted; otherwise, if, say,d−
i > d+

i , we are left withd−
i − d+

i

lines throughvi that belong toL−
i and separate the deleted elements ofL−

i from the deleted
elements ofL+

i . See Fig.5.) Seti := i + 1, and repeat Step 2.
Let J = 〈v1, v2, . . . , vk〉 denote the resulting sequence.
It is easy to verify the following properties of this construction.
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L +

L −

v2
v1

Fig. 5. Choosing the first junctionv1 in J. The dashed lines, two fromL− and two fromL+, are removed. The
next junctionv2 is also shown.

Claim 3.3. (i) |L−
i | = |L+

i |, for eachi = 1, . . . , k.
(ii) For every1 ≤ i < j ≤ k, the junctionvi lies in the left unbounded facefj of

A(L−
j ∪L+

j ) which separatesL−
j andL+

j at x = −∞ (whose rightmost vertex isvj ).

vi lies in the interior offj if d−
i = d+

i ; otherwise it may lie on the boundary offj .

(iii)
∑k

i=1 di = n/2.

Next, between any two consecutive junctionsvi andvi+1, for 1 ≤ i < k, we specify
di + di+1 − 1 further vertices ofA(L), calledstations.

Fix an index 1≤ i < k, and consider the vertical slab betweenvi andvi+1. By Claim3.3
(ii), vi lies inside or on the boundary of the facefi+1 of A(L−

i+1 ∪L+
i+1), whose rightmost

vertex isvi+1. See Fig.6. Hence, the segmente = vivi+1 is contained in the closure offi+1.
Now at least one of the following two conditions is satisfied: (a) all thedi lines removed
from L+

i and all thedi+1 lines removed fromL−
i+1 pass abovee, or (b) all thedi lines

removed fromL−
i and all thedi+1 lines removed fromL+

i+1 pass belowe. Whenebelongs
to the boundary offi+1, say its containing line belongs toL+

i+1, case (b) cannot arise, but
case (a) does arise: Since� ∈ L+, all lines ofL−

i pass below it, and since�wasnot removed
atvi (it was removed atvi+1), all the removed lines pass above it.

Assume, by symmetry, that (a) holds. Denote the lines removed fromL+
i by �+

1 , . . . , �
+
di

,

listed according to increasing slopes, and those removed fromL−
i+1 by �−

1 , . . . , �
−
di+1

, listed
according to decreasing slopes. Define the set ofstationsSi in the vertical slab betweenvi
andvi+1 as the collection of all intersection points of�+

di
with the lines�−

1 , . . . , �
−
di+1

, and all

intersection points of�−
di+1

with the lines�+
1 , . . . , �

+
di

. Clearly, we have|Si | = di +di+1 −1
such points; see Fig.6.

Finally, we consider the portions of the plane to the left ofv1 and to the right ofvk and
collect there a setSk of dk + d1 − 1 additionalstations. Actually, exploiting the fact that we
can (almost) freely select the coordinate system used for the duality transform, we will be
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L −
i

l

f i +1
vi +1

vi

L +
i

Fig. 6. Collecting stations (shown highlighted) betweenvi andvi+1. The dashed lines are those removed atvi ,
and the dashed-dotted ones are those removed atvi+1. The figure depicts the subcase where a line� that has been
removed atvi+1 also passes throughvi . In this case the lines ofL−

i
deleted atvi and the lines ofL+

i+1 deleted at
vi+1 do notgenerate enough stations.

able to selectdk + d1 − 1 suitable stations, so that all of them, or all but one, lie to the left
of v1. The proper choice of the coordinate system as well as the details of the construction
of Sk are described in the next section.

LetQ = J ∪ (∪k
i=1Si

)
. In view of Claim3.3(iii), the total number|Q| of junctions and

stations equals

|Q| = |J | +
k∑

i=1

|Si |

= k +
k−1∑
i=1

(di + di+1 − 1) + (dk + d1 − 1)

= 2
k∑

i=1

di = n.

To complete the proof of Theorem3.2(and hence of Theorem1.3), we need to verify.

Claim 3.4. Associate with each elementq ∈ Q the maximal double wedgeW(q) (not
containing the vertical line throughq), which is bounded by a pair of lines passing through
q. Then the resulting set ofn double wedges has no two avoiding elements.

We close this section by verifying the last claim for the set of wedges{W(q)|q ∈ Q\Sk}.
The extension to the general case is postponed to the last section, whereSk is defined.

Let u, v ∈ Q \ Sk with u lying to the left ofv. We distinguish three cases:
Case A: Bothu andv are junctions.
Putu = vi andv = vj , with i < j . ThenW(v) is bounded by a line� ∈ L−

j and by a

line �′ ∈ L+
j . By Claim3.3(ii), vi lies between these two lines, and thus belongs toW(v).

Case B:u is a junction andv is a station not inSk.
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λ

λ′

v

vi +1vi

u

Fig. 7. Illustrating Case C of the proof thatW(u) andW(v) cannot be avoiding.

Putu = vi and letSj be the set of stations that containsv, wherei ≤ j . ThenW(v) is
bounded by two lines�, �′, where either� ∈ L−

j and�′ ∈ L+
j+1, or � ∈ L−

j+1 and�′ ∈ L+
j .

By construction, we have in both cases� ∈ L−
j and�′ ∈ L+

j , and the analysis is completed
as in Case A.

Case C:u is a station not inSk andv is a junction or a station not inSk.
LetSi be the set of stations containingu. The arguments in Case A and Case B imply that

vi ∈ W(v). If v is also a station inSi or v = vi+1 then it is easy to verify, by construction,
thatW(u) andW(v) are non-avoiding (see Fig.6). Suppose then thatv lies to the right of
vi+1. Then bothvi andvi+1 lie in the left wedge ofW(v), andu is incident to a line� of
positive slope that passes throughvi and to a line�′ of negative slope that passes through
vi+1. If u /∈ W(v) then a boundary line ofW(v) must separateu from vi andvi+1, in which
casev ∈ W(u); see Fig.7.

4. Wrapping up—the end of the proof

In this section, we define the missing set of stationsSk, and extend the proof of Claim
3.4 to handle also elements ofSk. We need an elementary geometric fact that is easier to
formulate in the primal setting.

Lemma 4.1. LetR be a set ofn non-collinear points in the plane, letn be even, and letr be
any vertex of the convex hull ofR. Then there exists a partition ofR into twon/2-element
subsets, R− andR+, whose convex hulls are disjoint and which have a common inner
tangentm0 passing through r.

Proof. Rotate a directed line� counterclockwise aboutr, starting with all the points of
R \ {r} lying to the left of�, until the closed halfplane to the right of� contains for the first
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r

m0

m1

y

R+ R−

Fig. 8. The primal construction ofR− andR+.

time more thann/2 points. DefineR− to be the setR0 of points in the open halfplane to
the right of�, plus the firstn/2 − |R0| points of� ∩ R along�. m0 coincides with the final
position of�. See Fig.8. �

Letm1 denote the other inner tangent of the convex hulls ofR− andR+. Now choose an
orthogonal(x, y)-coordinate system whosey-axis is a line strictly separatingR− andR+.
Suppose without loss of generality that

(a) R+ andR− are to the left and to the right of they-axis, respectively,
(b) r ∈ R−, and
(c) m0 is oriented fromr away from the other contact point(s), and the positivey-direction

lies counterclockwise to it. See Fig.8.

In the dual picture,R− andR+ becomen/2-element sets of lines,L− andL+, having
negative and positive slopes, respectively. Applying the construction described in the pre-
vious section toL := L− ∪ L+, we obtain a sequence of junctionsJ = 〈v1, v2, . . . , vk〉
and sets of stationsS1, . . . , Sk−1.

Sincem1 is the line with thelargestslope connecting a point ofR+ and a point ofR−,
our duality implies thatm∗

1, the dual ofm1, is theleftmostintersection point between a line
of L+ and a line ofL−. Hence, we havev1 = m∗

1. As our construction sweeps the dual
plane from left to right, we collect junctions and stations whose dual lines rotate clockwise
fromm1 onwards.

Claim 4.2. At least one of the following two conditions will be satisfied:

(i) The last junction, vk, is identical tom∗
0, the dual ofm0.

(ii) r∗, the dual ofr ∈ R−, passes throughvk and is the unique element ofL− deleted
during the procedure atvk (so thatdk = 1).
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R+ R−

r v ∗
k

v∗
j

t

  

l
∗  
+

l
∗  
−

m0

Fig. 9. The segmentstr and�∗+�∗− must be avoiding.

Proof. Suppose that during the procedurer∗ is deleted at a junctionvj , for somej ≤ k.
Clearly,v∗

j passes throughr and through at least one pointt ∈ R+.
If in the primal planev∗

j passes through another pointr ′ �= r of R−, thenv∗
j = m0

(otherwise it has to lie clockwise tom0 and then it cannot meet any point ofR+). In
this case, in the dual plane there cannot be any intersection point between a line ofL−
and a line ofL+ to the right ofvj , so thatj = k. That is, we havev∗

k = m0, and (i)
holds.

If in the primal planev∗
j does not pass through any elementr ′ ∈ R− other thanr, then

we havedj = 1. If j = k, then condition (ii) is satisfied. Let us assume, by contradiction,
thatj < k andv∗

k �= m0. Take any two lines�− ∈ L− and�+ ∈ L+ in the dual plane that
are deleted during the procedure at the last junctionvk. By assumption and construction,
we have�∗− �= r, and the slope of the segment�∗+�∗− ⊂ v∗

k connecting their duals in the
primal plane (i.e., the slope ofv∗

k ) is smaller than that of the segmenttr. By duality, these
slopes appear in the reverse order of thex-coordinates ofvk andvj .

We claim that the two segments�∗+�∗− ⊂ v∗
k and tr ⊂ v∗

j are avoiding. Indeed,�∗+�∗−
must meetm0 to the left ofr, or elser would not be an extreme point ofR (it would lie
in the relative interior of the segment connecting�∗+�∗− ∩ m0 to a point inR+ ∩ m0; see
Fig. 9). Since the slope of�∗+�∗− is larger than that of the inner tangentm0, this implies that
�∗− lies abovem0, and thatr lies below�∗+�∗−. Now if �∗− lied belowv∗

j , which is the line
supportingtr, then it would have to lie in theright wedgedetermined byv∗

j andm0, with
apex atr, which implies thatr cannot be extreme inR; see Fig.9(b). We thus conclude that
�∗− must lie abovev∗

j . These facts, together with the slope relationship betweenv∗
j andv∗

k ,
imply that the two segments are avoiding. This, in turn, implies that the wedgesW(vk) and
W(vj ) are avoiding, contradicting Claim3.4(Case A). �

The above argument is valid for any coordinate system whosey-axis strictly separates
the setsR− andR+. We specify a coordinate system with this property as follows.
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Fig. 10. The casevk = m∗
0 of the construction ofSk . (a) The primal structure. (b) The stations inSk (highlighted

to the left ofv1).
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y
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R−
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v1
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1

(
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−
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l
−
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−
1 m∗

0

Fig. 11. The casevk �= m∗
0 of the construction ofSk . (a) The choice of the coordinate frame. (b) The dual picture.

Choose they-axis to be very close tom0, so that, in the dual plane the slope of every line
of L passing throughm∗

0 has smaller absolute value than the slope of any other line ofL;
that is, thex-coordinates of the points ofm0 ∩R have smaller absolute values than those of
any other point ofR. See Figs.10(a) and11(a).

Now we are in a position to define the set of stationsSk. Pass to the dual plane. The first
junction,v1, lies inside or on the boundary of the facefk of A(L−

k ∪L+
k ), whose rightmost

vertex isvk, so that the segmente = v1vk is contained in the closure offk.
Suppose first thatvk = m∗

0. We can assume by symmetry that in the dual plane all the
d1 lines removed fromL−

1 = L− during the procedure pass belowe, and all thedk lines of
L−
k pass abovee (as in the preceding section, this statement is not totally obvious whene

lies on the boundary off). Let�−
1 , . . . , �

−
d1

and�−
1 , . . . , �

−
dk

denote the removed lines ofL−
1

and ofL−
k , respectively, listed in the decreasing order of their slopes. By the special choice
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of our coordinate system, each line�−
i intersects every line�−

j to the left ofv1. Indeed, the

slope of the primal segment(�−
j )

∗(�−
i )

∗ is larger than that ofm1, because(�−
j )

∗ ∈ m0 lies

belowm1 and to the left of(�−
i )

∗ ∈ m1; see Fig.10(a). (We note that the assumption that
all lines inL−

1 pass strictly belowvk implies thatc := m0 ∩ m1 is not dual to any line in
L−

1 , implying that each(�−
j )

∗ does indeed lie to the left of every(�−
i )

∗.) Define the last set

of stations, Sk, as the collection of all intersection points of�−
d1

with the lines�−
1 , . . . , �

−
dk

,

and all intersection points of�−
dk

with the lines�−
1 , . . . , �

−
d1

. See Fig.10(b). Clearly, we have
|Sk| = dk + d1 − 1 such points, all lying to the left ofv1.

Suppose next thatvk �= m∗
0. In this case, according to Claim4.2, vk lies onr∗ anddk = 1.

Refer to Fig.11. Again, let�−
1 , . . . , �

−
d1

denote the lines removed fromL−
1 = L− at v1,

listed in the decreasing order of their slopes. In the dual plane, the liner∗ passes abovev1
and, by the choice of the coordinate system, it intersects every�−

i to the left ofv1, with the
possible exception of�−

1 . The intersectionr∗ ∩ �−
1 can lie to the right ofv1 (and ofvk) only

if the pointc := m0 ∩m1 belongs toR− and is dual to a line removed atv1, in which case
that line must be�−

1 = c∗. Note that in this caser∗ ∩ �−
1 = r∗ ∩ c∗ is identical to the point

m∗
0 dual tom0, and the choice of the coordinate system implies that this is the rightmost

vertex ofA(L) on r∗. We defineSk to be the set of intersection points between the lines
�−

1 , . . . , �
−
d1

andr∗. 1 Thus, either all points ofSk, or all but one (namely,m∗
0) lie to the left

of v1. Clearly, we have|Sk| = d1 = dk + d1 − 1, as required.
We have to complete the proof of Claim3.4. It remains to show the following:

Claim 4.3. For anyu ∈ Qand anyv ∈ Sk, the maximal wedgesW(u)andW(v)associated
with them are non-avoiding.

Proof. If both u andv belong toSk, then the claim is obviously true. From now on suppose
thatu �∈ Sk. Then we haveu ∈ {vi} ∪ Si ∪ {vi+1}, for some 1≤ i < k.

We start with the casevk = m∗
0. Let v ∈ Sk be the intersection point of two lines,� and

�, passing throughv1 andvk, respectively, which, without loss of generality, we assume to
belong toL−. If u is contained in the double wedge bounded by� and�, thenu ∈ W(v), so
thatW(u) andW(v) are non-avoiding. Otherwise, sincev lies to the left ofv1, u lies either
above� or below�. If u is above�, then it is not a junction, so it must be the crossing point
of a line�+ ∈ L+ and a line�− ∈ L− which are removed during the procedure at junction
vi and at junctionvi+1, respectively. See Fig.12(a). Bothvi andvi+1 lie on or below�, so
that the left portion of the double wedge bounded by�− and�+ containsv. Thus, we have
v ∈ W(u). If, on the other hand,u is below�, as in Fig.12(b), then it is either a junction or
a station, and it is the crossing point of a line�− ∈ L− and a line�+ ∈ L+, each of which is
removed at junctionvi or at junctionvi+1. Now �− must pass above (or through)v1 (as do
all lines ofL−, by construction), and hence abovev, while�+ must pass below (or through)
v1 (again, by construction). This, combined with the fact that� passes throughv1 and that

1 Note the asymmetry between this case, where the stations are constructed using lines inL− only, and the
previous case, where the stations can be constructed using either lines ofL− or lines ofL+, depending on the
relative position of the lines incident tov1 andvk .
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Fig. 12. The proof thatW(u) andW(v) are non-avoiding whenv is a station to the left ofv1.

�+ has positive slope whereas� has negative slope, imply that�+ passes belowv (see Fig.
12(b)). Again we can conclude that the left portion of the double wedge bounded by�− and
�+, and thusW(u), containsv.

If vk �= m∗
0, the above argument can be repeatedverbatim, unlessm∗

0 ∈ Sk andv = m∗
0;

so assume this to be the case. Now it is simplest to establish the claim in the primal plane,
by noting that the segment dual toW(v) lies on the linem0, and that, by construction (since
u /∈ Sk), the segment dual toW(u) must connect a point ofR− to a point ofR+, and thus
must intersectm0, showing that these two segments are non-avoiding.�

By verifying the last claim, we have completed the proof of Claim3.4 and hence of
Theorem3.2. This was our last debt.
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