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Abstract

In their seminal paper [21], Erdős and Hajnal raised the following
question. Is it true that for any graph G there exists a constant c =
c(G) > 0 with the property that every graph of n vertices that contains
no induced subgraph isomorphic to G has a complete or an empty
induced subgraph of size nc? We answer this question in the affirmative
for some special classes of graphs defined by geometric methods.

1 Introduction, definitions

A classic result of Erdős and Szekeres [23] in Ramsey theory states that
every graph on n vertices contains a clique (that is, a complete subgraph)
or an independent set of size1 at least 1

2 log n. This bound, which has been
slightly improved by Conlon [15], is tight up to a constant factor: Erdős [20]
showed that there exists a graph on n vertices, for every integer n > 1, with
no clique or independent of more than 2 log n vertices.

Here we consider the same problem for intersection graphs of geometric
objects. Given a system S of n sets, their intersection graph is a graph GS
whose vertices are the elements of S, two vertices S, T ∈ S being connected
by an edge if and only if S ∩ T 6= ∅. Applying the above theorem to GS ,
we obtain that S always contains at least 1

2 log n members that are either
pairwise intersecting or pairwise disjoint. Can we say more than this, if
we assume that the elements of S are “nice” geometric objects in some, say,
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Euclidean space? At first glance it seems that the answer is no. It was shown
by Tietze [52] that every finite graph can be realized as the intersection graph
of convex closed polytopes in R

3, and we can even assume no two of these
polytopes have an interior point in common. However, this statement is
certainly not true in the plane. It is not hard to see that, for instance, the
bipartite graph on 15 vertices formed by replacing each edge of the clique
K5 by a path of length 2 has no such realization [19]. (See Fig. 1.) This
immediately implies that most graphs with n vertices are not realizable in
this way, as n → ∞, since they almost surely contain a 15-vertex induced
subgraph isomorphic to the one depicted in Fig. 1.

Figure 1: The fifteen vertex graph formed by replacing each edge of K5 by a
path of length two is not an intersection graph of connected sets in the plane.

In a seminal paper written in 1989, Erdős and Hajnal [21] showed that,
given any graph G, the family F(G) of all graphs that do not contain G as
an induced subgraph have much stronger Ramsey-type properties than the
family of all graphs. More precisely, they proved that there exists a constant
c = c(G) > 0, depending only on G, such that every graph of n vertices that
belongs to F(G) has a clique or an independent set of size at least ec

√
log n.

They raised question whether one can always find a complete or empty
induced subgraph of size nc. This remains one of the most challenging open
problems in Ramsey theory.

A complete bipartite graph is said to be balanced if its vertex classes
differ in size by at most one. A balanced complete bipartite graph with n
vertices is called a bi-clique of size n.

Erdős, Hajnal, and Pach [22] proved a bipartite variant: There is a
constant c = c(G) > 0 such that every graph on n vertices that belongs to
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F(G) or its complement contains a bi-clique of size nc. Recently, Fox and
Sudakov [30] strengthened this result: there is a constant c = c(G) > 0 such
that every graph on n vertices that belongs to F(G) contains a bi-clique or
an independent set of size nc.

It is easy to see that the Erdős-Hajnal theorem generalizes to hereditary
families of graphs, that is, to any family F (other than the family of all finite
graphs) that is closed under taking induced subgraphs. The families of all
graphs that can be realized as intersection graphs of connected sets, convex
sets, disks, segments, etc. in the plane obviously belong to this category.

For convenience, we use the following terminology.

Definition: A family F of graphs has the
1. Erdős-Hajnal property if there is a constant c(F) > 0 such that every

graph in F on n vertices contains a clique or an independent set of size
nc(F);

2. strong Erdős-Hajnal property if there is a constant b(F) > 0 such
that for every graph G in F on n vertices, G or its complement G contains
a bi-clique of size b(F)n.

The above terminology is justified by the following observation of Alon et
al. [7]: If a hereditary family of graphs has the strong Erdős-Hajnal property,
then it also has the Erdős-Hajnal property.

To see this, we need the notion of cographs (or complement reducible
graphs), also used by Erdős and Hajnal [16, 21]. The trivial graph with
one vertex is a cograph, and so are the disjoint union and the join of two
cographs. (The join can be obtained from the disjoint union by adding all
edges between the two parts.)

Suppose now that F has the strong Erdős-Hajnal property with a con-
stant b > 0. That is, every G ∈ F with n ≥ 2 vertices has two disjoint sets
of vertices V1, V2, each of size at least bn, such that G contains either all
edges between V1 and V2 or no edges running between V1 and V2. Let s(n)
denote the largest number s such that every G ∈ F with n vertices contains
a cograph with s vertices. Applying the condition to the subgraphs of G in-
duced by V1 and V2, we obtain that s(n) ≥ 2s(bn). Solving this recurrence,
we conclude that s(n) ≥ nc, where c = 1

log 1/b . It remains to notice that
every cograph of s vertices is a perfect graph, therefore it contains a clique
or an independent set of size

√
s. Thus, G or its complement has a clique of

size at least nc/2, showing that F has the (weak) Erdős-Hajnal property.
It is certainly not true that all hereditary families of graphs have the

strong Erdős-Hajnal property. For instance, the family of all triangle-free
graphs does not have the strong Erdős-Hajnal property.
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2 Convex sets and Dilworth’s theorem

It was shown by Larman et al. that the family of intersection graphs of plane
convex sets has the Erdős-Hajnal property. In fact, a somewhat stronger
statement is true. We call a connected set vertically convex if any vertical
line intersects it in an interval.

Theorem 2.1 [41] Any family of n vertically convex sets in the plane
contains at least n1/5 members that are either pairwise disjoint or pairwise
intersecting.

For the proof of Theorem 2.1, we need Dilworth’s theorem [17], according
to which any partially ordered set of more than pq elements contains a chain
whose length is larger than p or an antichain that has more than q elements.
Larman et al. [41] and Pach and Törőcsik [50] introduced four partial orders
<1, <2, <3, <4 on the family of all vertically convex sets in the plane such
that any two disjoint sets are comparable with respect to at least one of these
partial orders, but no two intersecting elements are. Applying Dilworth’s
theorem four times, we obtain that any family of n plane convex sets has
at least n1/5 members that form a chain with respect to some <i or an
antichain with respect to all <i (1 ≤ i ≤ 4). In the first case, these sets are
pairwise disjoint, in the second case pairwise intersecting.

The best possible exponent in Theorem 2.1 is not known. Károlyi et
al. [34] constructed a family of n segments in the plane, which has no more
than nlog 4/ log 27 members that are either pairwise disjoint or pairwise cross-
ing. Recently, Jan Kynčl [40] has found a slightly better construction, for
which the exponent is log 8/ log 169.

Dilworth’s theorem implies that every partially ordered set of n elements
contains a chain or an antichain of size at least

√
n. If we have r partial

orders on the same n-element ground set, then, by repeated application of

Dilworth’s theorem, there are at least n
1

r+1 elements such that no two are
comparable by any of the r orders, or we can choose one of the r orders so
that any two elements are comparable by it. Dumitrescu and G. Tóth [18]
proved that for large values of r this statement is not very far from being
optimal.

Theorem 2.2 [18] For any r ∈ N, there are n-element sets P and r partial
orders defined on P such that connecting two elements of X if and only
if they are comparable by at least one of these partial orders, the resulting
graph contains neither a clique nor an independent set of size larger than

n
1+log r

r+1 .
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The first named author established the existence of a much larger “ho-
mogeneous” bipartite pattern in partially ordered sets. For any partially
ordered set (P,>), we write a ⊥ b if a and b are incomparable. For any pair
of subsets A and B of P , we write A > B if a > b for all a ∈ A and b ∈ B.
Likewise, we write A ⊥ B if a ⊥ b for all a ∈ A and b ∈ B.

Theorem 2.3 [24] Every n-element partially ordered set (P,>) has two
subsets A,B ⊂ P with |A| = |B| ≥ n

4 log2 n such that A > B or A ⊥ B,
provided that n is sufficiently large. This result is tight up to a constant
factor.

In another paper we generalized the last result to multiple partial orders.

Theorem 2.4 [25] Let r be a fixed positive integer, and let >1, . . . , >r be
partial orders on an n-element set P . Then there are two disjoint subsets
A,B ⊂ P , each with at least n

2(1+o(1))(log log n)r elements, such that either A >i

B for at least one i, or A ⊥i B for all 1 ≤ i ≤ r.

Applying Theorem 2.4 to the r = 4 partial orders defined on the family
of vertically convex sets, which were mentioned above, we can conclude
that any collection of n vertically convex sets in the plane has two disjoint
subcollections, A and B, each with at least n

2(1+o(1))(log log n)4
members, such

that either every member of A intersects all members of B or every member
of A is disjoint from all members of B. This is only slightly weaker than
saying that the family of intersection graphs of vertically convex sets in the
plane has the strong Erdős-Hajnal property. In fact, it was shown in [49]
that this is not the case.

A continuous curve that intersects every vertical line in at most one
point is called x-monotone. Obviously, every x-monotone curve is vertically
convex. It is easy to see that the incomparability graph of every partially
ordered set (P,>), defined by connecting two elements of P if and only if
they are not comparable by >, can be realized as the intersection graph
of a collection of x-monotone curves [49, 51]. Therefore, it follows from
the tightness of Theorem 2.3 that the family of intersection graphs of x-
monotone curves does not have the strong Erdős-Hajnal property.

In [28], Theorem 2.3 was slightly strengthened as follows. There is a
positive constant c such that every n-element partially ordered set (P,>)
has two subsets A,B ⊂ P such that either |A| = |B| ≥ cn

log n and A ⊥ B,
or |A| = |B| ≥ cn and A > B. For x-monotone curves, we have a similar
result.
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Theorem 2.5 [28] There exists a constant c > 0 with the property that the
intersection graph G of any collection of n x-monotone curves in the plane
satisfies at least one of the following two conditions:

1. G contains a bi-clique of size cn
log n ; or

2. G, the complement of G, contains a bi-clique of size cn.

For convex sets, we have a stronger result. In fact, it is as strong as it
can get.

Theorem 2.6 [28] The family of intersection graphs of finite collections
of convex sets in the plane has the strong Erdős-Hajnal property.

The proof relies on Turán-type results for incomparability graphs.

3 Semialgebraic sets and Ramsey-graphs

Pach and Solymosi [48] proved that the family of intersection graphs of line
segments in the plane has the strong Erdős-Hajnal property. Later, Alon et
al. [7] generalized this result to semialgebraic sets. To formulate this result
more precisely, we need to agree about the definitions.

A semialgebraic set in R
d is the locus of all points that satisfy a given

finite Boolean combination of polynomial equations and inequalities in the
d coordinates. We say that the description complexity of such a set S is
at most κ if in some representation of S the dimension d is at most κ, the
number of equations and inequalities is at most κ, and each of them has
degree at most κ. (See [13].)

Every element S of a family F of semialgebraic sets of constant descrip-
tion complexity κ can be represented by a point S∗ of a κ∗-dimensional
Euclidean space (in which the coordinates are, say, the coefficients of the
monomials in the polynomials that define S). We say that a binary relation
R on F × F is semialgebraic, if the corresponding set

{(S∗, T ∗) ∈ R
2κ∗ | S, T ∈ F , (S, T ) ∈ R}

is semialgebraic.

Theorem 3.1 [7] Let F be a family of semialgebraic sets of constant de-
scription complexity, and let R ⊆ F × F be a fixed semialgebraic relation
on F . Then there exists a constant c > 0, which depends only on the max-
imum description complexity of the sets in F and of R, with the following
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property. Any collection of n elements of F has two subcollections F1 and
F2, each containing at least cn elements, such that either F1 × F2 ⊆ R, or
(F1 ×F2) ∩ R = ∅.

It is easy to verify that the relation that two sets S, T ∈ F has nonempty
intersection is semialgebraic. Thus, Theorem 3.1 indeed implies that any
family of intersection graphs of (real) semialgebraic sets of constant de-
scription complexity has the strong (and, therefore, the weak) Erdős-Hajnal
property.

Corollary 3.2 For any family F of semialgebraic sets of constant descrip-
tion complexity, there is a constant c = c(F) > 0 with the following property.
Any collection of n elements of F has two subcollections F1 and F2, each
containing at least cn elements, such that either every element of F1 in-
tersects all elements of F2, or no element of F1 intersects any element of
F2.

Recently, Basu [12] has further extended this result for a broader class
of algebraically defined sets.

Let us call an n-vertex graph t-Ramsey if it contains no clique and no
independent set of size at least t. According to the results of Erdős [20]
and Erdős and Szekeres [23] quoted in the introduction, there are n-vertex
graphs that are 2 log n-Ramsey, but no n-vertex graph is 1

2 log n-Ramsey.
Erdős’s construction is probabilistic, and it appears to be a formidable task
to find comparably good efficient constructions. More precisely, there is
no known polynomial time deterministic algorithm for the construction of
O(log n)-Ramsey graphs on n vertices. Theorem 3.1 above shows that no
such construction can be given by defining graphs using semialgebraic rela-
tions on a family of semialgebraic sets of constant description complexity.
In fact, any n-vertex graph constructed in such a way will necessarily have
a clique or an independent set of size at least nc for some c > 0. This
settles a conjecture of Babai [10], and improves a previous result [6] that
showed that such graphs cannot be t-Ramsey for t = eo(

√
log n). The best

known polynomial time construction is due to Barak et al. [11] and it pro-

duces 2(logn)o(1)
-Ramsey graphs. The previous record was held by Frankl

and Wilson [31].
As we remarked in the Introduction, in three and higher dimensions the

family of intersection graphs of convex sets does not have the Erdős-Hajnal
property. Somewhat surprisingly, Corollary 3.2 holds in any fixed dimension.
There is another special class of intersection graphs of higher dimensional
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convex bodies that has the Erdős-Hajnal property. A set S ⊂ R
d is called

K-fat if there are two d-dimensional balls B1 and B2 such that B1 ⊆ S ⊆ B2

and the ratio of the radius of B2 to the radius of B1 is at most K.

Theorem 3.3 For any constant K ≥ 1 and for any positive integer d, the
family of intersection graphs of K-fat convex bodies in R

d has the strong
Erdős-Hajnal property.

Theorem 3.3 can be strengthened to say that there is a constant c =
c(K,d) > 0 such that every intersection graph of K-fat convex bodies in
R

d contains a clique or its complement contains a bi-clique of size cn. One
proof of this result uses the separator theorem of Miller, Teng, Thurston, and
Vavasis [45] discussed in the next section. Theorem 3.3 does not remain true
for arbitrary (not necessarily convex) K-fat bodies even in the case d = 2.
Theorem 3.1 can be proved by a standard linearization process (see e.g. [3])
to transform the elements of F into vectors in a higher dimensional space,
and the relation R to the set of all pairs of vectors (u, v) with a nonnegative
scalar product 〈u, v〉. Thus, Theorem 3.1 can be reduced to the following

Lemma 3.4 [7] Let U and V be finite multisets of vectors in R
d. Then there

are subsets U ′ ⊂ U and V ′ ⊂ V such that |U ′| ≥ 1
2d+1 |U |, |V ′| ≥ 1

2d+1 |V |,
and either 〈u, v〉 ≥ 0 for all u ∈ U ′, v ∈ V ′, or 〈u, v〉 < 0 for all u ∈ U ′,
v ∈ V ′.

For d > 2, in spite of the apparent simplicity of Lemma 3.4, we do
not have any “elementary” proof that would avoid using the probabilistic
method or some form of the Borsuk-Ulam theorem (specifically, a partition
theorem of Yao and Yao [53]). We challenge the reader to come up with
such a proof.

4 String graphs and separator theorems

A graph that can be realized as the intersection graph of finitely many
continuous curves (strings) in the plane is called a string graph. As it was
pointed out toward the end of Section 2, the family of intersection graphs
of x-monotone curves, and thus the family of string graphs, do not have the
strong Erdős-Hajnal property. However, it was conjectured in [49], that the
situation is different if we restrict our attention to collections of curves with
a bounded number of intersections per pair.

A collection of curves in the plane is called t-intersecting if any two
of them intersect in at most t points. The elements of a 1-intersecting

8



collection of curves are called pseudo-segments. A collection of portions of
algebraic curves of maximum degree d in general position is d2-intersecting.
Clearly, the intersection graphs of t-intersecting collections of curves form a
hereditary family.

Theorem 4.1 [29] For every t ∈ N, the family of intersection graphs of
t-intersecting collections of curves in the plane has the strong Erdős-Hajnal
property. That is, for every t ∈ N, there is a constant ct > 0 such that
the intersection graph G of every t-intersecting collection of n curves in the
plane contains a bi-clique of size ctn or its complement G contains a bi-clique
of size ctn.

For the proof, we need to extend the Lipton-Tarjan separator theo-
rem [42].

A separator for a graph G = (V,E) is a subset V0 ⊂ V such that there
is a partition V = V0 ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2

3 |V | and no vertex in V1 is
adjacent to any vertex in V2. The Lipton-Tarjan separator theorem states
that every planar graph with n vertices has a separator of size O(

√
n). By

an important theorem of Koebe [37], every planar graph can be represented
as the intersection (incidence) graph of nonoverlapping closed disks in the
plane. Miller, Teng, Thurston, and Vavasis [45] proved that for every d ≥ 2,
the intersection graph of any collection of n balls in R

d such that no point
belongs to more than k of them has a separator of size O(dk1/dn1−1/d).

A Jordan region is a subset of the plane that is homeomorphic to a closed
disk. We say that a Jordan region R contains another Jordan region S if
S lies in the interior of R. A crossing between R and S is either a crossing
between their boundaries or a containment between them. The following
result is a generalization of the separator theorems of Lipton and Tarjan
and of Miller, Teng, Thurston, and Vavasis [45] in two dimensions.

Theorem 4.2 [26] If C is a finite collection of Jordan regions with a total
of m crossings, then the intersection graph of C has a separator of size
O(

√
m).

By slightly fattening curves in the plane, Theorem 4.2 implies that it
is also true for curves in the plane instead of Jordan regions. The proof of
Theorem 4.1 has another interesting feature. The statement guarantees the
existence of a large bi-clique in the graph G or in its complement G. As
it turns out, in many cases it can be proved that both G and G contain
large bi-cliques. If G is a “dense” graph, then it must contain a bi-clique.
Otherwise, G contains a bi-clique.
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Theorem 4.3 [29] Let C be a t-intersecting collection of n curves in the
plane such that at least εn2 pairs of them intersect. Then the intersection
graph of C contains a bi-clique of size at least ctε

64n, where ct > 0 depends
only on t.

Fox et al. [29] have also generalized Theorem 4.1 in another direction.
We first need a few definitions. Define an r-region to be a subset of the plane
that is union of at most r Jordan regions. Call these (at most r) Jordan
regions of an r-region the components of the r-region. A family of Jordan
regions is t-intersecting if the boundaries of any two of them intersect in at
most t points. A collection of r-regions is t-intersecting if the collection of
all of its components is t-intersecting. They showed that for all r, t ∈ N, the
family of intersection graphs of finite collections of t-intersecting families of
r-regions has the strong Erdős-Hajnal property.

Note that the last result can also be regarded as a generalization of
Corollary 3.2 in the planar case, which states that the family of intersection
graphs of collections of semialgebraic sets of constant description complexity
has the strong Erdős-Hajnal property. Indeed, the boundary of a semialge-
braic set of bounded description complexity in the plane is the union of a
bounded number of algebraic curves of bounded degree, any two of which
either intersect in a bounded number of points or overlap. By slightly per-
turbing semialgebraic sets, while maintaining their intersection pattern and
their description complexity, we can assume that the boundaries of no two
semialgebraic sets overlap. We can further assume, by slightly fattening the
sets, if necessary, that each of them is the union of a constant number of
Jordan regions, so that the above result applies.

In Table 1, we summarize the discussed results concerning Erdős-Hajnal
properties for various families of intersection graphs.

5 Asymmetric Ramsey-type questions

So far we discussed a variety of results that guarantee the existence of unex-
pectedly large homogeneous (sometimes bipartite) subgraphs in intersection
graphs of various geometric objects. These results were symmetric, in the
sense that in most of them empty and complete subgraphs played symmet-
ric roles. In the spirit of so-called “off-diagonal” Ramsey theory, we can
consider asymmetric variants of these questions.

A classical asymmetric result is the following theorem of Ajtai, Komlós,
and Szemerédi [4]: Every triangle-free graph on n vertices contains an inde-
pendent set of size Ω(

√
n log n). Kim [35] proved that this bound is tight up
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Table 1: Erdős-Hajnal properties

Strong
Erdős-Hajnal Erdős-Hajnal

family of intersection graphs of Property Property

convex sets in R
3 no no

fat convex sets in R
d yes yes

convex sets in R
2 yes yes

x-monotone curves in R
2 yes no

curves in R
2 ? no

t-intersecting collections of yes yes
curves in R

2

t-intersecting collections of yes yes
r-regions in R

2

semialgebraic sets of yes yes
constant description complexity

fat connected sets in R
2 ? no

to a constant factor. If we restrict our attention to certain types of planar
intersection graphs, this bound can be substantially improved.

Theorem 5.1 [27] If G is a Kk-free intersection graph of a t-intersecting
family of n ≥ k curves in the plane, then G contains an independent set of

size at least n
(

ct
log k
log n

)c log k
, where c is an absolute constant and ct > 0 only

depends on t.

Taking δ such that ǫ = cδ log 1
ctδ

, we have the following corollary.

Corollary 5.2 [27] For each ǫ > 0 and positive integer t, there is δ =
δ(ǫ, t) > 0 such that if G is an intersection graph of a t-intersecting family
of n curves in the plane, then G has a clique of size at least nδ or an
independent set of size at least n1−ǫ.

Note that Corollary 5.2 is stronger than saying that the family of in-
tersection graphs of t-intersecting families of curves in the plane has the
Erdős-Hajnal property.

11



By slightly fattening curves in the plane, it is easy to see that if G is an
intersection graph of a t-intersecting collection of curves, then G is also an
intersection graph of a 4t-intersecting collection of Jordan regions.

As usual, let χ(G) and α(G) denote the chromatic number and the size
of the largest independent set of a graph G. Clearly, we have α(G) ≥ n

χ(G) .
It is not hard to generalize Theorem 5.1, as follows.

Theorem 5.3 [27] If G is a Kk-free intersection graph of a t-intersecting
family of n r-regions, then

χ(G) ≤
(

ct,r
log n

log k

)cr log k

,

where ct,r only depends on t and r and c is an absolute constant.

In the plane, every semialgebraic set of constant description complexity
is the intersection graph of a t-intersecting collection of r-regions, where r
and t depend only on the description complexity. Therefore, we have the
following corollary of Theorem 5.3.

Corollary 5.4 [27] If G is a Kk-free intersection graph of a collection of
semialgebraic sets in the plane of description complexity d, then

χ(G) ≤
(

cd
log n

log k

)cd log k

,

where cd only depends on d.

A pair of convex sets or a pair of x-monotone curves can have arbitrarily
many intersection points between their boundaries. Thus, Theorem 5.3 is
not directly applicable to their intersection graphs. Nevertheless, we can
show the following result.

Theorem 5.5 [27] If G is a Kk-free intersection graph of n convex sets in
the plane, then

χ(G) ≤
(

c
log n

log k

)13 log k

,

where c is an absolute constant.

Taking δ such that ǫ = 13δ log c
δ , and noting that α(G) ≥ n

χ(G) , for every
graph G with n vertices, we obtain the following corollary of Theorem 5.5.
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Corollary 5.6 [27] For each ǫ > 0 there is δ = δ(ǫ) > 0 such that every
intersection graph of n convex sets in the plane has a clique of size at least
nδ or an independent set of size at least n1−ǫ.

A more general form of Theorem 2.1 states that, for every positive integer
k, every family of n convex sets in the plane has an independent set of size k
or a clique of size at least n/k4 [41]. Notice that Corollary 5.6 only applies in
the case that the clique number is not too large while the result of Larman
et al. [41] only applies when the independence number is not too large.

We can also prove the following theorem.

Theorem 5.7 [27] If G is a Kk-free intersection graph of n x-monotone
curves in the plane, then

χ(G) ≤ (c log n)15 log k,

where c is an absolute constant.

A collection C of curves in the plane is grounded if there is a closed
(Jordan) curve γ such that every curve in C has one endpoint on γ and
the rest of the curve lies in the exterior of γ. The intersection graph of a
collection of grounded curves is called an outerstring graph.

McGuinness [43] proved that there is a constant C such that if G is
a triangle-free intersection graph of a grounded 1-intersecting collection of
curves, then G has chromatic number at most C. In Section 7, we prove an
upper bound for the chromatic number of Kk-free outerstring graphs.

A survey by Kostochka [38] discusses results on coloring intersection
graphs of certain geometric figures. Some of the known bounds are summa-
rized in Table 5.

In the next two sections, we illustrate some of the ideas used for estab-
lishing the above results from [27] by giving simple proofs of some weaker
versions of Theorems 5.1 and 5.7.

6 Independent sets in string graphs

Let It(n, k) denote the maximum I such that every Kk-free intersection
graph of n curves in the plane with no pair of curves intersecting in more
than t points has an independent set of size I. The aim of this section is to
establish some weaker versions of Theorem 5.1.

We first prove a very simple lower bound for It(n, k), and then we show
how to improve it with a little extra care.
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Table 2: Chromatic numbers of Kk-free intersection graphs

Kk-free upper bound on
intersection graphs of chromatic number reference

intervals in R k − 1 Gallai, Hajós

arcs along a circle ⌊3(k−1)
2 ⌋ Karapetian [32]

segments in R
2 ? Erdős

half-lines in R
2, k = 3 < ∞ McGuinness [43, 44]

chords of a circle, k = 3 8 Karapetian [33]

chords of a circle 50 · 2k Kostochka-Kratochv́ıl [39]

axis-parallel 3k2 − 8k + 4 Asplund, Grünbaum [9]
rectangles in R2 and C. Hendler

unit squares in R
2, k = 3 =3 Akiyama et al. [5]

translates of convex 3k-6 Kim et al. [36]
body in R

2

homothetic copies of (O(d))dk Pach [46] and
convex body in R

d Kostochka [38]

axis-parallel ∞ Burling [14]
boxes in R

d, d ≥ 3

Proposition 6.1 There is an absolute constant c such that for all posi-
tive integers n, k, t with n, k ≥ 2, we have It(n, k) ≥ n

(ct1/2 log n)2(k−2) . That

is, every Kk-free intersection graph of n curves in the plane with no pair
intersecting in more than t points has an independent set of size at least

n
(ct1/2 log n)2(k−2) .

Proof: The proof is by induction on n and k. The base cases n = 2
and k = 2 are trivial. Let G be a Kk-free intersection graph of a t-
intersecting collection C of n curves in the plane such that the largest
independent set in G has size It(n, k). If there is a vertex v adjacent to
at least n(ct1/2 log n)−2 other vertices, then the intersection graph of the
neighborhood of v has no clique of size k − 1, and by induction, we are
done in this case. So we may assume that the maximum degree of G
is at most n(ct1/2 log n)−2. The number of crossings between elements of
C is at most 1

2tn2(ct1/2 log n)−2 < n2(c log n)−2. Applying the separator
theorem for curves, which is a corollary of Theorem 4.2, there is a par-
tition C = C0 ∪ C1 ∪ C2, with |C0| < c′n/ log n, |C1|, |C2| ≤ 2n/3, and
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no edges between C1 and C2 in G, where c′ is 1
c times the implied con-

stant in the separator theorem. Letting a1 = |C1| and a2 = |C2|, we have
a1 + a2 ≥ n − c′n/ log n, a1, a2 ≤ 2n/3, and

It(n, k) ≥ It(a1, k) + It(a2, k). (1)

Using the induction hypothesis, we have

It(ai, k) ≥ a2
i (ct

1/2 log ai)
−2(k−2) (2)

for i = 1, 2. It is straightforward to check that we can pick c large enough so
that c′ is small enough so that and combining (1) and (2) gives the desired
lower bound on It(n, k). 2

By also keeping track of the number of edges of the intersection graph
G, we can improve the exponent of the log n factor in the lower bound in
Proposition 6.1 from 2(k − 2) to k − 2.

Proposition 6.2 There is an absolute constant c such that for all positive
integers n, k, t with n, k ≥ 2, we have It(n, k) ≥ n

(ct log n)(k−2) .

Proposition 6.2 follows from the next statement, by induction on k; the
base case k = 2 is trivial.

Proposition 6.3 There is a constant c such that if G is a nonempty in-
tersection graph of a t-intersecting collection of n ≥ 2 curves in the plane,
then G contains an induced subgraph with at least cn

t log n vertices whose clique
number is strictly less than the clique number of G.

Proof: Let Dt(m,n) denote the maximum D such that every graph G with
n vertices and m ≥ 1 edges, which is an intersection graph of a t-intersecting
collection of curves in the plane, has an induced subgraph with D vertices
such that its clique number is strictly smaller than the clique number of G.

It is sufficient to show that there is a constant c such that

Dt(m,n) ≥ cn

t log n
+

m

n
,

for all m and n with n ≥ 2.
The proof is by induction on n, noting that Dt(0, 1) = 1. Let G be

an intersection graph of a t-intersecting collection C of curves in the plane
with n vertices, m edges, and every induced subgraph of G of size larger
than Dt(m,n) has the same clique number as G. Let ∆ be the maximum
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degree of G. Notice that ∆ ≤ Dt(m,n) since the induced subgraph by the
neighborhood of a vertex of maximum degree has clique number less than
the clique number of G. Also ∆ ≥ 2m/n since 2m/n is the average degree
of G. Hence, if ∆ ≥ 2 cn

t log n , then the desired inequality holds. Therefore,
we may assume ∆ < 2 cn

t log n .
By Theorem 4.2, the separator theorem, there is a partition C = C0 ∪

C1 ∪ C2 with |C0| < c′t
√

m, |C1|, |C2| ≤ 2n/3 and no curve in C1 intersects
a curve in C2, where c′ is the implied constant for the separator theorem.
For i ∈ {1, 2}, let ni and mi denote the number of vertices and edges,
respectively, of the subgraph of G induced by Ci. So

Dt(m,n) ≥ Dt(m1, n1) + Dt(m2, n2),

with
n1, n2 ≤ 2n/3,

n1 + n2 ≥ n − |C0| ≥ n − c′t
√

m,

and

m1 + m2 ≥ m − ∆|C0| ≥ m − 2
cn

t log n
c′t

√
m = m − 2cc′

n

log n

√
m.

Notice that, by the induction hypothesis,

Dt(m,n) ≥ Dt(m1, n1) + Dt(m2, n2) ≥
cn1

t log n1
+

m1

n1
+

cn2

t log n2
+

m2

n2

≥ c(n1 + n2)

t log(2n/3)
+

m1 + m2

2n/3
≥ c(n1 + n2)

t(−1/2 + log n)
+

m1 + m2

2n/3
. (3)

Case 1: m ≥ (12cc′

t
n

log n)2. In this case,

m1 + m2 ≥ m − 2cc′
n

log n

√
m ≥ 5m/6.

Also, using (3),

Dt(m,n) ≥ c(n1 + n2)

t log n
+

5

4
m/n =

cn

t log n
+

m

n
+

m

4n
− c(n − (n1 + n2))

t log n

≥ cn

t log n
+

m

n
+

m

4n
− cc′

√
m

t log n
≥ cn

t log n
+

m

n
,

completing the analysis in this case.
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Case 2: m < (12cc′

t
n

log n)2. Using (3), we have

Dt(m,n) ≥ c(n1 + n2)

t(−1/2 + log n)
≥ c

t
(n − c′t

√
m)

(

1

log n
+

1

2 log2 n

)

≥ c

t

(

n

log n
+

n

2 log2 n
− 2c′t

√
m

log n

)

≥ cn

t log n
+

m

n
.

as long as c is chosen originally to be at most 1
576c′2

. This completes the
proof. 2

7 Independent sets of x-monotone curves

In this section, we prove a weaker version of Theorem 5.7.
If a graph has small chromatic number, then it has a large independent

set. The following result is an analogue of Proposition 6.1 for intersection
graphs of x-monotone curves.

Proposition 7.1 There is a constant c such that every intersection graph of
n x-monotone curves with no k > 2 pairwise crossing has chromatic number
at most (c log n)2k−3.

Let X(n, k) denote the maximum chromatic number over all Kk-free
intersection graphs of n x-monotone curves. Let V (n, k) denote the maxi-
mum chromatic number over all Kk-free intersection graphs of n x-monotone
curves that each intersect a fixed vertical line L. We start the proof of
Proposition 7.1 with the following lemma relating V (n, k) and X(n, k).

Lemma 7.2 For all positive integers n and k, we have

X(n, k) ≤ X
(⌊n

2

⌋

, k
)

+ V (n, k).

Proof: Let C be a family of n x-monotone curves, and let x1 ≤ . . . ≤ xn

be the x-coordinates of the left endpoints of the n x-monotone curves. Let
L be the vertical line x = x⌈n

2
⌉. Notice that every x-monotone curve whose

right endpoint has x-coordinate less than x⌈n
2
⌉ is disjoint from every x-

monotone curve whose left endpoint has x-coordinate more than x⌈n
2
⌉. There

are at most ⌊n
2 ⌋ curves whose right endpoint has x-coordinate less than

x⌈n
2
⌉ and at most ⌊n

2 ⌋ curves whose left endpoint has x-coordinate greater
than x⌈n

2
⌉. Hence, we can properly color the x-monotone curves in C that
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do not intersect L with X(⌊n
2 ⌋, k) colors. We can color the remaining x-

monotone curves in C, which all intersect L, with V (n, k) colors. Hence,
X(n, k) ≤ X(⌊n

2 ⌋, k) + V (n, k). 2

By iterating Lemma 7.2, we obtain

X(n, k) ≤
⌊log n⌋
∑

i=0

V
(⌊ n

2i

⌋

, k
)

≤ (1 + log2 n)V (n, k).

Recall that a collection C of curves in the plane is grounded if there is
a closed (Jordan) curve γ such that every curve in C has one endpoint on
γ and the rest of the curve lies in the exterior of γ. Also recall that the
intersection graph of a collection of grounded curves is called an outerstring
graph. Let G(n, k) denote the maximum chromatic number over all Kk-free
outerstring graphs with n vertices. The following lemma relates G(n, k) and
V (n, k).

Lemma 7.3 For all positive integers n and k, we have

V (n, k) ≤ G(n, k)2.

Proof: Let C = {C1, . . . , Cn} be a family of n x-monotone curves that
intersect a vertical line L : x = x0. Let Li denote the intersection of Ci

with the left half-plane {(x, y) : x ≤ x0}. Let Ri denote the intersection
of Ci with the right half-plane {(x, y) : x ≥ x0}. Let L = {L1, . . . , Ln}
and R = {R1, . . . , Rn}. Notice that the intersection graph of L can be
properly colored with G(n, k) colors, and the intersection graph of R can
be properly colored with G(n, k) colors. Consider proper colorings c1 :
L → {1, . . . , G(n, k)} and c2 : R → {1, . . . , G(n, k)} of the intersection
graphs of L and R, respectively. Assign to each x-monotone curve Ci the
color (c1(Li), c2(Ri)). The family C is properly colored with G(n, k)2 colors.
Hence, V (n, k) ≤ G(n, k)2. 2

A family C of n grounded curves naturally comes with a cyclic labeling
by their endpoints along the ground. Start by assigning any grounded curve
the label 0 and then proceed to label the grounded curves clockwise, breaking
ties arbitrarily, so the (i + 1)th grounded curve has label i. The labels are
elements of Zn. Define the distance between a pair of grounded curves
in C as the cyclic distance between their labels, that is, the distance d(i, j)
between the arc with label i and the arc with label j is min(|i−j|, n−|i−j|).
We let [i, j] denote the cyclic interval of elements {i, i + 1, . . . , j}.

The following is the main lemma of this section.
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Lemma 7.4 For all integers n ≥ 2 and k ≥ 3, we have G(n, k) ≤ G(⌊2n
3 ⌋, k)+

4G(n, k − 1).

Proof: Let C = {C1, . . . , Cn} be a family of n ≥ 2 grounded curves with
curve Ci having cyclic label i. If no pair of arcs in C intersect, then the
chromatic number of the intersection graph of C is 1. Therefore, we may
suppose that there are a pair of curves in C that intersect.

Let (Ca, Cb) be a pair of arcs that intersect such that the distance d(a, b)
is the maximum distance over all pairs of curves in C that intersect.

L

≥
n

3

≥
n

3

a

b

L

<
n

3

a

b

≥
n

3

<
n

3

c

d

e

f

Figure 2: On the left: there are two curves, Ca and Cb, that intersect and
whose cyclic distance along L is at least n/3. On the right: the maximum

distance between any two curves that intersect is less than n/3.

Case 1: d(a, b) ≥ n
3 (which is depicted in the left-hand side of Figure 2.

If Ci with i in the cyclic interval [a+1, b−1] is disjoint from Ca and Cb, and
Cj with j in the cyclic interval [b+ 1, a− 1] is disjoint from Ca and Cb, then
Ci and Cj are disjoint. Hence, the curves that are disjoint from Ca and Cb

can be properly colored with G(n−d(a, b)−1, k) ≤ G(⌊2n
3 ⌋−1, k) colors. We

can properly color the curves in C that intersect Ca with G(n, k− 1) colors,
and properly color the curves in C that intersect Cb with G(n, k− 1) colors.
Therefore, C can be properly colored with G(⌊2n

3 ⌋ − 1, k) + 2G(n, k − 1)
colors.

Case 2: d(a, b) < n
3 (which is depicted in the right-hand side of Figure

2. Let c ∈ Zn be given by c ≡ b + ⌈n
3 ⌉ (mod n). If the curve Cc is disjoint

from the other arcs in C, then the chromatic number of the intersection
graph of C is the same as the chromatic number as the intersection graph
of C \ {Cc}. If the curve Cc intersects at least one other curve in C, then
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let d be a label such that Cd intersects Cc and d(c, d) is as large as possible.
Finally, let e in the cyclic interval [b, c] and f in the cyclic interval [d, a]
be such that Ce intersects Cf and d(e, f) is as large as possible. Properly
color the curves that intersect Ca with G(n, k − 1) colors, the remaining
curves that intersect Cb with G(n, k − 1) colors, the remaining curves that
intersect Ce with G(n, k− 1) colors, and the remaining curves that intersect
Cf with G(n, k − 1) colors. Each of the remaining curves have labels in the
cyclic intervals I1 := [a, b], I2 := [b, e], I3 := [e, f ], or I4 := [f, a], and no
remaining curve with label in Ii intersects a remaining curve with label in
the interval Ij for 1 ≤ i < j ≤ 4. Notice that each of the four intervals
I1, I2, I3, I4 has at most ⌊2n

3 ⌋ elements, so C can be properly colored with
G(⌊2n

3 ⌋, k) + 4G(n, k − 1) colors, which completes the proof. 2

Iterating Lemma 7.4, we have

G(n, k) ≤ 4
∑

i≥0

G(⌊(2
3
)in⌋, k − 1) ≤ 4

log 2/3
(1 + log n)G(n, k − 1).

Trivially, G(n, 2) = 1. Therefore, there is an absolute constant c such that
for n > 1 and k > 2, we have

G(n, k) ≤ (
4

log 2/3
(1 + log n))k−2G(n, 2) ≤

(

c(log n)k−2
)

,

which, with Lemmas 7.2 and Lemma 7.3, completes the proof of Theorem
7.1.

8 Open problems

A few outstanding unsolved problems related to our subject are listed below.

Problem 8.1 Does the family of intersection graphs of continuous curves
in the plane have the Erdős-Hajnal property?

Problem 8.2 Is it true that every perfect graph with n vertices or its com-
plement contains a bi-clique of size n1−o(1)?

Problem 8.3 Does there exist for every integer k > 2 a natural number Ck

with the property that the intersection graph of any finite collection of convex
sets in the plane with no k pairwise intersecting members is Ck-colorable?
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We do not even know if every such intersection graphs with n vertices
contains an independent set of size at least ckn, for a suitable constant
ck > 0.

A geometric graph is a graph whose vertices are points in the plane
in general position and whose edges are straight-line segments connecting
certain pairs of points. An affirmative answer to (even the weaker form of)
Problem 8.3 would yield that any geometric graph with n vertices and no
k pairwise crossing edges has at most Dkn edges, where Dk is a constant
depending only on k. This is known to be true for k ≤ 4; see [2, 47, 1].

Problem 8.4 [8] Does there exist a positive constant c such that every com-
plete geometric graph with n vertices has cn pairwise crossing edges?

Problem 8.5 [26] Is it true that any Kk,k-free intersection graph of n seg-
ments in R

3 has at most Dkn edges, for some Dk > 0 depending only on
k?
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[3] P.K. Agarwal and J. Matoušek, Range searching with semialgebraic sets,
Discrete Comput. Geom. 11 (1994), 393–418.

[4] M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers, J.
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