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Abstract

Computing the maximum number of disjoint elements in

a collection C of geometric objects is a classical problem

in computational geometry with applications ranging from

frequency assignment in cellular networks to map labeling

in computational cartography. The problem is equivalent

to finding the independence number, α(GC), of the inter-

section graph GC of C, obtained by connecting two ele-

ments of C with an edge if and only if their intersection

is nonempty. This is known to be an NP-hard task even for

systems of segments in the plane with at most two different

slopes. The best known polynomial time approximation al-

gorithm for systems of arbitrary segments is due to Agarwal

and Mustafa, and returns in the worst case an n1/2+o(1)-

approximation for α. Using extensions of the Lipton-Tarjan

separator theorem, we improve this result and present, for

every ε > 0, a polynomial time algorithm for computing

α(GC) with approximation ratio at most nε. In contrast, for

general graphs, for any ε > 0 it is NP-hard to approximate

the independence number within a factor of n1−ε. We also

give a subexponential time exact algorithm for computing

the independence number of intersection graphs of arcwise

connected sets in the plane.

1 Introduction

An independent set of a graph G = (V (G), E(G)) is a
subset of the vertex set of G that contains no pair of
adjacent vertices. The independence number α(G) of G
is the size of the largest independent set in G. Deter-
mining or estimating α(G) is a fundamental problem
in theoretical computer science, which is known to be
NP-hard [19]. The fastest known algorithm for deter-
mining α(G) runs in exponential time in n = |V (G)|.
The approximation ratio of the best known polynomial
time approximation algorithm is n/polylog n. The rea-
son for this disappointingly weak performance is that
approximating α(G) is extremely hard. Building on ear-
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lier works [4, 5, 10, 16], Zuckerman [32] proved that, for
any ε > 0, it is impossible to approximate in polynomial
time the independence number of G within a factor of
n1−ε, provided that P 6= NP.

Computing the maximum number of disjoint ele-
ments in a collection C of geometric objects belongs to
the oldest problems in computational geometry, with
many applications, including frequency assignment in
cellular networks [8, 9, 24], map labeling in compu-
tational cartography [1, 11, 31], interval scheduling in
manufacturing [30], and chip manufacturing [17]. The
question is equivalent to computing the independence
number of the intersection graph GC of C, defined as a
graph on the vertex set V (GC) = C, in which and two
vertices are adjacent if and only if the corresponding
elements of C have nonempty intersection. For collec-
tions of segments in the plane, this problem was already
addressed in the first monograph devoted to computa-
tional geometry [27]. Determining α(GC) is NP-hard
even if C is a collection of segments in the plane lying
in at most two directions [21] (see also [18, 25]). On
the other hand, Agarwal and Mustafa [2] designed a
O(n3)-time algorithm which, given any collection C of
n segments in the plane with α(GC) = α, finds an in-
dependent set of size (α/ log(2n/α))1/2. Expressed as a
function of n, the approximation ratio of this algorithm
is n1/2+o(1) in the worst case.

The aim of this note is to give better exact and ap-
proximation algorithms for this problem. Our results
can be extended to intersection graphs of curves. A
curve is a subset of the plane R2 which is homeomor-
phic to the unit interval [0, 1]. The intersection graph
of a collection of curves is called a string graph. In
fact, it is easy to show that the intersection graph of
any collection of arcwise connected sets in the plane is a
string graph. String graphs have been intensely studied
both for practical applications and for theoretical inter-
est. Benzer [7] was the first to introduce these graphs
in 1959, while exploring the topology of genetic struc-
tures. In 1966, interested in electrical networks real-
izable by printed circuits, Sinden [29] investigated the
same graphs at Bell Labs. He showed that not every
graph is a string graph but all planar graphs are. He
also raised the question whether there exists any algo-
rithm for recognizing string graphs. Today we know



that the answer is yes, but the problem is NP-hard [28].
A collection of curves is k-intersecting if every pair

of its members have at most k points in common. A col-
lection of segments in general position is 1-intersecting.
A string graph is k-intersecting if it is the intersection
graph of a k-intersecting collection of curves.

We give, for any fixed ε > 0, an nε-approximation
algorithm for estimating the independence number of
k-intersecting string graphs in polynomial time.

Theorem 1.1. Fix ε > 0. Let C be a k-intersecting
collection of n curves in the plane, and G = GC

denote its intersection graph. In time nOk((4/ε)−2/ε) we
can compute an independent set whose size is at least
n−εα(G).

We also design an algorithm to compute exactly the
independence number of a string graph in subexponen-
tial time.

Theorem 1.2. Given a string graph G with n vertices,
we can compute a maximum independent set in G in
time 2n4/5polylog n.

The running time of this algorithm can be improved
for k-intersecting string graphs.

Theorem 1.3. Given a k-intersecting string graph G
with n vertices, we can compute a maximum indepen-
dent set in G in time 2Ok(n2/3).

The chromatic number χ(G) of G is the minimum
number of colors needed to color the vertices of G so
that no two adjacent vertices receive the same color.
It is easy to see that any approximation algorithm for
α(G) can be converted into an approximation algorithm
for χ(G), with only a polynomial loss in time and an
extra log n factor in the approximation ratio. Indeed,
we can repeatedly pull out large independent sets and
color their elements with a new color. This will result
in a proper coloring of G. Thus, Theorem 1.1 implies
a polynomial time nε-approximation algorithm for the
chromatic number of a k-intersecting string graph on n
vertices.

Theorem 1.4. For any fixed ε > 0, we can properly
color a k-intersecting string graph G with n vertices with
nεχ(G) colors in time nOk((4/ε)−2/ε).

When discussing algorithms on curves, it is impor-
tant to clarify the precise way how the curves are given.
In the above theorems on computing and approximat-
ing the independence number and chromatic number of
k-intersecting string graphs (Theorems 1.1, 1.3, 1.4),
we assume that we have access to the underlying plane

graph, whose vertices are the intersection points of the
curves and two vertices are adjacent if and only if they
are consecutive intersection points along a curve, as well
as the paths in the plane graph corresponding to the
curves. Note that these paths partition the edge set
of the underlying plane graph. For collections of seg-
ments, it is easy to compute in polynomial time (as a
function of the endpoint coordinates) this underlying
plane graph. For Theorem 1.2, we do not really need
any special representation of G: the algorithm uses the
string graph itself. We could also establish Theorem 1.3
without using the underlying plane graph, with a loss
of an additional log n factor in the exponent.

2 Tools

There are two main lemmas which we use for Theo-
rems 1.1 and 1.3. The first lemma shows that if a k-
intersecting collection of curves has many pairs of inter-
secting curves, then we can find two large subcollections
such that every curve in the first subcollection intersects
every curve in the second subcollection.

Lemma 2.1. [14] For every positive integer k, there is
a constant ck > 0 with the following property. Every k-
intersecting collection C of n curves with m intersecting
pairs contains disjoint subcollections A,B ⊂ C with
|A| = |B| ≥ ckm/n such that every curve in A intersects
every curve in B. Moreover, two such subcollections can
be found in polynomial time.

Lemma 2.1 appears in [14]; its proof was based on
a lemma from [15]. While it was not explicitly stated
in these papers that the sets A and B can be found
in polynomial time, the rather involved proof using
a density increment argument indeed constructs two
subcollections A,B ⊆ C with the desired properties in
polynomial time.

A separator in a graph G = (V, E) is a vertex subset
V0 such that there is a partition V = V0 ∪ V1 ∪ V2

with |V1|, |V2| ≤ 2|V |/3 and there are no edges with
one vertex in V1 and the other in V2. A classical result
of Lipton and Tarjan [22] states that any planar graph
on n vertices has a separator of order O(

√
n). Further,

they showed that such a separator could be found in
time O(n). This result has been extended to intersection
graphs of curves.

Lemma 2.2. [12] The intersection graph of a collection
C of curves in the plane with a total of x intersection
points among them has a separator of size at most c′

√
x.

Such a separator can be found in polynomial time.

The proof of Lemma 2.2 in [12] uses the Lipton-
Tarjan separator result for planar graphs. While not



explicitly stated in [12], the proof indeed finds a sepa-
rator in polynomial time.

The proof of Theorem 1.2, which gives a subexpo-
nential time algorithm for computing a maximum inde-
pendent set in a string graph, uses another separator
lemma from [14].

Lemma 2.3. [14] Every string graph with m edges and
maximum degree ∆ contains a separator of order at
most c′′∆m1/2 log m.

3 Approximation Algorithm

The aim of this section is to prove Theorem 1.1. We
describe an algorithm which, given a k-intersecting
collection C of n curves with intersection graph G =
GC , outputs a subcollection I ⊂ C of disjoint curves,
with |I| ≥ n−εα(G). The running time of this algorithm
is at most f(n) := ndk(4/ε)−2/ε

, where the constant dk is
chosen sufficiently large, but only depending on k. Our
algorithm is recursive. In the base cases |C| = 0 or 1,
the algorithm simply outputs I = C.

For |C| ≥ 2, the algorithm breaks into two cases.
Note that the number of vertices of the intersection
graph G is |C| = n. Let m denote the number of edges
of G, and α denote the independence number of G. Let
c = k−1c′−2

(
1− (

2
3

)ε)2/ε
, so

(
c′(kc)1/2

)ε
+

(
2
3

)ε = 1,
where c′ is the absolute constant in Lemma 2.2. Note
that

c−1 ≤ c′−2k (4/ε)2/ε
,(3.1)

which follows from the inequality 1 − (2/3)ε ≥ ε/4 for
0 ≤ ε ≤ 1.

Case 1: m ≥ cn2. By Lemma 2.1, there are disjoint
subcollections A,B ⊂ C with |A| = |B| ≥ ckm/n ≥
ckcn such that every curve in A intersects every curve
in B. Moreover, these subcollections can be found in
polynomial time. Since every curve in A intersects every
curve in B, any independent set in C cannot contain
both a curve in A and a curve in B. Therefore, every
independent set is contained in C \ A or C \ B. We
run the algorithm on both C \ A and C \ B. Let
n0 = |C \ A| ≤ n − ckcn = (1 − ckc)n. The running
time of the algorithm is at most

2f(n0) + nO(1) = 2n
dk(4/ε)−2/ε

0 + nO(1)

≤ 2(1− ckc)dk(4/ε)−2/ε

ndk(4/ε)−2/ε

+ nO(1)

≤ ndk(4/ε)−2/ε

= f(n).

We get the last inequality from (1 − ckc)dkε−2/ε

< 1/4,
which follows from (3.1) and the fact that dk is chosen
sufficiently large as a function of k. We get independent
sets in C \A and C \B, and we output the set I which

is the larger of these two independent sets. Since a
maximum independent set in G is contained in C \A or
C \B, we have |I| ≥ n−ε

0 α(G) ≥ n−εα(G).

Case 2: m < cn2. Since the collection C is k-
intersecting, the number x of intersections is at most
km < kcn2. By Lemma 2.2, the intersection graph G
has a separator C0 ⊂ C with |C0| ≤ c′

√
x < c′(kc)1/2n,

and C0 can be found in polynomial time. It is easy
to partition a graph into its connected components in
polynomial time, and in particular, for the intersection
graph of C \C0. We can thus find in polynomial time a
partition C = C0 ∪C1 ∪C2 with |C1|, |C2| ≤ 2n/3, and
no curve in C1 intersects a curve in C2. For i ∈ {0, 1, 2},
let ni = |Ci| and αi denote the independence number
of the intersection graph of Ci. Since no curve in C1

intersects a curve in C2, the union of an independent set
in C1 and an independent set in C2 is an independent
set in C. Hence, α ≥ α1 + α2. Also, trivially, α0 ≤ α ≤
α0 + α1 + α2.

We run the algorithm on the subcollections
C0, C1, C2. The running time up to this point is

f(n0) + f(n1) + f(n2) + nO(1) ≤ 4f(2n/3) < f(n)/2.

We obtain three independent sets Ii ∈ Ci for i ∈ {0, 1, 2}
with |Ii| ≥ n−ε

i αi. If |I1|+|I2| ≥ |I0|, then we output the
independent set I = I1 ∪ I2. Otherwise, we output the
independent set I = I0. As |I| = max(|I0|, |I1| + |I2|),
we have |I| ≥ |I0| and |I| ≥ |I1|+ |I2|. This yields

α ≤ α0 + α1 + α2

≤ nε
0|I0|+ nε

1|I1|+ nε
2|I2|

≤ nε
0|I0|+

(
2
3

)ε

nε (|I1|+ |I2|)

≤ nε

((
c′(kc)1/2

)ε

|I0|+
(

2
3

)ε

(|I1|+ |I2|)
)

≤ nε

((
c′(kc)1/2

)ε

+
(

2
3

)ε)
|I|

= nε|I|.

Here we used
(
c′(kc)1/2

)ε
+

(
2
3

)ε = 1. Hence, |I| ≥
n−εα, and the running time is at most f(n), which
completes the proof.

4 Exact Algorithms

In this section, we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2: We give a recursive algorithm
which, given a string graph G = (V,E) on n vertices,
outputs a maximum independent set in G in time at
most g(n) := 2c0n4/5 log7/5 n, where c0 is a sufficiently
large absolute constant. Let d = dn1/5 log−2/5 ne. It is



not difficult to check that the function g(n)−g(n−1)−
g(n− d) grows faster that any polynomial in n.

If G has at most one vertex, the algorithm simply
outputs the vertex set V . Suppose now that |V | ≥ 2.
Let ∆ denote the maximum degree of the vertices in G.

Case 1: ∆ ≥ d. Pick a vertex v ∈ V of degree ∆, and
let N(v) denote the set of neighbors of v. A maximum
independent set containing v lies either in V \N(v) or in
V \ v. We find a maximum independent set in V \N(v)
in time at most g(n−∆), a maximum independent set
in V \ v in time at most g(n− 1), and output the larger
of the two. The running time of this algorithm is at
most

g(n− 1) + g(n−∆) + nO(1) ≤ g(n).

Case 2: ∆ < d. The number m of edges of G is less
than n∆/2. By Lemma 2.3, G has a separator V0 of
size at most s = bc′′∆m1/2 log mc < 2c′′∆3/2n1/2 log n.
We can find such a separator V0 by trying all subsets of
size at most s in time at most ns = 2O(n4/5 log7/5 n). We
obtain a partition V = V0 ∪ V1 ∪ V2 such that |V0| ≤ s,
|V1|, |V2| ≤ 2n/3, and no vertex in V1 is adjacent to any
vertex in V2. For any independent set I ⊂ V0 and any
j ∈ {1, 2}, let VI,j ⊂ Vj denote the set of all vertices in
Vj that have no neighbor in I. Let XI,j be a maximum
independent set in VI,j . For a given I, the time to
compute the VI,j is O(n2). The set I ′ = I ∪XI,1 ∪XI,2

is an independent set, as there are no edges between V1

and V2. For at least one independent set I ⊂ V0, the set
I ′ is a maximum independent set, and we output this
set. Once we have picked I, the time required to find
XI,1 and XI,2 is bounded from above by 2g(2n/3). The
number of possible choices for I is 2|V0| ≤ 2s. Hence,
the total running time of our algorithm is at most

O(n22sg(2n/3)) ≤ g(n).

This completes the proof of Theorem 1.2.

Using Lemma 2.2 instead of Lemma 2.3 and picking
d appropriately, results in an algorithm for computing
the independence number of a k-intersecting string
graph G on n vertices. This algorithm runs in time
h(n) = 2Ok(n2/3polylog n). To obtain Theorem 1.3,
we have to drop the polylog n factor in the exponent.
To achieve this, we distinguish two cases based on the
number of edges of G rather than the maximum degree
of its vertices.

In the dense case, we use Lemma 2.1 to obtain
two large subfamilies of curves which cross each other.
Denoting the size of these subfamilies by t, and using
the fact that no independent set contains at least one
curve from each of these subfamilies, we obtain an
upper bound of roughly 2h(n− t) on the running time.

Otherwise, we use Lemma 2.2 to pick out a small
separator, and as in the proof of Theorem 1.2, we find
a maximum independent set by extending all possible
independent subsets of the separator.

Remark: The only property of string graphs we used
in the proof of Theorem 1.2 (and in the proof of the
slightly weaker version of Theorem 1.3, where we lost
a polylog n factor in the exponent) is that they satisfy
a separator theorem. The proof thus extends to give a
subexponential time algorithm for any class of graphs
for which separator theorems are known. For example,
Miller, Teng, Thurston, and Vavasis [26] established
a separator theorem for intersection graphs of balls
in Euclidean space. It states that any intersection
graph of n balls in Rd with no point belonging to k
balls has a separator of order Od(k1/dn1−1/d). The
above algorithm together with this result gives an
algorithm for computing the independence number of
an intersection graph of n balls in Rd which runs in

time 2
Od

(
n

1− 1
d+1 polylog n

)
.

5 Concluding Remarks

The clique number and the clique cover number of a
graph G are the independence number and the chro-
matic number of its complement G. Of course, the
complement of a string graph is not necessarily a string
graph. Nevertheless, the idea of the proof of Theorem
1.1, based on Lemmas 2.1 and 2.2, can be modified to
produce a polynomial time algorithm which approxi-
mates these parameters within a factor n1−εk for some
fixed εk > 0.

Theorem 5.1. For each positive integer k there is εk >
0 such that we can approximate the clique number of a
k-intersecting string graph on n vertices within a factor
n1−εk in time nO(1).

It would be interesting to improve this to a polynomial
time nε-approximation algorithm.

Planar graphs are an interesting special case of
string graphs. Indeed, the Koebe circle packing theorem
[20] states that a graph is planar if and only if it is
the intersection graph of a collection of nonoverlapping
disks in the plane. It follows from the Four-Color
Theorem [3] that every planar graph on n vertices
has an independent set of size at least n/4, so we
immediately know the independence number up to a
factor of 4. Using their planar separator theorem,
Lipton and Tarjan [23] gave an algorithm which gives a
(1 + o(1))-approximation for the independence number
of a planar graph on n vertices in time O(n log n).
They also used their separator theorem to give an exact



algorithm that runs in time 2O(
√

n). Baker [6] found
an alternative algorithm which gives a better trade-off
between the approximation ratio and the running time.
It would be interesting to improve these bounds further.
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of curves, J. London Math. Soc., to appear.

[16] J. H̊astad, Clique is hard to approximate within n1−ε,
Acta Math. 182 (1999), 105–142.

[17] D.S. Hochbaum and W. Maass, Approximation
schemes for covering and packing problems in image
processing and VLSI, J. ACM 32 (1985), 130–136.

[18] J. Kara and J. Kratochv́ıl, Fixed parameter tractability
of independent set in segment intersection graphs,

in: 2nd International Workshop on Parameterized and
Exact Computation (IWPEC 2006), Lecture Notes in
Comput. Sci. 4169, Springer, Berlin, 2006, 166–174.

[19] R. Karp, Reducibility among combinatorial problems,
in Complexity of Computer Computations (R.E. Miller
and J. W. Thatcher, eds.), Plenum, New York, 1972,
85-103.

[20] P. Koebe, Kontaktprobleme der Konformen Abbil-
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