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Abstract—We prove that planar graphs have poly-
logarithmic queue number, thus improving upon the previous
polynomial upper bound. Consequently, planar graphs admit
3D straight-line crossing-free grid drawings in small volume.
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I. INTRODUCTION AND OVERVIEW

A linear layout of a graph is a total ordering of its vertices
and a partition of its edges such that all the elements of the
partition enforce some specific property.

Linear layouts play an important role in Graph Theory
and their study goes back to 1973, when Ollmann [28]
introduced the concept of book embedding (later also called
stack layout) and book thickness (later also called stack
number, fixed outer-thickness, and, most commonly, page
number) of a graph. A book embedding on k pages of a
graph G(V,E) is a linear layout of G in which the partition
of E consists of k sets E1, E2, . . . , Ek, called pages, such
that no two edges in the same page cross (edges (u, v) and
(w, z) cross if u < w < v < z or w < u < z < v), and
the page number is the minimum k such that G has a book
embedding on k pages. The literature is rich of combinatorial
and algorithmic contributions on the page number of various
classes of graphs (see, e.g., [4], [13], [14], [16], [17], [18],
[19], [20], [26], [27]). A famous result of Yannakakis [34]
states that a planar graph has page number at most four.

Queue layout and queue number are the dual concepts
of book embedding and page number, respectively. A queue
layout on k queues of a graph G(V,E) is a linear layout of G
in which the partition of E consists of k sets E1, E2, . . . , Ek,
called queues, such that no two edges in the same queue
nest (edges (u, v) and (w, z) nest if u < w < z < v
or w < u < v < z), and the queue number is the
minimum k such that G has a queue layout on k queues.
Queue layouts were introduced by Heath, Leighton, and
Rosenberg [21], [25], motivated by applications, e.g., in
parallel process scheduling [1], matrix-computations [29],
and sorting permutations and networks [30], [33].

Computing the queue number of a graph is NP-complete.
Namely, it is known that deciding if a graph has queue

number 1 is NP-complete [25]. However, from a com-
binatorial point of view, a large number of bounds are
known on the queue number of several graph classes. For
example, graphs with m edges have queue number at most
e
√
m [10], graphs with tree-width w have queue-number at

most 3w · 6(4w−3w−1)/9 − 1 [9], graphs with tree-width w
and degree ∆ have queue-number at most 36∆w [9], graphs
with path-width p have queue-number at most p [9], graphs
with band-width b have queue-number at most ⌈b/2⌉ [25],
and graphs with track number t have queue-number at most
t − 1 [9]. Queue layouts of directed graphs [23], [24] and
posets [22] have also been studied.

As in many graph problems, a special attention has been
devoted to planar graphs and their subclasses. For example,
trees have queue number 1 [25], outerplanar graphs have
queue number 2 [21], and series-parallel graphs have queue
number 3 [31]. However, for general planar graphs the best
known upper bound for the queue number is O(

√
n) (a

consequence of the results on graphs with O(n) edges [10],
[25], [32]), while no super-constant lower bound is known.
Heath et al. [21], [25] conjectured that planar graphs have
O(1) queue number. Contrastingly, Pemmaraju [29] conjec-
tured that a certain class of planar graphs, namely planar
3-trees, have Ω(log n) queue number. However, Dujmović
et al. [9] disproved such a conjecture by proving that
graphs of constant tree-width, and hence also planar 3-trees,
have constant queue number. Observe that the problem of
determining the queue number of planar graphs is cited
into several papers and collections of open problems (see,
e.g., [3], [6], [8], [9], [12], [21], [25]).

In this paper, we prove that the queue number of planar
graphs is O(log4 n). The proof is constructive and is based
on a polynomial-time algorithm that computes a queue
layout with such a queue number. The result is based on
several new combinatorial and algorithmic tools.

First (Sect. II), we introduce level-2-connected graphs,
that are plane graphs in which each outerplanar level induces
a set of disjoint 2-connected graphs. We show that every
planar graph has a subdivision with one vertex per edge that
is a level-2-connected graph. Such a result, together with a
result of Dujmović and Wood [12] stating that the queue
number of a graph G is at most the square of the queue



number of a subdivision of G with one vertex per edge,
allows us to study the queue number of level-2-connected
graphs in order to determine bounds on the queue number
of general planar graphs.

Second (Sect. III), we introduce floored graphs, that
are plane graphs whose vertices are partitioned into sets
V1, V2, . . . , Vk such that some strong topological properties
on the subgraph induced by each Vi and on the connectivity
among such subgraphs are satisfied. We prove that every
level-2-connected graph admits a partition of its vertex set
resulting into a floored graph. Floored graphs are then related
to the outerplanar levels of a level-2-connected graph. Such
levels form a tree hierarchy that can be thought as having
one node for each connected component of an outerplanar
level and an edge (u, v) if the graph corresponding to v
lies inside the graph corresponding to u. Floored graphs are
used to explore such hierarchy one path at a time. Moreover,
we prove the existence in any floored graph G of a simple
subgraph (a path plus few edges) that decomposes G into
two smaller floored graphs G′ and G′′.

Third (Sect. IV), we show an algorithm that constructs a
queue layout of a floored graph G in which the different
sets of the partition are in consecutive sub-sequences of
the total vertex ordering of G. The algorithm is recursive
and at each step uses the mentioned decomposition of a
floored graph G into two floored graphs G′ and G′′ several
times, each time splitting the floored graph with the greatest
number of vertices between the two floored graphs obtained
at the previous splitting, until no obtained floored graph has
more than half of the vertices of the initial floored graph.
The resulting floored graphs have different vertex partitions.
However, it is shown how to merge such partitions in such
a way that O(log2 n) queues are sufficient to accommodate
all the edges of the initial n-vertex graph.

Then, we conclude that floored graphs have O(log2 n)
queue number, hence level-2-connected graphs have
O(log2 n) queue number, thus planar graphs have O(log4 n)
queue number.

Our result sheds new light on one of the most studied
Graph Drawing problems (see, e.g., [3], [5], [6], [9], [11],
[15]): Given an n-vertex planar graph which is the volume
required to draw it in 3D, representing edges with straight-
line segments that cross only at common endpoints? The pre-
viously best known upper bound [11] was O(n1.5) volume.
We prove that planar graphs have 3D straight-line crossing-
free drawings in O(n logc n) volume, for some constant c.
Such a result comes from our new bound on the queue
number of planar graphs and from results by Dujmović,
Morin, and Wood [9], [11] relating the queue number of
a graph to its track number and to the volume requirements
of its 3D straight-line crossing-free drawings.

Because of space limitations, several proofs are omitted
and can be found in the full version of the paper [7].

II. PRELIMINARIES

A planar drawing of a graph is a mapping of each vertex
to a distinct point of the plane and of each edge to a Jordan
curve between its endpoints such that no two edges intersect
except, possibly, at common endpoints. A planar drawing
of a graph determines a circular ordering of the edges
incident to each vertex. Two drawings of the same graph
are equivalent if they determine the same circular ordering
around each vertex. A planar embedding is an equivalence
class of planar drawings. A planar drawing partitions the
plane into topologically connected regions, called faces. The
unbounded face is the outer face. A graph together with a
planar embedding and a choice for its outer face is called
plane graph. A plane graph is maximal when all its faces
are triangles. A plane graph is internally-triangulated when
all its internal faces are triangles. An outerplane graph is a
plane graph such that all its vertices are on the outer face.

A graph G′(V ′, E′) is a subgraph of a graph G(V,E) if
V ′ ⊆ V and E′ ⊆ E. A subgraph is induced by V ′ if, for
every edge (u, v) ∈ E such that u, v ∈ V ′, (u, v) ∈ E′. The
subgraph induced by V ′ ⊆ V is denoted by G[V ′].

A graph is connected if every pair of vertices is connected
by a path. A k-connected graph G is such that removing any
k− 1 vertices leaves G connected. A vertex whose removal
disconnects the graph is a cut-vertex.

A k-subdivision of a graph G is a graph obtained by
replacing each edge of G with a path having at most 2 + k
vertices.

A chord of a cycle C is an edge connecting two non-
consecutive vertices of C. A chord of a plane graph G is a
chord of the cycle delimiting the outer face of G.

Given a plane graph G and an edge (u, v) on the outer
face of G, we say that G is to the left (resp. to the right) of
(u, v) when traversing it from u to v if an internal face of
G is to the left (resp. to the right) of (u, v) when traversing
such an edge from u to v.

Given two plane graphs G1 and G2 embedded in the plane
and possibly sharing some vertices of their outer faces, we
say that G2 is in the outer face of G1 if every vertex of G2

not in G1 is to the left of the cycle delimiting the outer face
of G1 when clockwise traversing such a cycle.

The outerplanar levels (or simply levels) of a plane graph
G are defined as follows. Let G1 = G and let Gi+1 be the
plane graph obtained by removing from Gi (i ≥ 1) the set Vi

of vertices of the outer face of Gi and their incident edges.
Set Vi is the i-th level of G. Observe that the first level of G
is the set of vertices of its outer face. Let k be the maximum
index such that Vk ̸= ∅. We say that G has k levels.

A 2-connected internally-triangulated plane graph G is
level-2-connected if Gi is composed of a set of 2-connected
graphs that are pairwise vertex-disjoint and that have each at
least three vertices, for each 1 ≤ i ≤ k. That is, Gi has no
cut-vertex and it has no connected component that is a single
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Figure 1. Two maximal plane graphs G and G∗. The subgraphs induced
by the levels of G and G∗ are shown by thick lines. (a) G is not level-2-
connected. (b) G∗ is level-2-connected and contains G as a 1-subdivision.

vertex or a single edge. Fig. 1.a shows a maximal plane
graph G that is not level-2-connected and Fig. 1.b shows a
maximal plane graph G∗ that is level-2-connected and that
contains G as a 1-subdivision. We have the following:

Lemma 1: Let G be an n-vertex plane graph. There exists
a maximal plane graph G∗ such that:
(i) G∗ is level-2-connected,

(ii) G∗ contains a subgraph G′ such that G′ is a 1-
subdivision of G, and

(iii) G∗ has O(n) vertices.
We further observe two properties of a level-2-connected

graph G. Let C be a cycle delimiting the outer face of a 2-
connected component of the i-th level of G and let GC be
the subgraph of G inside or on the border of C. Let (u, v)
be a chord of G and let V1 and V2 be the vertex sets of
the two connected components of G which are obtained by
removing u, v, and their incident edges.

Lemma 2: GC is a level-2-connected graph.
Lemma 3: G[V1 ∪{u, v}] and G[V2 ∪{u, v}] are level-2-

connected graphs.

III. FLOORED GRAPHS

In this section we define floored graphs and show how
to decompose a floored graph into two smaller floored
graphs. A floored graph (see Fig. 2) is a graph G with one
distinguished vertex or edge on the outer face and whose
vertex set is partitioned into sets F1, F2, . . . , Fk that induce
subgraphs of G, called floors, satisfying the topological
properties described below. More formally, a floored graph is
a triple (G, f, g), where G(V,E) is a 2-connected internally-
triangulated plane graph, f is a function f : V → N, where
Fi = f−1(i), for i = 1, . . . , k (denote by k the largest
integer such that f−1(k) ̸= ∅), and g is an edge in E or a
vertex in V , such that the following conditions are satisfied:
C1: Graph G[F1] is either a vertex on the outer face of G

(then g is such a vertex and let u1
1(G) = v11(G) = g),

or an edge on the outer face of G (then g is such an
edge and let g = (u1

1(G), v11(G)), where G is to the
left of g when traversing it from u1

1(G) to v11(G)), or

a level-2-connected graph (then g = (u1
1(G), v11(G)) is

an edge of G[F1] on the outer face of G, where G is to
the left of g when traversing it from u1

1(G) to v11(G)).
G[F1] is the first floor of (G, f, g).

C2: For each 2 ≤ i ≤ k − 1, graph G[Fi] is composed
of a sequence Gi

1, G
i
2, . . . , G

i
x(i) of graphs which are

either single edges or level-2-connected graphs, with
x(i) ≥ 1, such that: (i) Gi

1 has a vertex ui
1(G) on the

outer face of G; (ii) Gi
x(i) has a vertex vix(i)(G) on the

outer face of G; (iii) Gi
j has a vertex vij(G) coincident

with a vertex ui
j+1(G) of Gi

j+1, for 1 ≤ j ≤ x(i)− 1;
such a vertex is on the outer faces of both graphs; (iv)
Gi

j and Gi
j+1 lie each one in the outer face of the

other one, for 1 ≤ j ≤ x(i) − 1; (v) Gi
j and Gi

l do
not share any vertex, for l ̸= j − 1, j + 1; (vi) edge
(ui

j(G), vij(G)) exists and is on the outer face of Gi
j ,

for 1 ≤ j ≤ x(i); (vii) Gi
j (if such a graph is not just

edge (ui
j(G), vij(G))) is to the left of (ui

j(G), vij(G))
when traversing it from ui

j(G) to vij(G). G[Fi] is the
i-th floor of (G, f, g).

C3: Graph G[Fk] is either a single vertex uk
1(G) =

vkx(k)(G) on the outer face of G, or a sequence
Gk

1 , G
k
2 , . . . , G

k
x(k) of graphs which are either single

edges or level-2-connected graphs, with x(k) ≥ 1,
such that properties (i)–(vii) of Condition C2 hold (in
such a case uk

1(G) and vkx(k)(G) are defined as in such
properties). G[Vk] is the last floor of (G, f, g).

C4: G contains no edge connecting the i1-th floor and the
i2-th floor of (G, f, g), with i2 ̸= i1 − 1, i1 + 1.

C5: Any floor is in the outer face of each other floor.
C6: Paths B1 = (u1

1(G), u2
1(G), . . . , uk

1(G)) and B2 =
(v11(G), v2x(2)(G), . . . , vkx(k)(G)) exist and are on the
outer face of G. Such paths are called the borders of
(G, f, g). If (G, f, g) has one floor, then B1 and B2 are
single vertices.

floor 1

floor 2

floor 3

floor 4

u1

1
(G)

u2

1
(G)

u3

1
(G)
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1
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v1
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v2
5
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v3
3
(G)

v4
5
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4
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Figure 2. A floored graph (G, f, g) with 4 floors. Level-2-connected
graphs are gray. Their outer faces are shown by thick lines. The borders
of (G, f, g) are shown by thick lines. In this example G[F1] is a level-2-
connected graph. Hence, g = (u1

1(G), v11(G)). A raising path starting at
w is shown by thick lines.



Level-2-connected graphs can be easily turned into floored
graphs, as shown in the following.

Lemma 4: Let G(V,E) be a level-2-connected graph. Let
f be the function f : V → N such that f(z) = 1, for every
z ∈ V . Let g = (u1

1, v
1
1) be any edge on the outer face of

G, where G is to the left of g when traversing such an edge
from u1

1 to v11 . Then, (G, f, g) is a floored graph.
We have the following structural lemma (see Fig. 3).
Lemma 5: Let (G, f, g) be a floored graph. Then, exactly

one of the following assertions is true. (1) G[F1] is vertex
g and (g, u2

1(G), v2x(2)(G)) is an internal face of G. (2)
G[F1] is vertex g and vertices g, u2

1(G), and v2x(2)(G) are
not on the same internal face of G. (3) G[F1] is an edge
g = (u1

1(G), v11(G)). (4) G[F1] is a level-2-connected graph
and the vertex w of G that forms an internal face with g is
on the outer face of G[F1]. (5) G[F1] is a level-2-connected
graph and the vertex w1 of G that forms an internal face
with g is not on the outer face of G[F1].

We now define and study raising paths, that are paths that
will be used in order to split floored graphs into smaller
floored graphs. Let (G, f, g) be a floored graph and let w ̸=
g be a vertex on the outer face of the i-th floor of G, for
any 1 ≤ i ≤ k. A raising path starting at w (see Fig. 2) is
a path R(w) = (w1 = w,w2, . . . , wy) such that f(wx) =
f(wx−1) + 1, for every 2 ≤ x ≤ y, and such that, if a
vertex wx belongs to the border B1 (resp. to B2), then all
the vertices after wx in R(w) belong to B1 (resp. to B2).
We have the following.

Lemma 6: Let (G, f, g) be a floored graph. For every
vertex w of the outer face of a floor of G different from
the last floor, there exists a vertex z on the outer face of
G[Ff(w)+1] and adjacent to w.

Corollary 1: Let (G, f, g) be a floored graph. For every
vertex w ̸= g on the outer face of a floor of G, there exists
a raising path starting at w.

Suppose that a raising path R(w) shares vertices with
B1. Then, path R(w) \ B1 is the subpath of R(w) starting
at w and ending at the first vertex z shared by R(w) and
B1 (z is in R(w) \ B1). Further, B1 \ R(w) is the subpath
of B1 starting at u1

1(G) and ending at the first vertex z
shared by R(w) and B1 (z is in B1 \R(w)). If R(w) shares
vertices with B2, then R(w)\B2 and B2 \R(w) are defined
analogously.

Let (G, f, g) be a floored graph such that G has more
than three vertices. Denote by P the subpath of the outer
face of G between uk

1(G) and vkx(k)(G) and not containing
g. Given a vertex wy in P , let P1(wy) (resp. P2(wy)) be
the subpath of P between uk

1(G) and wy (resp. between wy

and vkx(k)(G)).
We now discuss how to use a raising path to split a floored

graph (G, f, g) into two floored graphs. We distinguish five
cases, according to the five mutually-exclusive assertions of
Lemma 5.

Case 1. G[F1] is vertex g and (g, u2
1(G), v2x(2)(G)) is an

internal face of G.
See Fig. 3.a. Actually, this case does not use a raising

path, but changes G by removing one of its vertices still
obtaining a floored graph in which g is now an edge. Let
(G′, f ′, g′) be the triple defined as follows. G′(V ′, E′) is the
graph obtained from G by removing vertex g and its incident
edges (g, u2

1(G)) and (g, v2x(2)(G)), f ′(w) = f(w)− 1, for
each vertex w ∈ V ′, and g′ = (u2

1(G), v2x(2)(G)).
Case 2. G[F1] is vertex g and vertices g, u2

1(G), and
v2x(2)(G) are not on the same internal face of G.

See Fig. 3.b. Consider any edge (g, w) internal to G. Ob-
serve that such an edge exists, as G is internally-triangulated.
Consider any raising path R(w) starting at w.

• If R(w) does not share vertices with B1 and B2, then
let wy be the last vertex of R(w). Let G′(V ′, E′) be
the subgraph of G inside or on the border of cycle
B1 ∪ P1(wy) ∪ R(w) ∪ (g, w) and let G′′(V ′′, E′′) be
the subgraph of G inside or on the border of cycle
B2 ∪ P2(wy) ∪ R(w) ∪ (g, w). Let f ′(z) = f(z), for
each vertex z ∈ V ′, and let f ′′(z) = f(z), for each
vertex z ∈ V ′′. Finally, let g′ = g and g′′ = g.

• If R(w) shares vertices with B1 (the case in which
it shares vertices with B2 being analogous), let
G′(V ′, E′) be the subgraph of G inside or on the
border of cycle (B1 \ R(w)) ∪ (R(w) \ B1) ∪ (g, w)
and let G′′(V ′′, E′′) be the subgraph of G inside or
on the border of cycle P ∪ R(w) ∪ (g, w) ∪ B2.
Let f ′(z) = f(z), for each vertex z ∈ V ′, and let
f ′′(z) = f(z), for each vertex z ∈ V ′′. Finally, let
g′ = g and g′′ = g.

Case 3. G[F1] is an edge g = (u1
1(G), v11(G)).

See Fig. 3.c. Consider the vertex w of G that forms an
internal face with g. Notice that such a vertex exists as G
is internally-triangulated and belongs to the second floor of
G (by the fact that G[F1] is an edge and by Condition C4).

• If w belongs to B2, that is w = v2x(2)(G), then let
G′(V ′, E′) be the subgraph of G inside or on the border
of cycle B1 ∪ P ∪ (B2 \ {(v11(G), w)}) ∪ (u1

1(G), w),
let f ′(z) = f(z), for each vertex z ∈ V ′, and let g′ =
u1
1(G).

• If w belongs to B1, that is w = u2
1(G), then let

G′′(V ′′, E′′) be the subgraph of G inside or on the bor-
der of cycle B2∪P ∪(B1\{(u1

1(G), w)})∪(v11(G), w),
let f ′′(z) = f(z), for each vertex z ∈ V ′′, and let
g′′ = v11(G).

• If w belongs neither to B1 nor to B2, then consider
any raising path R(w) starting at w.

– If R(w) does not share vertices with B1 and
B2, then let wy be the last vertex of R(w). Let
G′(V ′, E′) be the subgraph of G inside or on the
border of cycle B1 ∪P1(wy)∪R(w)∪ (u1

1(G), w)
and let G′′(V ′′, E′′) be the subgraph of G inside
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Figure 3. Illustration for Cases 1–5. The borders of (G, f, g), of (G′, f ′, g′), and of (G′′, f ′′, g′′) and the cycles delimiting the outer faces of the floors
of (G, f, g), of (G′, f ′, g′), and of (G′′, f ′′, g′′) are shown by thick lines. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5.

or on the border of cycle B2 ∪ P2(wy) ∪ R(w) ∪
(v11(G), w). Let f ′(z) = f(z), for each vertex
z ∈ V ′, and let f ′′(z) = f(z), for each vertex
z ∈ V ′′. Finally, let g′ = u1

1(G) and g′′ = v11(G).
– If R(w) shares vertices with B1 (the case in

which it shares vertices with B2 being analogous),
let G′(V ′, E′) be the subgraph of G inside or
on the border of cycle (B1 \ R(w)) ∪ (R(w) \
B1) ∪ (u1

1(G), w) and let G′′(V ′′, E′′) be the
subgraph of G inside or on the border of cycle
P ∪ R(w) ∪ (v11(G), w) ∪ B2. Let f ′(z) = f(z),
for each vertex z ∈ V ′, and let f ′′(z) = f(z), for
each vertex z ∈ V ′′. Finally, let g′ = u1

1(G) and
g′′ = v11(G).

Case 4. G[F1] is a level-2-connected graph and the vertex
w of G that forms an internal face with g is on the outer
face of G[F1].

See Fig. 3.d. Consider any raising path R(w) starting at
w.

• If R(w) does not share vertices with B1 and B2, then
let wy be the last vertex of R(w). Let G′(V ′, E′) be
the subgraph of G inside or on the border of cycle
B1∪P1(wy)∪R(w)∪ (u1

1(G), w) and let G′′(V ′′, E′′)
be the subgraph of G inside or on the border of cycle
B2 ∪ P2(wy) ∪R(w) ∪ (v11(G), w). Let f ′(z) = f(z),
for each vertex z ∈ V ′, and let f ′′(z) = f(z), for
each vertex z ∈ V ′′. Finally, let g′ = (u1

1(G), w) and
g′′ = (v11(G), w).

• If R(w) shares vertices with B1 (the case in which
it shares vertices with B2 being analogous), let
G′(V ′, E′) be the subgraph of G inside or on the border

of cycle (B1 \ R(w)) ∪ (R(w) \ B1) ∪ (u1
1(G), w)

and let G′′(V ′′, E′′) be the subgraph of G inside or
on the border of cycle P ∪ R(w) ∪ (v11(G), w) ∪ B2.
Let f ′(z) = f(z), for each vertex z ∈ V ′, and let
f ′′(z) = f(z), for each vertex z ∈ V ′′. Finally, let
g′ = (u1

1(G), w) and g′′ = (v11(G), w).

Case 5. G[F1] is a level-2-connected graph and the vertex
w1 of G that forms an internal face with g is not on the outer
face of G[F1].

See Fig. 3.e. By planarity and since (G, f, g) satisfies
Condition C5, w1 is in G[F1]. Since w1 is not on the outer
face of G[F1], it is an internal vertex of G[F1]. By planarity,
w1 is in the second level of G[F1]. Since G[F1] is level-2-
connected, the subgraph of G[F1] induced by the vertices
in its second level consists of a set of vertex-disjoint 2-
connected graphs. Let G∗

2[F1] be the one of such graphs
w1 belongs to. Since G∗

2[F1] is 2-connected, its outer face
is delimited by a cycle C. Orient C so that G∗

2[F1] is to
the right of every edge of C when traversing such an edge
according to its orientation; let w2 be the vertex preceding
w1 in C. Since G is internally-triangulated and since w2 is
on the outer face of G∗

2[F1], w2 has at least one incident
edge e whose end-vertex w3 ̸= w2 is not in G∗

2[F1]. We
prove that w3 is on the outer face of G[F1]. By planarity,
w3 is not in the i-th level of G[F1], for any i ≥ 3. If w3 is in
the second level of G[F1], then it belongs to a 2-connected
component, say G+

2 [F1], of the graph induced by the second
level of G[F1]. However, since no edge of G[F1] connects
vertices of two distinct connected components induced by
the second level of G[F1], it follows that G+

2 [F1] = G∗
2[F1],

hence w3 belongs to G∗
2[F1], contradicting the assumptions



on e. Then w3 is in the first level of G[F1], that is, it is on
the outer face of G[F1]. Consider any raising path R(w3)
starting at w3.

• If R(w3) does not share vertices with B1 and B2, then
let wy be the last vertex of R(w3). Let G′(V ′, E′) be
the subgraph of G inside or on the border of cycle B1∪
P1(wy) ∪ R(w3) ∪ (w2, w3) ∪ (w1, w2) ∪ (u1

1(G), w1)
and let G′′(V ′′, E′′) be the subgraph of G inside or on
the border of cycle B2 ∪P2(wy)∪R(w3)∪ (w2, w3)∪
(w1, w2)∪ (v11(G), w1). Let f ′(z) = 1, for each vertex
z that is inside or on the border of C, let f ′(z) = 2,
for each vertex z that is in G′, that is in G[F1], and
that is neither inside nor on the border of C, and let
f ′(z) = f(z) + 1, for each vertex z that is in G′ and
that is in G[Fi], for every i ≥ 2. Let f ′′(w1) = 1, let
f ′′(w2) = 1, let f ′′(z) = 2, for each vertex z that is in
G′′, that is in G[F1], and that is different from w1 and
w2, and let f ′′(z) = f(z) + 1, for each vertex z that
is G′′ and that is in G[Fi], for every i ≥ 2. Finally, let
g′ = (w1, w2) and g′′ = (w1, w2).

• If R(w3) shares vertices with B1 (the case in which
it shares vertices with B2 being analogous), let
G′(V ′, E′) be the subgraph of G inside or on the
border of cycle (B1 \ R(w3)) ∪ (R(w3) \ B1) ∪
(w2, w3)∪ (w1, w2)∪ (u1

1(G), w1) and let G′′(V ′′, E′′)
be the subgraph of G inside or on the border of cycle
B2 ∪ P ∪R(w3) ∪ (w2, w3) ∪ (w1, w2) ∪ (v11(G), w1).
Let f ′(z) = 1, for each vertex z that is inside or on the
border of C, let f ′(z) = 2, for each vertex z that is in
G′, that is in G[F1], and that is neither inside nor on the
border of C, and let f ′(z) = f(z) + 1, for each vertex
z that is in G′ and that is in G[Fi], for every i ≥ 2.
Let f ′′(w1) = 1, let f ′′(w2) = 1, let f ′′(z) = 2, for
each vertex z that is in G′′, that is in G[F1], and that is
different from w1 and w2, and let f ′′(z) = f(z)+1, for
each vertex z that is G′′ and that is in G[Fi], for every
i ≥ 2. Finally, let g′ = (w1, w2) and g′′ = (w1, w2).

We have the following.
Lemma 7: In any of Cases 1–5, (G′, f ′, g′) and

(G′′, f ′′, g′′) are floored graphs.

IV. QUEUE LAYOUTS

In this section, we show an algorithm for constructing a
queue layout of a floored graph (G, f, g). The algorithm
splits (G, f, g) into smaller floored graphs using raising
paths, recursively constructs queue layouts of such smaller
floored graphs, and then combines such layouts to get a
queue layout of (G, f, g).

The algorithm receives as an input a floored graph
(G, f, g) such that G has n internal vertices and has k floors,
and it performs a balanced raising-path decomposition, that
is, it repeatedly uses raising paths, according to Cases 1–5
of Section III, to split (G, f, g) into several floored graphs,
each with at most n/2 internal vertices. More precisely,

a balanced raising-path decomposition works as follows.
Graph (G∗

0, f
∗
0 , g

∗
0) = (G, f, g) is split into two floored

graphs (G1, f1, g1) and (G∗
1, f

∗
1 , g

∗
1), where the number of

internal vertices of G∗
1 is not less than the number of internal

vertices of G1, then (G∗
1, f

∗
1 , g

∗
1) is split into (G2, f2, g2) and

(G∗
2, f

∗
2 , g

∗
2), where the number of internal vertices of G∗

2 is
not less than the number of internal vertices of G2, etc., until
floored graph (G∗

l−1, f
∗
l−1, g

∗
l−1) is split into floored graphs

(Gl, fl, gl) and (G∗
l , f

∗
l , g

∗
l ) = (Gl+1, fl+1, gl+1) such that

both Gl and Gl+1 have at most n/2 internal vertices.
The split of a graph (G∗

j , f
∗
j , g

∗
j ) into two floored graphs

(Gj+1, fj+1, gj+1) and (G∗
j+1, f

∗
j+1, g

∗
j+1) is actually done

by applying one of Cases 2–5. When Case 1 is applied to
(G∗

j , f
∗
j , g

∗
j ), then just one floored graph is obtained, with

the same number of internal vertices of (G∗
j , f

∗
j , g

∗
j ). In such

a case, denote again by (G∗
j , f

∗
j , g

∗
j ) the obtained graph and

proceed. Denote by k(Gj) the number of floors of graph
(Gj , fj , gj), for j = 1, 2, . . . , l+1, and by k(G∗

j ) the number
of floors of graph (G∗

j , f
∗
j , g

∗
j ), for j = 0, 1, . . . , l.

Before giving more details on the algorithm for construct-
ing a queue layout of (G, f, g), we state the following lemma
relating the floors of graphs (Gj , fj , gj) and (G∗

j , f
∗
j , g

∗
j )

constructed during the balanced raising-path decomposition
to the floors and levels of graph (G, f, g).

Lemma 8: There exist a floor ij of (G, f, g) and a floor pj
of (Gj , fj , gj) (resp. of (G∗

j , f
∗
j , g

∗
j )) such that (see Fig. 4):

(i) for q = 1, 2, . . . , pj , the q-th floor of (Gj , fj , gj) (resp.
of (G∗

j , f
∗
j , g

∗
j )) is a graph whose outer face consists of

vertices all belonging to the (pj − q+1)-th level of the
ij-th floor of (G, f, g);

(ii) for q = pj + 1, pj + 2, . . . , k(Gj) (resp. for q = pj +
1, pj+2, . . . , k(G∗

j )), the q-th floor of (Gj , fj , gj) (resp.
of (G∗

j , f
∗
j , g

∗
j )) is a graph whose outer face consists of

vertices all belonging to the first level of the (ij + q−
pj)-th floor of (G, f, g).

The algorithm to construct a queue layout of (G, f, g)
builds an ordered list L of vertices and, at the end of its
execution, the order given by L will be the total order of
the vertices of G. The algorithm maintains two invariants.

• Invariant A: All the vertices of the i-th floor of (G, f, g)
come in L before all the vertices of the (i+1)-th floor
of (G, f, g), for each 1 ≤ i ≤ k − 1.

• Invariant B: The border vertices of the i-th floor of
(G, f, g) come in L before all the non-border vertices
of the i-th floor of (G, f, g), for each 1 ≤ i ≤ k.

Invariant A corresponds to partition L into sublists, where
sublist Li contains all and only the vertices of the i-th floor
of (G, f, g). Hence, the vertices of each floor of (G, f, g)
appear consecutively in L. Recall that the splits of Cases 1–5
may originate floored graphs whose floors are different from
the ones of (G, f, g). However, when a vertex is inserted into
L, it is inserted in the sublist Li of the floor it belongs to
in (G, f, g).



Figure 4. Illustration of the statement of Lemma 8. Graphs (G, f, g) and
(Gj , fj , gj) are shown. The borders and the outer faces of the floors of
(Gj , fj , gj) are shown by thick lines. In this example ij = 3 and pj = 3.

Recall that the i-th floor of (G, f, g) is composed of a
sequence of edges or level-2-connected graphs Gi

j , where
such a sequence can degenerate to be a single vertex for
the first and/or the last floor. Denote by m(Gi

j) the number
of levels of Gi

j (if Gi
j is an edge, then let m(Gi

j) = 1)
and denote by m(i) the maximum among the m(Gi

j), for
j = 1, . . . , x(i). If the i-th level is a vertex, then let
m(i) = 1. For each i = 1, 2, . . . , k, partition Li into
consecutive sublists Li,1, Li,2, . . . , Li,m(i). Each list Li,j is
in turn partitioned into two consecutive sublists L′

i,j and
L′′
i,j . See Fig. 5.
We now sketch the algorithm for constructing L. It starts

by placing, for each 1 ≤ p ≤ k, the border vertices on
the p-th floor of (G, f, g) at the first positions of L′

p,1 so
that Invariant B is satisfied. Then, the graphs (Gj , fj , gj)
obtained by the balanced raising-path decomposition are
processed one at a time. When (Gj , fj , gj) is processed, an
ordering J of the vertices of Gj is recursively constructed.
The ordering of the vertices of Gj in L is almost the same as
in J . Namely, each floor of (Gj , fj , gj) has in L the same
vertex ordering as in J and the vertices of each floor of
(Gj , fj , gj) appear consecutively in L (except for the border
vertices of (Gj , fj , gj) on such a floor). However, the order
of the floors of (Gj , fj , gj) in L may differ from the order
of the floors of (Gj , fj , gj) in J . Namely, while the floors
of (Gj , fj , gj) are ordered in J according to the definition
of floored graph, such floors are ordered in L according to
the level of the floor of (G, f, g) their outer faces belong to.
Then, there exists an index pj for (Gj , fj , gj) such that the
ordering of the floors of (Gj , fj , gj) in L is the pj-th first,
then the (pj − 1)-th, then the (pj − 2)-th, . . ., then the first,
then the (pj +1), then the (pj +2)-th, . . ., then the last. We
now formally state the algorithm.

Algorithm 1 VERTEX-ORDERING

Require: A floored graph (G, f, g).
Ensure: A vertex ordering of G in a list L.

1: for p = 1, 2, . . . , k do
2: insert vertex up

1(G) into L′
p,1;

3: end for
4: for p = 1, 2, . . . , k do
5: if vertex vpx(p)(G) does not belong to L then
6: append vpx(p)(G) to L′

p,1;
7: end if
8: end for
9: let (G1, f1, g1), (G2, f2, g2), . . . , (Gl+1, fl+1, gl+1) be

the graphs obtained by performing a balanced raising-
path decomposition of (G, f, g);

10: for j = 1, 2, . . . , l + 1 do
11: process graph (Gj , fj , gj);
12: for y = 1, 2, . . . , k(Gj) do
13: consider the border vertices uy

1(Gj) and vyx(y)(Gj)

of (Gj , fj , gj);
14: if uy

1(Gj) does not belong to L then
15: let p be the floor of uy

1(Gj) in (G, f, g);
16: let q be the level of uy

1(Gj) in G[Fp];
17: append uy

1(Gj) to L′
p,q;

18: end if
19: if vyx(y)(Gj) does not belong to L then
20: let p be the floor of vyx(y)(Gj) in (G, f, g);
21: let q be the level of vyx(y)(Gj) in G[Fp];
22: append vyx(y)(Gj) to L′

p,q;
23: end if
24: recursively construct a vertex ordering J of

(Gj , fj , gj);
25: for 1 ≤ r ≤ k(Gj) do
26: let p and q be such that all the vertices on the

outer face of the r-th floor of (Gj , fj , gj) are on
the q-th level of the p-th floor of (Gj , fj , gj) (by
Lemma 8);

27: append all the non-border vertices of the r-th
floor of (Gj , fj , gj) to L′′

p,q in the same order as
they appear in J ;

28: end for
29: end for
30: end for
31: return L;
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Figure 5. The partition of L into sublists.

Observe that, for j = 1, 2, . . . , l + 1, the algorithm first
inserts into L the border vertices of (Gj , fj , gj) and then
inserts into L the non-border vertices of (Gj , fj , gj). Further,
when the algorithm processes (Gj , fj , gj), all the border
vertices of (Gj−1, fj−1, gj−1) have been already inserted
into L.

We now study the edges of (G, f, g) relating the end-
vertices of such edges to their position in L and to the floor
of (G, f, g) they belong to.

A visible edge is an edge of G that has one end-vertex
in a list L′

p,q, for some p and q, and one end-vertex in a
list L′

r,s, for some r and s. A semi-visible edge is an edge
of G that has one end-vertex in a list L′

p,q, for some p
and q, and one end-vertex in a list L′′

r,s, for some r and
s. An invisible edge is an edge of G that has one end-vertex
in a list L′′

p,q, for some p and q, and one end-vertex in a
list L′′

r,s, for some r and s. Intuitively, visible, semi-visible,
and invisible edges are such that both end-vertices, one end-
vertex, and no end-vertex, respectively, belong to the borders
of graphs (Gj , fj , gj). The inter-floor edges are the edges
of G that connect vertices on consecutive floors of (G, f, g).
The intra-floor edges are the edges of G that connect vertices
on the same floor of (G, f, g).

We have the following lemmata.
Lemma 9: Every edge of G is either a visible edge, or a

semi-visible edge, or an invisible edge.
Lemma 10: Every edge of G is either an intra-floor edge

or a inter-floor edge.
Lemma 11: Every inter-floor edge of (G, f, g) is an inter-

floor edge of a graph (Gj , fj , gj), for some 1 ≤ j ≤ l + 1.
We now introduce some definitions and notation to com-

pute the queue number of G once the vertices of G have
the order specified by L. Let q(G, f, g), qintra(G, f, g),
and qinter(G, f, g) denote the number of queues needed
to embed all the edges, only the intra-floor edges, and
only the inter-floor edges, respectively, of a floored graph
(G, f, g) once the vertices of G have the order computed
by Algorithm Vertex-Ordering. Let q(n), qintra(n), and
qinter(n) denote the maximum of q(G, f, g), qintra(G, f, g),
and qinter(G, f, g), respectively, over all possible graphs
(G, f, g) with n non-border vertices.

Let G be a graph and let ≺ be a vertex ordering of G. A
set of edges (a1, b1), (a2, b2), . . . , (am, bm) is a rainbow of
size m if a1 ≺ a2 ≺ . . . ≺ am ≺ bm ≺ . . . ≺ b2 ≺ b1. We
use the following result.

Lemma 12: [25] The queue number of a graph G is the

minimum, taken among all vertex orderings ≺ of G, of the
maximum size of a rainbow in ≺.

We now prove that the edges of (G, f, g) can be embedded
into O(log2 n) queues, once the vertices of G have the order
of L.

Lemma 13: The following statements hold:
(1) The size of a rainbow of visible inter-floor edges of

(G, f, g) is at most five.
(2) The size of a rainbow of semi-visible inter-floor edges

of (G, f, g) is at most eight.
(3) The size of a rainbow of invisible inter-floor edges

of (G, f, g) is at most the maximum size of
a rainbow of inter-floor edges in one of graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1).

Lemma 14: qinter(n) = O(logn).
Proof: Every inter-floor edge is either visible, or

semi-visible, or invisible, by Lemma 9. By definition,
the size of a rainbow of inter-floor edges among graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1) is at most qinter(n/2).
By Lemmata 13 and 12, all the visible, semi-visible, and
invisible inter-floor edges of G can be embedded into at
most 5, 8, and qinter(n/2) queues, respectively. Hence,
qinter(n) = 13 + qinter(n/2) = O(logn).

Lemma 15: The following statements hold:
(1) The size of a rainbow of visible intra-floor edges of

(G, f, g) is at most seven.
(2) The size of a rainbow of semi-visible intra-floor edges

of (G, f, g) is at most twelve.
(3) The size of a rainbow of invisible intra-floor

edges of (G, f, g) is at most the maximum size
of a rainbow of inter-floor edges among graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1) plus the maximum
size of a rainbow of intra-floor edges among graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1).

Lemma 16: qintra(n) = O(log2 n).
Proof: Every intra-floor edge is either visible, or

semi-visible, or invisible, by Lemma 9. By definition,
the size of a rainbow of inter-floor edges among graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1) is at most qinter(n/2)
and the size of a rainbow of intra-floor edges among graphs
(G1, f1, g1), . . . , (Gl+1, fl+1, gl+1) is at most qinter(n/2).
By Lemmata 15 and 12, all the visible, semi-visible, and
invisible inter-floor edges of G can be embedded into at most
7, 12, and qinter(n/2) + qintra(n/2) queues, respectively.
By Lemma 14, qinter(n/2) = O(logn). Hence, qintra(n) =



O(logn) + qintra(n/2) = O(log2 n).
Theorem 1: Every n-vertex level-2-connected graph G

has O(log2 n) queue number.
Proof: Consider any level-2-connected graph G with

n vertices. Let f(v) = 1, for every vertex v in G. Let
g be any edge on the outer face of G. By Lemma 4
(G, f, g) is a floored graph. Further, G has n − 2 non-
border vertices. By Lemma 10, every edge of (G, f, g) is
either an inter-floor edge or an intra-floor edge. Hence,
q(G, f, g) ≤ qintra(G, f, g) + qinter(G, f, g). By definition,
qintra(G, f, g) ≤ qintra(n) and qinter(G, f, g) ≤ qinter(n).
Hence, q(G, f, g) ≤ qintra(n) + qinter(n). By Lemmata 14
and 16, q(G, f, g) = O(log2 n) + O(logn) = O(log2 n),
and the theorem follows.

Lemma 17: (Dujmović and Wood [12]) Let D be a q-
queue subdivision of a graph G with at most one subdivision
vertex per edge. Then G has a 2q(q + 1)-queue layout.

Theorem 2: Every n-vertex planar graph has O(log4 n)
queue number and a queue layout with such a queue number
can be computed in polynomial time.

Proof: By Lemma 1, for every planar graph G, an
O(n)-vertex level-2-connected graph G∗ exists such that
G∗ contains a 1-subdivision G′ of G as a subgraph. By
Theorem 1, G∗ has O(log2 n) queue number, hence G′ has
O(log2 n) queue number. By Lemma 17, G has O(log4 n)
queue number. Finally, it is easy to see that the algorithm
for constructing a vertex ordering of G can be implemented
in polynomial time.

The bound of Theorem 2, together with the following the-
orem, immediately implies an O(n polylog n) upper bound
on the volume requirements of 3D straight-line crossing-free
drawings of planar graphs.

Theorem 3: (Dujmović, Morin, and Wood [9]) Let G
be a proper minor-closed family of graphs, and let F(n)
be a family of functions closed under multiplication. The
following are equivalent:

(a) Every n-vertex graph in G has a F(n)×F(n)×O(n)
drawing,

(b) G has track number tn(G) ∈ F(n), and
(c) G has queue number qn(G) ∈ F(n).

A result of Dujmović and Wood [11] related to The-
orem 3 lead us to precisely determine the value k for
the O(n logk n) volume upper bound for 3D straight-line
crossing-free drawings of planar graphs.

Theorem 4: Every planar graph has a 3D straight-line
crossing-free drawing with O(n log16 n) volume.

Proof: Every graph G with acyclic chromatic num-
ber c and queue number q has track number tn(G) ≤
c(2q)c−1 [9], where the acyclic chromatic number of a graph
G is the minimum number of colors such that G admits a
proper coloring in which each pair of colors induces a forest.
Since every planar graph has acyclic chromatic number at
most five [2] and queue number O(log4 n) (by Theorem 2),

then every planar graph has track number O(log16 n). Du-
jmović and Wood [11] proved that every c-colorable graph
G with n vertices and track-number tn(G) ≤ t has a 3D
straight-line crossing-free drawing with O(c7tn) volume.
Since planar graphs are 4-colorable, the theorem follows.

Further, Theorem 2, together with results in [12], implies
the following:

Corollary 2: Every graph admitting a drawing in the
plane with at most k crossings per edge has queue number
O(log4(k+1) n).

Corollary 3: Every planar graph has a 3D poly-line
crossing-free drawing with O(n log log n) volume and with
O(log log n) bends per edge.

V. CONCLUSION

In this paper we have shown that planar graphs have
O(log4 n) queue number, improving upon the previously
best known O(

√
n) bound. Determining the asymptotic

behavior of the queue number of planar graphs remains a
challenging open problem for which, as far as we know,
no super-constant lower bound is known. While we find
unlikely that the techniques introduced in this paper can lead
to determine a constant upper bound for the queue number
of planar graphs, it is possible that, by directly handling cut-
vertices in a planar graph decomposition similar to the one
we presented, an O(log2 n) upper bound can be achieved.
We also leave to further research work to design a time-
efficient implementation of our algorithm.

As a consequence of our results on the queue number
of planar graphs and of a correspondence between queue
layouts and 3D straight-line crossing-free drawings intro-
duced by Dujmović et al. [9], planar graphs admit 3D
straight-line crossing-free drawings in O(n logc n) volume,
for some constant c. The question of whether such a volume
bound can be reduced to linear remains one of the main
unsolved problems in Graph Drawing. In particular, we find
fundamental to understand whether small volume can be
achieved while obtaining a good aspect ratio for the drawing.
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[11] V. Dujmović and D. R. Wood. Three-dimensional grid
drawings with sub-quadratic volume, pages 55–66. In J. Pach,
editor, Towards a Theory of Geometric Graphs. Contemporary
Mathematics, American Mathematical Society, 2004.
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