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Abstract

Let P be a set of n points in R2 contained in an algebraic curve C of degree d. We
prove that the number of distinct distances determined by P is at least cdn

4/3, unless C
contains a line or a circle.

We also prove the lower bound c′d min{m2/3n2/3,m2, n2} for the number of distinct
distances between m points on one irreducible plane algebraic curve and n points on an-
other, unless the two curves are parallel lines, orthogonal lines, or concentric circles. This
generalizes a result on distances between lines of Sharir, Sheffer, and Solymosi in [16].

1 Introduction

A famous conjecture of Erdős, first mentioned in [8], states that any set of n points in R2

determines at least Ω(n/
√

log n) distinct distances. Over the years this has been a central
problem in combinatorial geometry, with many successive improvements of the best known lower
bound (see [3], Section 5.3). In [10], Guth and Katz established an almost complete solution,
proving a lower bound Ω(n/ log n). A new element in their proof was the use of tools from
algebraic geometry.

A related problem posed by Purdy (see [3], Section 5.5) is to determine the least number of
distinct distances occurring between two collinear point sets, say n points on a line l1 and n points
on a line l2. If l1 and l2 are parallel or orthogonal, then O(n) distances are possible, but otherwise
there should be substantially more. This was proved by Elekes and Rónyai in [6], where they
derived it from a more general result about polynomials, which they proved using a combination
of combinatorial and algebraic methods. In [5], Elekes specialized these methods to Purdy’s
question, resulting in a lower bound of Ω(n5/4) on the number of distinct distances, if the two
lines are not parallel or orthogonal. Recently, Sharir, Sheffer, and Solymosi improved this bound
to Ω(n4/3) in [16], again using algebraic methods. In [14], Schwartz, Solymosi, and De Zeeuw
extended the general result of Elekes and Rónyai in several ways, one of which resulted in an
unbalanced version of Purdy’s problem, where one line contains m points and the other n. This
was also strengthened for Purdy’s problem in [16], to a lower bound Ω(min{m2/3n2/3,m2, n2}).

The aim of this paper is to extend the result of [16] from lines to arbitrary plane algebraic
curves (see Section 2 for definitions). The results take several forms; perhaps the most interesting
of them is the following.
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Theorem 1.1. Let C be a plane algebraic curve of degree d that does not contain a line or a
circle. Then any set of n points on C determines at least cdn

4/3 distinct distances, for some
cd > 0 depending only on d.

Note that if the curve is a line or a circle, O(n) distances are possible for certain point sets,
including any sequence of equidistant points. With the current proof, the constant cd roughly
comes out to cd−19 for an absolute constant c. We have not tried to optimize it, but in a remark
at the end of Section 3 we will suggest some improvements.

Theorem 1.1 is a simple consequence of the proof of the following Theorem.

Theorem 1.2. Let C1, C2 be two irreducible plane algebraic curves of degree at most d which
are not parallel lines, orthogonal lines, or concentric circles.

Then for any m points on C1 and n points on C2, the number of distinct distances between
the two sets is at least c′d ·min

{
m2/3n2/3,m2, n2

}
, for some c′d > 0 depending only on d.

In the excluded cases, O(n) distances are again possible for certain point sets. One can
also deduce a result for two curves that are not necessarily irreducible, but it would be more
inconvenient to state: They should not both contain a line, such that the two lines are parallel
or they are orthogonal, and they should not both contain a circle, such that the two circles are
concentric.

While this manuscript was being finalized, several related preprints were posted on the arXiv.
In [4], Charalambides establishes a version of Theorem 1.1 with the weaker lower bound cdn

5/4.
He combines the technique of [5] with analytic as well as algebraic tools, and even extends it
to higher dimensions, with a more complicated set of exceptions. In [15], Sharir and Solymosi
showed, using a method based on that of [16], that between three non-collinear points and n
other points there are Ω(n6/11) distinct distances. In [17], Sheffer, Zahl, and De Zeeuw extend
the method of [16] to the case where one set of points in R2 is constrained to a line, while the
other is unconstrained.

We say a few words about our proofs compared to those of the similar results mentioned
above. Both [5] and [16] derive their bound by constructing a set of new curves and applying an
incidence bound to them. Their construction of these curves relies heavily on the fact that lines
can be parametrized. This makes it possible to extend their methods to parametrizable curves,
but makes it harder to extend to general algebraic curves, which are defined by an implicit
equation. In [4], this is overcome using the Implicit Function Theorem, which allows implicit
curves to be parametrized analytically. One important new element of our proofs is that we
define the new curves in an implicit and algebraic way (see in particular (1) on page 7).

To apply the incidence bound to the new curves, one needs to show that the curves have
small intersection, and in particular that they are distinct. In [5] and [16], this was relatively
easy because the curves had low degree. In [4], it was done using concepts from the theory of
structural rigidity. We do this by observing that if some of the new curves have large intersection,
this must be due to some kind of symmetry of the original curve. The only curves that have too
much symmetry are lines and circles.

In Section 2, we introduce the incidence bound that we will use, we define algebraic curves,
and we state several results from algebraic geometry. In Section 3, we give the proof of our two
main theorems, up to the more delicate proof of one lemma, which we give separately in Section
4.
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2 Preliminaries

In this section we provide the necessary background for the two main tools that we use, namely,
an incidence theorem for points and curves with two degrees of freedom, and Bézout’s inequality.
We also prove two simple results about linear transformations that fix algebraic curves. The
first-time reader is advised to skip to the next section, and refer back here when needed.

One of our main tools will be an incidence bound from combinatorial geometry, due to Pach
and Sharir [12, 13]. We will use a version stated in [18].

Let P ⊂ RD and let Γ be a set of subsets of RD. We define I(P,Γ) to be the number of
incidences, i.e., the number of pairs (p, γ) ∈ P × Γ such that p ∈ γ. We say that P and Γ form
a system with k degrees of freedom if there is a number M (the multiplicity of the system) such
that:

(1) any two sets in Γ intersect in at most M points of RD;

(2) any k points of P belong to at most M sets in Γ.

Note that our definition is slightly different from the usual one, since the condition that k points
belong to at most M curves is only required to hold for points in P . We will use this definition
both for algebraic curves and for continuous curves. We have stated it for RD, because we will
also apply this term to curves in four dimensions, even though we will only use the following
incidence bound in the plane (and only in the special case k = 2).

Theorem 2.1 (Pach-Sharir). Suppose a set of points P ⊂ R2 and a set of simple continuous
curves Γ form a system with 2 degrees of freedom and multiplicity M . Then

I(P,Γ) ≤ C ·max{M2/3|P |2/3|Γ|2/3,M |P |, |Γ|},

where C is an absolute constant.

We define an infinite set C ⊂ R2 to be a (plane) algebraic curve if there is a nonconstant
polynomial f ∈ R[x, y] such that

C = ZR(f) = {(a, b) ∈ R2 : f(a, b) = 0}.

We define the degree of C to be the degree of a minimum-degree polynomial f such that C =
ZR(f). If a curve has degree 2, we call it a conic.

We say that a plane algebraic curve C = ZR(f) is irreducible if the polynomial f ∈ R[x, y]
is irreducible over R. By an irreducible component of an algebraic curve ZR(f) we mean an
irreducible algebraic curve ZR(h) for some nonconstant h ∈ R[x, y] that divides f ; it then follows
that ZR(h) ⊂ ZR(f). We say that two curves ZR(f) and ZR(g) have a common component
if there is a nonconstant polynomial h ∈ R[x, y] that divides f and g; it then follows that
ZR(h) ⊂ ZR(f) ∩ ZR(g).

Note that our definition of algebraic curve does not allow a finite set like ZR((x(x−1))2+y2).
Also note that, for a real polynomial with infinite zero set, irreducibility over R is equivalent
to irreducibility over C. Indeed, suppose f ∈ R[x, y] is irreducible over R but reducible over
C, so it has a factor h1 + ih2 with nonzero real polynomials h1, h2. Then f also has the factor
h1− ih2, hence it has the real factor h21 +h22, so in fact f = c · (h21 +h22) for some c ∈ R. But then
ZR(f) = ZR(h1) ∩ ZR(h2), which is finite by Theorem 2.2 below, contradicting our assumption.
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We will frequently use Bézout’s inequality in the plane, which is an upper bound on the
number of intersection points of algebraic curves. It is in fact an equality (Bézout’s theorem) if
one defines multiplicities of intersection points and works in the complex projective plane, but
for us the inequality suffices. See [9], Lemma 14.4, for exactly this statement, or [11], Exercise
13.17, for the complex version.

Theorem 2.2 (Bézout’s inequality). Two algebraic curves in R2 with degrees d1 and d2 have at
most d1 · d2 intersection points, unless they have a common component.

Although our objects of study are curves in the plane, our proofs will involve curves in higher
dimensions. Specifically, we will encounter curves that are zero sets in R4 of three polynomials.
To analyze these real curves, we will also consider the complex curves defined by the same
equations.

Given polynomials f1, . . . , fk ∈ R[x1, . . . , xD], we define

ZR(f1, . . . , fk) = {p ∈ RD : ∀i fi(p) = 0}, ZC(f1, . . . , fk) = {p ∈ CD : ∀i fi(p) = 0}.

For the definition of the dimension of a complex zero set we refer to Lecture 11 of [11], and
for the definition of its degree, see Lecture 18. For a real zero set ZR(f1, . . . , fk), we define its
complex dimension to be the dimension of ZC(f1, . . . , fk). If a complex zero set has dimension
1, then we will call it a complex (algebraic) curve. If a real zero set has complex dimension
1, we will call it a real (algebraic) curve. Note that with this definition a real curve could be
zero-dimensional in the manifold sense (for instance ZR(x2 + y2)), but this will not be a problem
in our theorems. In fact, we will only consider the complex dimension of real zero sets.

A complex curve in CD is irreducible if it is not the union of two proper subsets which are
curves; an irreducible component is a subset which is an irreducible curve; and two curves have
a common component if there is a curve which is a subset of both.

We will need a statement in higher dimensions that is similar to Bézout’s inequality. Over
C, there are far-reaching generalizations of Bézout’s inequality, stating for instance that if the
intersection of two varieties without a common component is finite, then its size is at most the
product of the degrees of the varieties. But over R some such generalizations may fail: Take for
instance in R3 the intersection of the plane z = 0 with the zero set of (x(x− 1)(x− 2))2 + (y(y−
1)(y − 2))2, which is a set of 9 points, while the product of the degrees of the polynomials is 6.

To overcome this complication, one could carefully consider the corresponding complex zero
sets, but we will instead rely on the following bound on the number of connected components of
a real zero set, which we also need for other purposes. A connected component of an algebraic
curve in RD is a connected component in the Euclidean topology on RD. Note that this is not the
same as an irreducible component; for instance, the curve y2 = x3 − x in R2 has one irreducible
component, but two connected components.

Theorem 2.3. A zero set in RD defined by polynomials of degree at most d has at most (2d)D

connected components.

This theorem is due to Oleinik-Petrovski, Milnor, and Thom. For an exposition see [19] or
[2], Chapter 7.

We will also need bounds on the number of singularities and irreducible components of an
algebraic curve. We define a singularity of a plane algebraic curve C = ZR(f) or C = ZC(f) to
be a point (a, b) ∈ C such that ∂f

∂x
(a, b) = ∂f

∂y
(a, b) = 0. For a definition of singularities in higher

dimensions, see [11], Lecture 14.

Theorem 2.4. An algebraic curve in R2 or C2 of degree d has at most d2 singularities.
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We have stated the bound in a form that is simple but not tight. The bound in R2 follows
from the same bound in C2, which can be found in [11], Lecture 20.

The following bound on the number of irreducible components of a complex curve is proved
in [19].

Theorem 2.5. A zero set in CD defined by polynomials of degree at most d has at most dD

irreducible components.

Finally, we need two simple results about linear transformations that fix plane algebraic
curves. Given a set S ⊂ R2 and a transformation T : R2 → R2, we say that T fixes S if
T (S) = S. We say that a transformation T is a symmetry of a plane algebraic curve C if T is
an isometry of R2 and fixes C. Recall that an isometry of R2 is either a rotation, a translation,
or a glide reflection (a reflection followed by a translation).

In Section 4, we will make use of the following bound on the number of symmetries of a plane
algebraic curve. Note that we count the identity as a symmetry. As can be seen from the proof,
the bound is certainly not tight, but it suffices for our purposes.

Lemma 2.6. An irreducible plane algebraic curve C of degree d can have at most 5d symmetries,
unless it is a line or a circle.

Proof. Suppose C has a translation symmetry T . Let l be a line in the direction of T that
contains some point p of C. Then l ∩ C must contain the entire trajectory under T of p, which
consists of infinitely many points on l. By Theorem 2.2, this implies that C equals l.

Suppose C has two rotation symmetries Ra, Rb with distinct centers a, b and rotation angles
α, β. We claim that then C must also have a translation symmetry, hence equals a line. Indeed,
consider the composition Rb ◦ Ra, and note that a composition of two rotations is either a
translation or a rotation. If Rb ◦Ra is a translation, then we are done; otherwise it is a rotation
Rc with a center c distinct from a and b, and with angle α+β. Similarly, R−1b ◦R−1a is a rotation
around a distinct center with angle −α− β. It follows that R−1b ◦R−1a ◦Rb ◦Ra is a translation,
because it cannot be a rotation. Indeed, it would have angle 0, so equal the identity, but it is
easily checked that, for instance, it does not fix a.

Hence, if C is not a line and has a rotation symmetry with center c, then every other rotation
symmetry has the same center c. Let p be any point on C that is not c. The image of p under
any rotation symmetry then lies on a circle around c, and no two rotation symmetries give the
same point. By Theorem 2.2, either C equals this circle, or it intersects it in at most 2d points.
Therefore, C is a circle or has at most 2d rotation symmetries.

If C has two reflection symmetries with parallel axes of symmetry, then C would have a
translation symmetry, hence would be a line. If C has two reflection symmetries with axes
intersecting in c, then it has a rotation symmetry around c, so by the above all axes of reflection
symmetries must intersect in the same point. Suppose C has k such reflection symmetries. Pick
one of them and combine it with each of the k − 1 others; this will give k − 1 distinct rotation
symmetries, proving that k ≤ 2d+ 1.

Finally, suppose C has a glide reflection symmetry G which is not a reflection. Then G ◦G
is a nontrivial translation, so C must be a line.

Altogether, if C is not a line or a circle, then it has at most 2d rotation symmetries and
2d+ 1 reflection symmetries, which together with the identity give 4d+ 2 ≤ 5d symmetries.

Next we consider affine transformations and conics. By an affine transformation of the plane
we mean any transformation of the form T (x, y) = (ax+by+c, dx+ey+f) with a, b, c, d, e, f ∈ R,
i.e., a linear transformation followed by a translation.
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The following lemma describes which irreducible conics are fixed by an affine transformation.
We see that unlike for symmetries of conics other than circles, there can be infinitely many affine
transformations that fix the curve. These can be viewed as “rotations” along curves other than
circles. We state the cases in a somewhat technical form that is convenient for our purposes in
Section 4.

Lemma 2.7. Let T be an affine transformation that fixes an irreducible conic C. Then, up to
a rotation or a translation, the only possibilities are the following:

(1) C is a hyperbola of the form y2 + sxy = t, with s, t 6= 0, and for some real r 6= 0

T (x, y) =

(
rx+

r2 − 1

rs
y,

1

r
y

)
or T (x, y) =

(
−rx+−r

2 − 1

rs
y, rsx+ ry

)
;

(2) C is an ellipse of the form s2x2 + t2y2 = 1, with s, t 6= 0, and for some θ ∈ [0, 2π)

T (x, y) =

(
(cos θ)x± t

s
(sin θ)y,

s

t
(sin θ)x∓ (cos θ)y

)
;

(3) C is a parabola of the form y = sx2, with s 6= 0, and for some c ∈ R

T (x, y) = (±x+ c,±2scx+ y + sc2).

Proof. Suppose C is a hyperbola. After a rotation or a translation we can assume that one of
the asymptotes is the x-axis, and the other asymptote goes through the origin, so the hyperbola
is of the form y2 + sxy = t. Applying the shear transformation T1(x, y) = (sx + y, y) turns it
into a hyperbola of the form xy = t. Suppose T2(x, y) = (ax+ by + c, dx+ ey + f) fixes xy = t.
Then the equation of the image, t = (ax + by + c)(dx + ey + f), should be the same equation
(or a scalar multiple, but the constant term excludes that). This gives six equations, which one
can solve to get either T2(x, y) = (rx, y/r), or T2(x, y) = (y/r, rx). Then it follows that the only
affine transformations fixing the original hyperbola are of the form T−11 ◦T2 ◦T1, which gives the
two forms in the lemma.

We wil leave it to the reader to check the other two cases in detail. For C an ellipse, we
similarly apply a rotation to put it in the given form, then apply an expansion T1(x, y) = (sx, ty)
to make it a circle. Then we check that rotations around the origin, possibly combined with a
reflection in a line through the origin, are the only affine transformations that fix a circle around
the origin. For C a parabola, a rotation puts it in the given form, and then one can check
directly from the equations that the two given forms are the only ones.
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3 Proof of Theorems 1.1 and 1.2

The idea of both proofs is the following. First we define suitable sets of points and curves, and
we prove several lemmas about them (one of which, Lemma 3.2, is more involved, and we defer
its proof to the next section). Together these lemmas will enable us to conclude that the points
and curves essentially form a system with two degrees of freedom, so that Theorem 2.1 can be
applied to them. This leads to an upper bound on the number of certain quadruples of points.
On the other hand, a standard argument due to Elekes gives a lower bound on the same quantity,
inversely proportional to the number of distinct distances. Comparing these two bounds at the
end of the section, we obtain the lower bounds on the number of distinct distances stated in
Theorems 1.1 and 1.2.

We have irreducible plane algebraic curves C1 and C2 of degree at most d, given by polynomial
equations (of minimum degree)

C1 : f1(x, y) = 0, C2 : f2(x, y) = 0.

We also have sets S1 on C1 and S2 on C2 with |S1| = m and |S2| = n; we write S1 = {p1, . . . , pm}
and S2 = {q1, . . . , qn}. We allow C1 and C2 to be the same curve, a possibility that will be
crucial to the proof of Theorem 1.1. We will make the following assumptions, which will be
justified later.

Assumption 3.1. We assume that the following hold:
(1) Neither C1 nor C2 is a vertical line;
(2) The sets S1 and S2 are disjoint;
(3) If C1 (resp. C2) is a circle, then its center is not in S2 (resp. S1);
(4) If C1 (resp. C2) is a circle, a concentric circle contains at most one point of S2 (resp. S1);
(5) If C1 (resp. C2) is a line, any parallel line contains at most one point of S2 (resp. S1);
(6) If C1 (resp. C2) is a line, any orthogonal line contains at most one point of S2 (resp. S1).

We will define a new curve Cij in R4 for each pair of points pi, pj ∈ S1, written as

pi = (ai, bi), pj = (aj, bj).

Let qs and qt be points on C2 (not necessarily in S2), written as

qs = (xs, ys), qt = (xt, yt).

We think of qs and qt as varying along C2, while pi and pj are kept fixed on C1. Let P be the
set of points (xs, ys, xt, yt) ∈ R4 for 1 ≤ s, t ≤ n.

For 1 ≤ i, j ≤ m, we define Cij to be the algebraic curve in R4 consisting of all points
(xs, ys, xt, yt) satisfying

f2(xs, ys) = 0, f2(xt, yt) = 0, (xs − ai)2 + (ys − bi)2 = (xt − aj)2 + (yt − bj)2. (1)

In Lemma 3.3 we will prove that Cij has complex dimension 1, which implies that it is indeed a
real algebraic curve (by our definition).

Note that (qs, qt) = (xs, ys, xt, yt) lies on Cij if and only if

d(pi, qs) = d(pj, qt),

so a point on Cij corresponds to points qs and qt on C2 that are equidistant from pi and pj,
respectively. Therefore, an incidence of Cij with P corresponds to a quadruple (pi, pj, qs, qt)
such that d(pi, qs) = d(pj, qt).
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We let Γ be the set of curves Cij for 1 ≤ i, j ≤ m. Some pairs of these curves may coincide
as sets of points, but we will consider them as different curves, so |Γ| = m2. We would like P
and Γ to form a system with two degrees of freedom, but this is false if some pairs of curves
have a common component, which would mean they have infinite intersection. To overcome this
obstacle, we will analyze when exactly the curves Cij can have infinite intersection, which leads
to the following lemma, stating that this obstacle is relatively rare. We will defer the relatively
long proof of this lemma to the next section, and first complete the proof of Theorems 1.2 and
1.1.

Lemma 3.2. If C1 and C2 are not parallel lines, orthogonal lines, or concentric circles, then
there is a subset Γ0 of Γ of at most 5dm curves Cij such that no three curves in Γ\Γ0 have
infinite intersection.

Next we show that when two curves have finite intersection, the number of their intersection
points is bounded in terms of d. This essentially follows from Bézout’s inequality in C4, but we
will deduce it from the bound in Theorem 2.3 on the number of connected components.

In the proof we make use of the fact that the curves Cij have two defining equations in
common, or in other words, they lie on a common surface. We define S to be this surface, i.e.
the set of (xs, ys, xt, yt) ∈ R4 for which f2(xs, ys) = 0 and f2(xt, yt) = 0. It is in fact the Cartesian
product of two copies of C2, which implies that it is indeed two-dimensional.

Lemma 3.3. Each curve Cij has complex dimension 1 and at most 4d4 singularities. If two
curves Cij and Ckl have finite intersection, then |Cij ∩ Ckl| ≤ 16d4. For any curve Cij ∈ Γ\Γ0,
there are at most d4 curves Ckl ∈ Γ\Γ0 such that |Cij ∩ Ckl| is infinite.

Proof. Let CC
ij (resp. SC) be the complex zero set defined by the same equations as Cij (resp.

S). Note that CC
ij = SC ∩ ZC(F ) for F = (xs − ai)2 + (ys − bi)2 − (xt − aj)2 − (yt − bj)2. To

prove that CC
ij has dimension 1, we will use the following fact (see [11], Exercise 11.6): If X is

an irreducible variety in Cn, and F is any polynomial in C[x1, . . . , xn] that does not vanish on
X, then dim(X ∩ZC(F )) = dim(X)− 1. We observe that SC is two-dimensional and irreducible
because it is a product of two one-dimensional irreducible varieties (see [11], Exercise 5.9 and
the remark before Theorem 11.12). Then all we have to show is that F does not vanish on all of
SC. But this would imply that every point qs is at the same distance from pi, which is not the
case by Assumption 3.1.3.

Next we consider singularities. The degree of CC
ij is at most 2d2, which follows from Bézout’s

inequality in higher dimensions (specifically, Corollary 18.5 in [11], using the fact that Cij has
dimension 1). We apply a projection π : C4 → C2 to CC

ij, chosen “generically” in the sense that
the image of every singularity of CC

ij is a singularity of π(CC
ij). Then π(CC

ij) is an algebraic curve
in C2 of degree at most 2d2, and π(CC

ij) has at least as many singularities as CC
ij. By Theorem

2.4, π(CC
ij) has at most 4d4 singularities, so the same bound holds for CC

ij. Since every singularity
of Cij is also a singularity of CC

ij, this proves the second claim of the lemma.
The intersection points (xs, ys, xt, yt) ∈ Cij ∩ Ckl satisfy the four equations

(xs − ai)2 + (ys − bi)2 = (xt − aj)2 + (yt − bj)2 = 0,

(xs − ak)2 + (ys − bk)2 = (xt − al)2 + (yt − bl)2 = 0,

f2(xs, ys) = 0, f2(xt, yt) = 0,

which have degree at most d. By Theorem 2.3, it follows that Cij ∩ Ckl has at most (2d)4

connected components. If this intersection is finite, every point is a connected component, so
the number of points is at most 16d4, proving the third claim.

8



For the last claim, observe that if |Cij ∩ Ckl| is infinite, then so is |CC
ij ∩ CC

kl|, which implies
that CC

ij and CC
kl have a common component. No three curves Cij ∈ Γ\Γ0 have infinite real

intersection by Lemma 3.2, so the corresponding CC
ij do not share a component with infinitely

many real points. Fix a curve Cij ∈ Γ\Γ0. By Theorem 2.5, CC
ij has at most d4 irreducible

components. It follows that at most d4 curves CC
kl share with CC

ij a component with infinitely
many real points, which implies that there are at most d4 curves Ckl with which Cij has infinite
intersection.

The two lemmas above let us conclude that, although P and Γ need not have two degrees
of freedom, we can partition them into subsets that do. For each of these subsets we can then
bound the number of incidences.

Lemma 3.4. Let L = d4 + 1. There are partitions of P into P0, . . . , PL and Γ into Γ0, . . . ,ΓL
such that |Γ0| ≤ 5dm and |P0| ≤ 5dn, and such that for all 1 ≤ α, β ≤ L, the pair Pα,Γβ forms
a system with two degrees of freedom, with multiplicity M = 16d4.

Proof. Let Γ0 be the subset given by Lemma 3.2, so |Γ0| ≤ 5dm. We define a graph G with
vertex set Γ\Γ0, connecting two vertices by an edge if the corresponding curves have infinite
intersection. By Lemma 3.3, a curve in Γ\Γ0 has infinite intersection with at most d4 = L − 1
other curves, so the graph has maximum degree L− 1. It follows that the chromatic number of
G is bounded by L, which means that we can partition the vertices into L independent sets. In
other words, we can partition Γ\Γ0 into L subsets Γ1, . . . ,ΓL so that no two curves in the same
Γβ have infinite intersection. Lemma 3.3 then implies that they intersect in at most 16d4 points.

To establish the condition that a bounded number of curves passes through two points, we
can reverse the roles of C1 and C2. We let C̃st be the resulting curves in R4, defined analogously
to equation (1). So, given (xs, ys), (xt, yt) ∈ C2, C̃st is the set of all points (ai, bi, aj, bj) satisfying

f1(ai, bi) = 0, f1(aj, bj) = 0, (xs − ai)2 + (ys − bi)2 = (xt − aj)2 + (yt − bj)2.

By the statement analogous to Lemma 3.2, there is a subset Γ̃0 of 5dn of these curves C̃st such
that in the remainder no three curves have infinite intersection. Let P0 be the set of points
(qs, qt) ∈ R4 corresponding to the curves C̃st in Γ̃0.

We define a graph H with vertex set P\P0, connecting two points (qs, qt), (qs′ , qt′) if the

corresponding curves C̃st and C̃s′t′ have infinite intersection. As in the case of G, we can partition
P\P0 into subsets P1, . . . , PL so that for any two points (qs, qt), (qs′ , qt′) in the same Pα with

α ≥ 1, the curves C̃st and C̃s′t′ do not have infinite intersection. It follows that there are at most
16d4 curves from Γ passing through any two points (qs, qt) and (qs′ , qt′) from the same Pα.

This establishes, for all α, β ≥ 1, that Pα and Γβ form a system with two degrees of freedom
and multiplicity M = 16d4.

Lemma 3.5. For all 1 ≤ α, β ≤ L we have, for some constant Ad,

I(Pα,Γβ) ≤ Ad ·max
{
m4/3n4/3,m2, n2

}
.

Proof. We split C2 into 6d2 graphical pieces Bλ, i.e., for 1 ≤ λ ≤ 6d2 there is a function gλ
such that Bλ can be parametrized as (x, gλ(x)) for x in some closed interval Iλ. To do this, we
“cut” C2 at every point with vertical tangent line, and at every singularity. By Theorem 2.4,
the number of singularities is at most d2. The number of points with vertical tangent line is also
bounded by d2, since they are intersection points of C2 with the curve defined by ∂f2/∂y = 0.
By Assumption 3.1.1, C2 is not a vertical line, so ∂f2/∂y is not identically zero and does indeed
describe a curve. It has degree at most d− 1, so the bound d2 follows by Theorem 2.2 and the
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fact that we assumed f2 to be of minimum degree, which implies that f2 and ∂f2/∂y do not
have a common factor. Since C2 has at most 4d2 connected components by Theorem 2.3, this
results in at most 6d2 graphical pieces.

Every pair Bλ, Bµ, defines a patch Sλµ = Bλ × Bµ ⊂ R4 of the surface S, which can be
parametrized as (xs, gλ(xs), xt, gµ(xt)) for (xs, xt) ∈ Iλ × Iµ. There are at most 36d4 patches
in total, and every incidence between P and Γ occurs on at least one patch (an incidence that
occurs on a boundary will occur on multiple patches).

Now fix α and β. We set P λµ
α = Pα ∩ Sλµ and Cλµ

ij = Cij ∩ Sλµ, and we let Γλµβ be the set of

curves Cλµ
ij for Cij ∈ Γβ. Let π be the projection (xs, ys, xt, yt) 7→ (xs, xt). Then for each λ, µ we

have by construction that π is injective on Sλµ, which implies that π(P λµ
α ) and π(Γλµβ ) satisfy

the conditions for a system with two degrees of freedom in the plane. However, the curves in
π(Γλµβ ) need not be continuous or simple.

Each π(Cλµ
ij ) ⊂ Iλ× Iµ is a union of at most 32d4 continuous curves: π(Cij) has at most 16d4

connected components, and it is cut by the boundary of a rectangle at most 16d4 times. The
first bound follows by applying Theorem 2.3 to the three polynomials defining Cij. The second
bound follows by applying Theorem 2.3 to the three polynomials defining Cij together with the
polynomial defining the set of points that are projected to the boundary of Iλ × Iµ, which is a
product of four linear polynomials.

To make these continuous curves simple, we also cut them at each self-intersection. Because
Cij has at most d4 singularities by Lemma 3.3, and because π injective on it, π(Cλµ

ij ) also has

at most d4 self-intersections. As a result a single curve π(Cλµ
ij ) is split into at most 33d4 simple

continuous curves. We let Gλµ
β be the set of these simple continuous curves, so π(P λµ

α ) and Gλµ
β

form a system with two degrees of freedom.
Therefore, we can apply Theorem 2.1 with k = 2 and M = 16d4 to get

I(P λµ
α ,Γλµβ ) ≤ I(π(P λµ

α ), Gλµ
β ) ≤ C ·max

{
(16d4)2/3(m2)2/3(33d4n2)2/3,m2, 33d4n2

}
.

Thus

I(Pα,Γβ) ≤
∑
λ,µ

I(P λµ
α ,Γλµβ ) ≤ C · (16d4)2/3 · 36d4 · 33d4 ·max

{
m4/3n4/3,m2, n2

}
.

Lemma 3.6. We have

I(P,Γ0) ≤ 10d2mn and I(P0,Γ) ≤ 10d2mn.

Proof. Each Cij ∈ Γ0 has at most 2dn incidences with a point (qs, qt) ∈ P . This follows from
the fact that there are n choices of qs ∈ S2, and for each of those, the corresponding qt ∈ S2

can be found by intersecting C2 with a circle around pj of radius d(pi, qs). This gives at most
2d solutions by Theorem 2.2, unless C2 equals that circle, which cannot happen by Assumption
3.1.3. Therefore, we have I(P,Γ0) ≤ 2dn · 5dm = 10d2mn. The second inequality follows by

applying the same argument to the curves C̃st defined in the proof of Lemma 3.4.

Before finally proving the main theorems, we need the following observation about a certain
set of quadruples. This observation is a key element in the Elekes transformation as introduced
in [7] and used in [10, 16]. Let Q be the set of quadruples (pi, pj, qs, qt), with 1 ≤ i, j ≤ m
and 1 ≤ s, t ≤ n, such that d(pi, qs) = d(pj, qt), and let D = D(S1, S2) be the set of distances
between S1 and S2.
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Lemma 3.7. We have

|Q| ≥ m2n2

|D|
.

Proof. Write Ed = {(p, q) ∈ S1×S2 : |pq| = d} for d ∈ D. Using the Cauchy-Schwarz inequality,
we obtain

|Q| ≥
|D|∑
i=1

|Ed|2 ≥
1

|D|

 |D|∑
i=1

|Ed|

2

=
(mn)2

|D|
.

Proof of Theorem 1.2. We first justify Assumption 3.1. We rotate the coordinate axes so that
neither C1 nor C2 is a vertical line. We remove at most d2 + 2 points so that S1 and S2 are
disjoint, and so that if one of C1, C2 is a circle, then its center is not in the other set. For the
fourth part of the assumption, if C2 is a circle, we observe that since C1 is not a circle concentric
with C2, S1 can contain at most 2d points of any concentric circle. We remove at most 2d − 1
points from S1 from every concentric circle, which leaves at least |S1|/(2d) points. We do the
same for S2. In case C1 or C2 is a line, we do an analogous removal frome every parallel or
orthogonal line, leaving at least a fraction 1/d2 of the points, so that the fifth and sixth parts
of the assumption will be satisfied. Altogether these steps leave at least m/d2 points in S1 and
n/d2 in S2. Now redefine S1 and S2 to be the point sets after these modifications.

Combining the bounds from Lemma 3.5 and 3.6, we obtain

I(P,Γ) ≤ I(P0,Γ) + I(P,Γ0) +
∑
α,β≥1

I(Pα,Γβ)

≤ 20d2mn+
∑
α,β≥1

Ad ·max
{
m4/3n4/3,m2, n2

}
≤ Bd ·max

{
m4/3n4/3,m2, n2

}
,

for the constant Bd = 3d8Ad, noting that the number of terms in the sum is at most L2 ≤ 2d8.
On the other hand, by our definitions, an incidence of a curve in Γ with a point in P

corresponds exactly to a quadruple (pi, pj, qs, qt) satisfying d(pi, qs) = d(pj, qt). Combined with
Lemma 3.7, this gives

m2n2

|D|
≤ |Q| = I(P,Γ) ≤ Bd ·max

{
m4/3n4/3,m2, n2

}
.

This implies |D| ≥ c′d·min
{
m2/3n2/3,m2, n2

}
for the constant c′d = 1/(d4Bd), which also accounts

for the points removed at the start of this proof.

Proof of Theorem 1.1. We have a curve C of degree d, not containing a line or a circle, with a
set S of n points on it. It has a defining polynomial of degree d, which has at most d factors,
so the curve has at most d irreducible components. Then there must be a component with at
least n/d points; call this component C∗ and set S∗ = S ∩ C∗. Now set C1 = C∗, C2 = C∗, and
arbitrarily split S∗ into two disjoint sets S∗1 , S

∗
2 of size roughy n/2. Then Assumption 3.1 holds.

Therefore, the proof above gives (with a constant cd different from c′d)

|D(S)| ≥ |D(S∗1 , S
∗
2)| ≥ cdn

4/3.
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Remark. (Dependence on d)
With the proof above, the constant cd in Theorem 1.1 would come out to be cd = cd−56/3 for some
absolute constant c. Roughly speaking, we get a factor d8/3 from the application of Theorem 2.1,
a factor d8 from splitting up P and Γ in Lemma 3.4, a factor d4 from cutting up the surface S into
graphical pieces, and a factor d4 from splitting up the projected curves into simple continuous
curves. For c′d in Theorem 1.2, we would get another factor d4 to account for the removed points
(in case C1 or C2 is a circle or a line).

Several of these factors would be easy to improve somewhat by being more careful. More
significantly, we could replace Theorem 2.3 by a refined bound due to Barone and Basu [1], which
takes into account the fact that the defining polynomials may have different degrees. With this
we could in several places improve a factor d4 to d2. There are various other ways to bound the
incidences between P and Γ, which may result in a better dependence on d. Finally, if we could
replace Lemma 3.2 by a similar statement for double rather than triple intersections (which we
expect to be true), it would make it unnecessary to partition P and Γ as in Lemma 3.4, removing
a factor d8.

With the current proof it seems hard to improve the constant beyond d−4/3, because of the
factor M2/3 in Theorem 2.1, and the fact that d2 appears to be the right order of magnitude for
the size of the intersections of the curves Cij, and thus also for M . Note that, given an arbitrary
set of n points in R2, one can pass an algebraic curve of degree roughly

√
n through these points.

Therefore, a constant cd on the order of d−2/3 would be the best one could hope for, because this
would imply that n arbitary points determine Ω(n) distances, unless the points lie on parallel
lines or concentric circles.

4 Proof of Lemma 3.2

Our proof of Lemma 3.2 will require four further lemmas that will be established in this section.
They will be combined at the very end of the section to deduce Lemma 3.2.

We are going to analyze how two curves Cij and Ckl could have infinite intersection. The
most clear-cut case is when d(pi, pk) = d(pj, pl), because then infinite intersection implies the
existence of a symmetry of C2. This is a real possibility, but cannot happen too often, as will
become clear in the proof of Lemma 4.1.

On the other hand, when d(pi, pk) 6= d(pj, pl), we expect that Cij and Ckl cannot have infinite
intersection. However, we were only able to prove the weaker statement that no three curves
Cij, Ckl, and Cqr can have infinite intersection in this case, which suffices for our purposes. We
prove this in Lemma 4.2 when C2 has degree at least 3, and in Lemma 4.3 for C2 a conic. When
C2 is a line, we prove a stronger statement in Lemma 4.4.

Lemma 4.1. If d(pi, pk) = d(pj, pl) and Cij and Ckl have infinite intersection, then C2 has a
symmetry that maps pi to pj, and pk to pl.

Proof. A point (xs, ys, xt, yt) = (qs, qt) ∈ Cij ∩Ckl corresponds to a pair of points qs, qt ∈ C2 such
that

d(pi, qs) = d(pj, qt) and d(pk, qs) = d(pl, qt).

It follows that

{(d1, d2) : ∃(qs, qt) ∈ Cij ∩ Ckl such that d1 = d(pi, qs), d2 = d(pk, qs)}
= {(d1, d2) : ∃(qs, qt) ∈ Cij ∩ Ckl such that d1 = d(pj, qt), d2 = d(pl, qt)}.

Call this set of pairs of distances D. Since Cij and Ckl have infinite intersection, D must be an
infinite set.
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The idea of the proof is to reconstruct points of C2 from the points pi, pk using the distance
pairs from D. The resulting set of points should consist of an infinite subset of C2, together
with its reflection in the line pipk. The image of this set under the rotation that maps pi, pk to
pj, pl should again have infinite intersection with C2, because C2 should have points at the same
distance pairs from pj, pl. We will see that this implies that C2 has a symmetry.

To make this more precise, let E be the set of all points that arise in this way from a pair of
distances in D:

E = {p ∈ R2 : (d(p, pi), d(p, pk)) ∈ D}.

Let M be the reflection in the line pipk. Set E1 = E∩C2 and E2 = M(E1); because D is infinite,
so are E1 and E2. Let T be the rotation that maps pi, pk to pj, pl, if it exists; otherwise there is
a translation that maps pi, pk to pj, pl, and we call that T . Then T must place an infinite subset
of E onto C2; call this subset E∗1 , and set E∗2 = M(E∗1). We distinguish two cases:

(1) If |E1 ∩E∗1 | is infinite, then S1 = E1 ∩E∗1 is an infinite subset of C2 such that T (S1) ⊂ C2;

(2) If |E1 ∩ E∗1 | is not infinite, then S2 = |E1 ∩ E∗2 | must be infinite. Then S2 = E1 ∩ E∗2 is
an infinite subset of C2 such that (T ◦M)(S2) ⊂ C2, since M maps S2 into E∗1 , which T
maps into C2.

In each case we use the following observation to deduce that C2 has a symmetry: If we have an
isometry T of the plane and an infinite subset S of an irreducible algebraic curve C such that
T (S) ⊂ C, then T (C) = C, i.e., T is a symmetry of C. This holds because T (C) is also an
irreducible plane algebraic curve, so by Theorem 2.2 it either has finite intersection with C, or
equals it.

If T is a rotation, then in case (1) C2 has a rotation symmetry, while in case (2) it has a
reflection symmetry. If T is a translation, then in case (1) it has a translation symmetry, while
in case (2) it has a glide reflection symmetry (a glance at the proof of Lemma 2.6 would now
make clear that T can only be a translation if C2 is a line).

Lemma 4.2. Suppose that pi, pj, pk, pl, pq, pr ∈ S1 satisfy d(pi, pk) 6= d(pj, pl), d(pi, pq) 6=
d(pj, pr), and d(pk, pq) 6= d(pl, pr). If

|Cij ∩ Ckl ∩ Cqr| ≥ 2d+ 1,

then C2 is a conic or a line.

Proof. A point in |Cij ∩ Ckl ∩ Cqr| corresponds to two points (x, y) and (u, v) on C2 such that
the distances from pi, pk, pq to (x, y) are respectively equal to those from pj, pl, pr to (u, v). We
will show that the set of such points (u, v) (or (x, y)) is forced to lie on a conic or a line, so by
Theorem 2.2 C2 contains at most 2d of them, unless C2 is a conic or a line.

We can assume that pi = (0, 0) and pk = (1, 0). We can also assume that pj = (0, 0) and
pl = (L, 0), with L 6= 0, 1, since the property of lying on a conic is preserved under a rotation,
as are distances. Finally, write pq = (a, b) and pr = (c, d).

Consider the points (x, y) and (u, v) that have the same distances d1, d2, d3 from respectively
pi, pk, pq and pj, pl, pr. They satisfy the equations

x2 + y2 = u2 + v2, (2)

(x− 1)2 + y2 = (u− L)2 + v2, (3)

(x− a)2 + (y − b)2 = (u− c)2 + (v − d)2. (4)
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Subtracting (2) from (3) gives

x = Lu+
1

2
(1− L2). (5)

Subtracting (2) from (4), and plugging (5) into the result, leads to

by = (c− aL)u+ dv +
1

2
(a2 + b2 − c2 − d2 + aL2 − a). (6)

Plugging the linear equations (5) and (6) into (2) leads to

(b2L2 + (c− aL)2 − b2)u2 + (d2 − b2)v2 + 2d(c− aL)uv + l(u, v) = 0,

where l(u, v) is a linear function of u and v. This shows that (u, v) must lie on a conic or a line,
and finishes the proof, unless this equation is identically zero.

We show that in that case C2 must be a line, using the coefficients of the quadratic terms.
We would have d(c− aL) = 0 from the term uv, so either d = 0, or c− aL = 0. If c− aL = 0,
then the coefficient of the term u2 would give b2(L2 − 1) = 0. Since L 6= 1, we would get b = 0,
and then the term v2 would give d = 0. So in all cases we have d = 0. But then we see from (5)
and (6) that the linear transformation does not depend on v, which implies that its image is a
line, hence C2 must be a line.

Lemma 4.3. Suppose that pi, pj, pk, pl, pq, pr ∈ S1 satisfy d(pi, pk) 6= d(pj, pl), d(pi, pq) 6=
d(pj, pr), and d(pk, pq) 6= d(pl, pr).
If C2 is a conic then

|Cij ∩ Ckl ∩ Cqr| ≤ 4.

Proof. Suppose that |Cij ∩ Ckl ∩ Cqr| ≥ 5. Then we have three equations of the form

(x− aα)2 + (y − bα)2 = (u− cα)2 + (v − dα)2, (7)

satisfied by at least five pairs of points (x, y), (u, v) on C2. Subtracting the first equation from
the second and third gives two linear equations, which, as in the previous lemma, we can view
as an affine transformation T sending (x, y) to (u, v). Because T sends five points on C2 to five
points on C2, it must fix C2, since the image of C2 must be a conic, which could only intersect
C2 four times if it was a different conic. Lemma 2.7 then tells us which form T could have. We
will show that in each case we get a contradiction.

Suppose that C2 is a hyperbola. We can apply a rotation to make it of the form y2 + sxy = t
(note that the rotation moves the points (aα, bα) and (cα, dα), but does not change the form
of the equations, or the condition of the lemma). Then by Lemma 2.7, T must have the form
(u, v) = T (x, y) = (rx+(r2−1)y/r, y/r) (or the second form, which we will leave to the reader).
Plugging this into (7) gives

(x− aα)2 + (y − bα)2 =

(
rx+

r2 − 1

r
y − cα

)2

+

(
1

r
y − dα

)2

This equation has a term x2 with coefficient r2 − 1. If r 6= ±1, then this equation describes a
different hyperbola than C2, so cannot be satisfied by more than four points of C2. If r = 1,
then T is the identity, which would mean that we can put u = x, v = y in (7). That would
lead to aα = cα, bα = dα for each α, contradicting the assumption of the lemma on the distances
between the points. Finally, if r = −1, we could similarly put u = −x, v = −y, leading to
aα = −cα, bα = −dα for each α, contradicting the same assumption.
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Suppose now that C2 is an ellipse; without loss of generality we can assume that it is of
the form s2x2 + t2y2 = 1. Then by Lemma 2.7, T must have the form (u, v) = T (x, y) =
((cos θ)x± t

s
(sin θ)y, s

t
(sin θ)x∓ (cos θ)y). Plugging it into (7) gives

(x− aα)2 + (y − bα)2 =

(
(cos θ)x± t

s
(sin θ)y − cα

)2

+
(s
t
(sin θ)x∓ (cos θ)y − dα

)2
,

which rearranges to(
s2

t2
sin2 θ + cos2 θ − 1

)
· x2 +

(
t2

s2
sin2 θ + cos2 θ − 1

)
· y2

± 2 sin θ cos θ

(
t

s
− s

t

)
· xy + l(x, y) = 0.

For this to be an ellipse, the coefficient of the term xy must be zero, so (t/s−s/t) sin θ cos θ = 0.
If cos θ = 0, then the equation takes the form (s2/t2 − 1)x2 + (t2/s2 − 1)y2 + l(x, y) = 0. Unless
s = ±t (a case we will consider separately), the x2 and y2 terms have opposite signs, so this
cannot be the equation of an ellipse. If sin θ = 0, then T is the identity, which leads to a
contradiction as in the hyperbola case. It follows that we must have s = ±t. That implies that
the coefficients of x2 and y2 are also zero, so in fact the polynomial must vanish identically. The
coefficients of the linear terms then give, after some rearranging, that for each α

aα = (cos θ)cα + (sin θ)dα, bα = ±(sin θ)cα ∓ (cos θ)dα.

This says exactly that each (aα, bα) is the image of (cα, dα) under a rotation, or a rotation
and a reflection. Both are isometries, so the distances between the points are preserved, again
contradicting the assumption of the lemma.

Finally, if C2 is parabola y = cx2 and T (x, y) = (±x+ c,±2scx+ y + sc2), we get

(x− aα)2 + (y − bα)2 = (±x+ c− cα)2 +
(
±2scx+ y + sc2 − dα

)2
.

This equation has an xy term with coefficient ±4sc, which implies c = 0, leaving only T (x, y) =
(−x, y). This is an isometry, again contradicting the assumption of the lemma.

Lemma 4.4. Suppose that d(pi, pk) 6= d(pj, pl). If C2 is a line and

|Cij ∩ Ckl| ≥ 3,

then pi and pk lie on a line orthogonal to C2.

Proof. We can assume that pi = (0, 0) and pk = (1, 0). We can also apply a rotation so that
pj = (0, 0) and pl = (L, 0), with L > 1 (possibly after changing the order of the points). Then a
point in Cij ∩ Ckl gives points (x, y) and (u, v) such that

x2 + y2 = u2 + v2 (8)

(x− 1)2 + y2 = (u− L)2 + v2 (9)

with L > 1. Suppose that C2 is a line satisfying y = ax + b. Then, as in the proof of Lemma
4.2, we have

x = Lu+
1

2
(1− L2), y = aLu+

1

2
a(1− L2) + b.
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Plugging into (8) and rearranging gives

(L2(1 + a2)− 1)u2 − v2 + l(u, v) = 0.

Since L > 1, the coefficient of u2 is positive, so this equation describes either a hyperbola, or a
union of two lines (if l(u, v) is identically zero). In the first case, at most two points of the line
C2 can satisfy it. In the second case, C2 must be a line of the form v = ±L

√
1 + a2 · u+ c. But

then we must have a = ±L
√

1 + a2, so L2 = a2/(1 + a2) < 1, contrary to our assumption. This
proves the lemma for lines of the form y = ax+ b.

The remaining possibility is that C2 has the form x = c, which is the exception in the
statement of the lemma.

Proof of Lemma 3.2. If there is a symmetry T of C2 that maps pi to pj, we will say that Cij comes
from T . Suppose that the curves Cij and Ckl have infinite intersection and d(pi, pk) = d(pj, pl).
Then by Lemma 4.1, there is a symmetry T of C2 such that Cij and Ckl come from T .

In case C2 is not a line or a circle, it has at most 5d symmetries, by Lemma 2.6. Given a fixed
symmetry T , each pi is sent to a unique point pj, so there are at most m curves Cij that come
from T . Therefore, there are in total at most 5dm curves Cij that come from some symmetry.
We let Γ0, the set to be excluded, contain all curves Cij that come from some symmetry of C2.
Then |Γ0| ≤ 5dm.

In case C2 is a line or a circle, it does have many symmetries, but by Assumption 3.1, there
are no pi, pj ∈ S1 such that such a symmetry maps pi to pj as in Lemma 4.1, so we can take
Γ0 to be the empty set. Indeed, suppose C2 is a circle. If pi and pj were distinct, they would
have to lie on a concentric circle (see the proof of Lemma 2.6), which is excluded by Assumption
3.1.4. If pi = pj, then the symmetry would have to be a rotation around pi, which would imply
that C2 is the circle around pi, contradicting Assumption 3.1.3. A similar argument applies if
C2 is a line, using Assumption 3.1.5.

If Cij, Ckl ∈ Γ\Γ0 have infinite intersection, then it follows from Lemma 4.1 that d(pi, pk) 6=
d(pj, pl). This allows us to conclude that there are no three curves in Γ\Γ0 that have infinite
intersection, by Lemmas 4.2 and 4.3 if C2 is not a line, and otherwise by Lemma 4.4 and
Assumption 3.1.6. This finishes the proof of Lemma 3.2.
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