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Abstract

An ordered graph G< is a graph with a total ordering < on its vertex set. A monotone path

of length k− 1 is a sequence of vertices v1 < v2 < . . . < vk such that vivj is an edge of G< if and

only if |j − i| = 1. A bi-clique of size m is a complete bipartite graph whose vertex classes are of

size m.

We prove that for every positive integer k, there exists a constant ck > 0 such that every

ordered graph on n vertices that does not contain a monotone path of length k as an induced

subgraph has a vertex of degree at least ckn, or its complement has a bi-clique of size at least

ckn/ log n. A similar result holds for ordered graphs containing no induced ordered subgraph

isomorphic to a fixed ordered matching.

As a consequence, we give a short combinatorial proof of the following theorem of Fox and Pach.

There exists a constant c > 0 such the intersection graph G of any collection of n x-monotone

curves in the plane has a bi-clique of size at least cn/ log n or its complement contains a bi-clique

of size at least cn. (A curve is called x-monotone if every vertical line intersects it in at most one

point.) We also prove that if G has at most
(
1
4 − ε

) (
n
2

)
edges for some ε > 0, then G contains a

linear sized bi-clique. We show that this statement does not remain true if we replace 1
4 by any

larger constants.

1 Introduction

There are a growing number of examples showing that ordered structures can be useful for solving

geometric and topological problems that appear to be hard to analyze by traditional combinatorial

methods. The aim of the present paper is to provide an example concerning intersection patterns of

curves, where one can apply ordered graphs.

First, we agree on the terminology. An ordered graph G< is a graph G with a total ordering

< on its vertex set. If the ordering < is clear from the context, we write G instead of G<. An

ordered graph H<′ is an induced subgraph of the ordered graph G<, if there exists an embedding

φ : V (H) → V (G) such that for every u, v ∈ V (H), if u <′ v then φ(u) < φ(v), and uv ∈ E(H) if

and only if φ(u)φ(v) ∈ E(G).

A monotone path Pk of length k − 1 is an ordered graph with k vertices v1 < v2 < . . . < vk in

which vivj is an edge if and only if |j − i| = 1. A bi-clique in an (ordered or unordered) graph G

consists of a pair of disjoint subsets of the vertices (A,B) such that |A| = |B| and for every a ∈ A
and b ∈ B, there is an edge between a and b. The size of a bi-clique (A,B) is |A|. A comparability
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graph is a graph G for which there exists a partial ordering on V (G) such that two vertices are joined

by an edge of G if and only if they are comparable by this partial ordering. An incomparability graph

is the complement of a comparability graph. The maximum degree of the vertices of G is denoted

by ∆(G).

Our first theorem states that if a Pk-free ordered graph is not too dense, then its complement

contains a large bi-clique.

Theorem 1. For every integer k ≥ 2, there exists a constant c = c(k) > 0 such that the following

statement is true. Let G< be an ordered graph on n vertices which satisfies ∆(G<) < cn and does

not have any induced ordered subgraph isomorphic to the monotone path Pk.

Then the complement of G< contains a bi-clique of size at least cn/ log n.

For the conclusion to hold, we need some upper bound on the degrees of the vertices (or on

the number of edges) of the graph. To see this, consider the graph G on the naturally ordered

vertex set {1, . . . , n}, in which A = {1, . . . , bn/2c} and B = {bn/2c + 1, . . . , n} induce complete

subgraphs, and any pair of vertices a ∈ A, b ∈ B are joined by an edge randomly, independently with

a very small probability p > 0. This ordered graph has no induced monotone path of length 4, its

maximum degree satisfies ∆(G) < (1/2+p)n, but the maximum size of a bi-clique in its complement

is Op(log n). Consequently, for the constant appearing in Theorem 1, we have c5 ≤ 1/2.

The assumption that G< contains no induced P3 is equivalent to the property that G< is a

comparability graph. In this special case (that is, for k = 2), Theorem 1 was established by Fox,

Pach, and Tóth [9], and in a weaker form by Fox [6]. Apart from the value of the constant c, the

bound is best possible for k = 2 and, hence, for every k ≥ 2.

An ordered matching is an ordered graph on 2k vertices which consists of k edges, no two of which

share an endpoint. Our next result is an analogue of Theorem 1 for ordered graphs that contain no

induced subgraph isomorphic to a fixed ordered matching.

Theorem 2. For every ordered matching M , there exists a constant c = c(M) > 0 such the following

statement is true. Let G< be an ordered graph on n vertices which satisfies ∆(G<) < cn and does

not have any induced ordered subgraph isomorphic to M .

Then the complement of G< contains a bi-clique of size at least cn.

The conclusion of Theorem 2 is stronger than that of Theorem 1: in this case we can find a

linear-sized bi-clique in the complement of G<.

Given a family of sets, C, the intersection graph of C is the graph, whose vertices correspond to

the elements of C, and two vertices are joined by an edge if and only if the corresponding sets have a

nonempty intersection. A curve is the image of a continuous function φ : [0, 1]→ R2. A curve is said

to be x-monotone if every vertical line intersects it in at most one point. Note that any convex set

can be approximated arbitrarily closely by x-monotone curves, so the notion of x-monotone curve

extends the notion of convex sets. Throughout this paper, a curve will be called a grounded if one

of its endpoints lies on the y-axis (on the vertical line {x = 0}) and the whole curve is contained

in the nonnegative half-plane {x ≥ 0}. (By slight abuse of notation, we write {x ≥ 0} for the set

{(x, y) ∈ R2 : x ≥ 0}.)
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We will apply Theorems 1 and 2 to give a simple combinatorial proof for the following

Ramsey-type result of Fox, Pach and Tóth [9], which is related to a celebrated conjecture of Erdős

and Hajnal [4, 2].

Theorem 3. [9] There exists an absolute constant c > 0 with the following property. The intersection

graph G of any collection of n x-monotone curves contains a bi-clique of size at least cn/ log n, or

its complement G contains a bi-clique of size at least cn.

This result is tight, up to the value of c; see [16]. Indeed, Fox [6] proved that for any ε > 0

there exists a constant c(ε) such that for every n ∈ N, there exists an incomparability graph G on n

vertices such that G does not contain a bi-clique of size c(ε)n/ log n, and the complement of G does

not contain a bi-clique of size nε. On the other hand, every incomparability graph is isomorphic to

the intersection graph of a collection of x-monotone curves [20, 11, 16].

It was shown in [9] that if the intersection graph of n x-monotone curves has at most 12−8
(
n
2

)
edges, then the second option holds in Theorem 3: G contains a bi-clique of size at least cn. Also,

the same result (with different constants) follows from a separator theorem of Lee [10] for string

graphs. None of these arguments leave much room for replacing 12−8 by a decent constant. Tomon

[21] applied some properties of partially ordered sets to establish the upper bound
(

1
16 − o(1)

) (
n
2

)
.

Somewhat surprisingly, using ordered graphs, one can precisely determine the best constant for which

the statement still holds.

Theorem 4. For any ε > 0, there are constants c1 = c1(ε), c2 = c2(ε) > 0, and an integer n0 = n0(ε)

such that the following statements are true. For every n ≥ n0,

(1) there exist n x-monotone curves such that their intersection graph G has at most (14 + ε)
(
n
2

)
edges, but the complement of G does not contain a bi-clique of size c1 log n;

(2) for any n x-monotone curves such that their intersection graph G has at most (14 − ε)
(
n
2

)
edges, the complement of G contains a bi-clique of size c2n.

It is easy to see that every intersection graph of convex sets in the plane is also an intersection

graph of x-monotone curves. We prove (1) by constructing n convex sets in the plane whose

intersection graphs meets the requirements. Therefore, 1
4

(
n
2

)
is also a threshold for the emergence of

linear sized bi-cliques in the complements of intersection graphs of convex sets.

It follows from the combination of Corollary 1.2 in [8] and the separator theorem of Lee [10] that

Theorem 3 is true in a more general setting: without assuming that the curves are x-monotone. It

is a serious challenge to extend our proof to that case. We still believe that Theorem 4 should also

generalize to arbitrary curves.

Conjecture 5. For any ε > 0, there exist c0 = c0(ε) > 0 and n0 = n0(ε) with the property that for

any collection of n ≥ n0 curves whose intersection graph has at most (14−ε)
(
n
2

)
edges, the complement

of G contains a bi-clique of size c0n.

For unordered graphs without (unordered) induced paths of length k − 1, the size of the largest

bi-clique that can be found in G is larger than what was shown in Theorem 1: it is linear in n. More

precisely, Bousquet, Lagoutte, and Thomassé [1] proved that for every positive integer k, there exists

c(k) > 0 such that, if G is an unordered graph with n vertices and at most c(k)
(
n
2

)
edges, which does
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Figure 1: An illustration for the proof of Lemma 6.

not have an induced path of length k− 1, then its complement G contains a bi-clique of size at least

c(k)n. Recently, Chudnovsky, Scott, Seymour, and Spirkl [3] generalized this result to any forbidden

forest, instead of a path. In an upcoming work [14], we obtain similar extensions of Theorems 1 and

2 to other ordered forests.

Our paper is organized as follows. Theorems 1 and 2 are proved in Sections 2 and 3, respectively.

In Section 4, we first establish Theorem 3 for grounded x-monotone curves, and then show that this

already implies the general result. Finally, we prove Theorem 4 in Section 5.

2 Ordered graphs avoiding a monotone induced path

–Proof of Theorem 1

For any subset U of the vertex set of a graph G, define the neighborhood of U , as

N(U) = {v ∈ V (G) \ U : ∃u ∈ U such that uv ∈ E(G)}.

If U consists of a single point u, we write N(u) instead of N({u}). The subgraph of G induced by

the vertices in U is denoted by G[U ].

Given an ordered graph G = G< and two subsets S, T ⊂ V (G), we write S < T if s < t for

every s ∈ S and t ∈ T . We say that a vertex t ∈ T can be reached from a vertex v ∈ V (G) by a

monotone T -path, if there is an increasing sequence of vertices v < t1 < t2 < . . . < tr = t such that

t1, . . . , tr ∈ T and vt1, t1t2, . . . , tr−1tr ∈ E(G). (The vertex v does not necessarily belong to T .) Let

PG(S, T ) denote the set of vertices in T that can be reached from some vertex in S by a monotone

T -path in G. If it is clear from the context what the underlying ordered graph G is, we write P (S, T )

instead of PG(S, T ). If S consists of a single vertex s, we write P (s, T ) instead of P ({s}, T ). Finally,

if T = V (G), then we write P (S) instead of P (S, V (G)).

For the proof of Theorem 1, we need the following lemma.

Lemma 6. Let G = G< be an ordered graph on the vertex set S ∪ T , where S < T , |S| ≥ n
6 log2 n

,

and |T | ≥ n. Then either there exists a vertex v ∈ S such that |P (v, T )| ≥ n
12 or the complement of

G contains a bi-clique of size n
12 log2 n

.

Proof. With no danger of confusion, we omit the use of floors and ceilings, whenever they are not

crucial. Let m = 2k such that n
12 log2 n

< m ≤ n
6 log2 n

, and suppose that G, the complement of G,

contains no bi-clique of size m. Divide T into s = n
3m ≥ 2 log2 n intervals of size 3m, denoted by

A1, . . . , As, in this order.
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We will recursively define a sequence of sets S ⊃ S0 ⊃ S1 ⊃ · · · ⊃ Sk such that |Si| = 2k−i for

i = 0, . . . , k, and |P (Si, T ) ∩Ai| ≥ m for i = 1, . . . , k.

Let S0 be an arbitrary m element subset of S. Suppose that the set Si satisfying the above

conditions has already been determined for some i < k. We define Si+1, as follows. Let X =

P (Si, T ) ∩ Ai if i ≥ 1, and X = S0 if i = 0. We can assume that |N(X) ∩ Ai+1| ≥ 2m, otherwise

|Ai+1 \ N(X)| ≥ m and there is a bi-clique (A,B) in G of size m such that A ⊂ X and B ⊂
Ai+1 \N(X). As Ai+1 is <-larger than every element of Ai, we have |N(X)∩Ai+1| ⊂ P (Si, T )∩Ai+1

and, hence, |P (Si, T ) ∩Ai+1| ≥ 2m.

Partition Si arbitrarily into two sets of size |Si|/2, denoted by S′ and S′′. Clearly, we have

P (S′, T ) ∪ P (S′′, T ) = P (Si, T ), so either |P (S′, T ) ∩ Ai+1| ≥ m, or |P (S′′, T ) ∩ Ai+1| ≥ m. In the

first case, set Si+1 = S′, in the second, set Si+1 = S′′. See Figure 1 for an illustration.

At the end of the process, Sk consists of one vertex, say v, and |P (v, T ) ∩ Ak| ≥ m. We can

actually assume that |P (v, T ) ∩ Aj | ≥ m for j = k + 1, . . . , s. Indeed, there is no edge between

P (v, T )∩Ak and Aj \P (v, T ), so if |Aj ∩P (v, T )| ≤ m, then |Aj \P (v, T )| ≥ 2m, which means that

there exists a bi-clique (A,B) of size m in G such that A ⊂ P (v, T ) ∩Ak and B ⊂ Aj \ P (v, T ).

Summing up, we obtain that

|P (v, T )| ≥
s∑

j=k+1

|P (v, T ) ∩Aj | ≥ m(s− k) >
n

12
.

Proof of Theorem 1. Let c = 1/(24k2). Let G = G< be an ordered graph on n vertices of maximum

degree at most cn, and suppose that G does not contain a bi-clique of size m = cn/ log2 n. We have

to prove that G< contains Pk as an induced subgraph.

Let the vertex set of G be {1, . . . , n}, and for i = 1, . . . , k, let Ai = {(i−1)n/k+1, . . . , in/k}. We

recursively construct a sequence of vertices x1 < · · · < xk that satisfy conditions (1) and (2) below,

for l = 1, . . . , k. Let

Ul+1 = V (G) \

(
l−1⋃
i=1

N(xi)

)
.

Then

(1) {x1, . . . , xl} is an induced copy of Pl,

(2) |P (xl, Ul+1) ∩Al+1| ≥ m.
For l = 1, apply Lemma 6 to the subgraph of G induced by A1 ∪ A2 with S = A1, T = A2, and

n/k instead of n. Then there exists x1 ∈ A1 such that |PG(x1) ∩A2| ≥ n
12k > m.

Now let l > 1 and suppose that the vertices x1 < · · · < xl−1 satisfying conditions (1) and (2) have

already been defined. Let S = P (xl−1, Ul) ∩ Al and T = Ul+1 ∩ Al+1. (Note that for the definition

of Ul+1 we do not need xl.) Then |S| ≥ m and, as the maximum degree of G is at most cn, we have

|T | ≥ |Al+1| − (l − 1)cn > n
2k . Apply Lemma 6 to the subgraph of G induced by S ∪ T with n/2k

instead of n. Since G does not contain a bi-clique of size

cn

log2 n
<

n/(2k)

12 log2(n/(2k))
,
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there exists w ∈ S such that |P (w, T )| > n
24k . We have w ∈ P (xl−1, Ul), therefore w can be

reached from xl−1 by a monotone Ul-path. Let xl−1 = u0 < · · · < ur = w be such a path with the

minimum number of vertices. By the definition of Ul, the vertices u1, . . . , ur ∈ Ul do not belong

to the neighborhoods of x1, . . . , xl−2, and, by the minimality of the path, u2, . . . , ur are not in the

neighborhood of xl−1. Setting xl = u1, we find that {x1, . . . , xl} is an induced copy of Pl. Thus,

condition (1) is satisfied.

The vertex w can be reached from xl by the monotone Ul+1-path xl = u1, . . . , ur = w, and every

z ∈ P (w, T ) can be reached from w by a monotone Ul+1-path. Therefore, every z ∈ P (w, T ) can be

reached from xl by a monotone Ul+1-path. This yields that

|P (xl, Ul+1) ∩Al+1| ≥ |P (w, T )| > n

24k
> m,

so that condition (2) is satisfied.

For l = k, the ordered subgraph of G induced by {x1, . . . , xk} is isomorphic to Pk. This completes

the proof of the theorem.

3 Ordered graphs avoiding an induced matching

–Proof of Theorem 2

Proof of Theorem 2. Let k be the number of edges of M , and set c = 1/(8k2). Let G = G< be an

ordered graph on n vertices such that the maximum degree of G is at most cn, and suppose that G

does not contain a bi-clique of size cn. We have to prove that G contains M as an induced subgraph.

Suppose that {1, . . . , 2k} is the vertex set of M , and let {a1, b1}, . . . {ak, bk} be the edges of M .

Let the vertex set of G be {1, . . . , n}, and let A1, . . . , A2k be a partition of V (G) into 2k intervals of

size n
2k . Observe that, for every i = 1, . . . , k, there exists a matching Ei of size at least n

4k between Aai
and Abi . Indeed, if F is a maximal sized matching between Aai and Abi , then (Aai \V (F ), Abi \V (F ))

is a bi-clique in G of size n
2k − |F |, so |F | > n

4k .

We show that for i = 1, . . . , k, we can pick an edge ei = {uai , ubi} ∈ Ei such that {uj , ul} is not

an edge if {j, l} 6∈ E(M). If this is true, then {u1, . . . , u2k} spans a copy of M in G, and we are done.

Pick the edges e1, . . . , ek one-by-one, that is, if e1, . . . , ei are already defined for some i < k such that

{e1, . . . , ei} is an induced matching in G, then define ei+1 as follows. The number of vertices in G that

are in the neighborhood of any endpoint of the edges e1, . . . , ei is at most 2i∆(G) < 2kcn = |Ei+1|.
But then there exists an edge ei+1 ⊂ Ei+1 such that {e1, . . . , ei+1} is also an induced matching in G.

4 Intersection graphs of curves–Proof of Theorem 3

First, we prove Theorem 3 in the special case where the curves are grounded, that is, their left

endpoints lie on the y-axis.

Lemma 7. There exists an absolute constant c > 0 with the following property. The intersection

graph G of any collection C of n grounded x-monotone curves contains a bi-clique of size at least

cn/ log n, or its complement G contains a bi-clique of size at least cn.
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Figure 2: An illustration for the proof of part (2) of Lemma 8.

To prove this lemma, we first show that the intersection graphs of any collection of grounded

x-monotone curves can be ordered in such a way that it has no induced ordered matching consisting

of two crossing edges, or its complement has no monotone path P4.

Let M1 denote the ordered matching on vertex set {1, 2, 3, 4}, with edges {1, 3} and {2, 4}.

Lemma 8. Let C be a family of grounded curves (not necessarily x-monotone), let G be the

intersection graph of C, and let < be the total ordering of C according to the y-coordinates of the

endpoints of the elements of C lying on {x = 0}.
(1) G< does not contain M1 as an induced subgraph.

(2) If, in addition, the elements of C are x-monotone curves, then G< does not contain P4 as an

induced subgraph.

Proof. (1) Suppose that G< contains M1 as an induced subgraph, and let α1 < α2 < α3 < α4 denote

the curves corresponding to the vertices of M1. As α1 and α3 intersect, the line {x = 0} and the two

curves α1, α3 enclose a closed bounded region A. Curve α2 is disjoint from both α1 and α3, and its

endpoint on {x = 0} belongs to A, we have α2 ⊂ A. Curve α4 is also disjoint from α1 and α3, but

its endpoint on {x = 0} is not in A, so α4∩A = ∅. Hence, α2 and α4 cannot intersect, contradiction.

(2) Suppose that G< contains P4 as an induced subgraph, and let α1 < α2 < α3 < α4 denote

the corresponding vertices. As before, the line {x = 0} and the two curves α1, α3 enclose a closed

bounded region A, and α2 ⊂ A. Since α1 and α3 are x-monotone, every vertical line intersecting A

intersects α1 and α3 in exactly one point, the intersection point with α1 lying below the intersection

point with α3. Curve α4 is disjoint from α3, so for every vertical line intersecting α3 and α4, its

intersection with α3 is below its intersection with α4. Therefore, we have A ∩ α4 = ∅, which implies

that α2 and α4 are disjoint, contradiction. See Figure 2 for an illustration.

In view of Lemma 8, we may be able to use Theorem 1 or Theorem 2 to argue that G, the
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intersection graph of a collection of n x-monotone curves, contains a bi-clique of size Ω(n/ log n), or

its complement, G, contains a bi-clique of size Ω(n). However, to apply one of these two theorems,

either in G or in G, the maximum degree of the vertices must be sufficiently small, which is not

necessarily the case.

To overcome this difficulty, we use the following statement which guarantees that G or G has a

large induced subgraph with very few edges.

Lemma 9. Let H< be an ordered graph and let ε > 0. Then there exists a constant c0 = c0(H<, ε) > 0

such that every ordered graph G< on n vertices that does not contain H< as an induced subgraph has

the following property. There is a subset U ⊂ V (G) with |U | ≥ c0n such that either |E(G[U ])| ≤ ε
(|U |

2

)
or |E(G[U ])| ≥ (1− ε)

(|U |
2

)
holds.

Lemma 9 is an easy consequence of the unordered variant of the same statement due to Rödl [18]

and a result of Rödl and Winkler [19].

Lemma 10. (Theorem 1 in [18]) Let H be a graph and let ε > 0. Then there exists a constant

c1 = c1(H, ε) > 0 such that every graph G on n vertices that does not contain H as an induced

subgraph has the following property. There is a subset U ⊂ V (G) with |U | ≥ c1n such that either

|E(G[U ])| ≤ ε
(|U |

2

)
or |E(G[U ])| ≥ (1− ε)

(|U |
2

)
holds.

Lemma 11. [19] For every ordered graph H<, there exists an unordered graph H ′ with the property

that for any total ordering ≺ on V (H ′), the ordered graph H ′≺ contains H< as an induced subgraph.

Proof of Lemma 9. Let H ′ be the graph whose existence is ensured by Lemma 11. For every ordered

graph G< that does not contain H< as an induced subgraph, the underlying unordered graph G does

not contain H ′ as an induced subgraph. Hence, the statement is true with c0 = c1(H
′, ε), where

c1(H
′, ε) is the constant defined in Lemma 10.

Corollary 12. Let H< be an ordered graph and let δ > 0. There exists a constant c2 = c2(H<, δ) > 0

such that every ordered graph G< on n vertices that does not contain H< as an induced subgraph has

the following property. There is a subset U ⊂ V (G) with |U | ≥ c2n such that either ∆(G[U ]) ≤ δ|U |
or ∆(G[U ])| ≤ δ|U | holds.

Proof. Let ε = δ/4, and let c0 = c0(H<, ε) be the constant given by Lemma 9. We show that

c2 = c0/2 meets the requirements.

Let G< be an ordered graph on n vertices that does not contain an induced copy of H<. Then

there exists U0 ⊂ V (G) with |U0| ≥ c0n such that either |E(G[U0])| ≤ ε
(|U0|

2

)
or |E(G[U0])| ≥

(1− ε)
(|U0|

2

)
holds. Without loss of generality, suppose that |E(G[U0])| ≤ ε

(|U0|
2

)
; the other case can

be handled in a similar manner. Let U1 be the set of vertices u ∈ U0 whose degree in G[U0] is larger

than 2ε|U0|. Clearly, we have |U1| < |U0|/2. Setting U = U0 \U1, we obtain |U | > |U0|/2 ≥ c2n, and

the degree of every vertex in G[U ] is at most 2ε|U0| < 4ε|U | = δ|U |.

Now we are in a position to prove Lemma 7.

Proof of Lemma 7. Let c′ = c(M1) be the constant defined in Theorem 2, and let c′′ = c(4) be the

constant defined in Theorem 1. Set δ = min{c′, c′′}, and let c2 = c2(M1, δ) be the constant defined

in Corollary 12.
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By Lemma 8 (1), there exists an ordering < on G such that G< does not contain M1 as an

induced subgraph. Hence, there exists U ⊂ V (G) such that |U | ≥ c2n, and either ∆(G[U ]) < δ|U |,
or ∆(G[U ]) < δ|U |. In the first case, G[U ] contains a bi-clique of size c′|U | ≥ c′c2n. In the second

case, by Lemma 8 (2), G< does not contain P4 as an induced subgraph, so G[U ] contains a bi-clique

of size c′′|U |/ log |U | ≥ c′′c2n/ log n. Thus, the statement is true with c = δc2.

Next, we show that Theorem 3 holds not only for families of grounded x-monotone curves, but

also for families C of x-monotone curves, each of which intersects the same vertical line. Clearly,

such a line splits C into two families of grounded curves, and the intersection graph of C is the union

of the intersection graphs of these two families. In order to exploit this property, we make use of

the following technical lemma. The constants c and c′ appearing in Lemma 13 are different from all

previously used constants denoted by the same letters. Let us note that Theorem 8 in [7] is a result

of similar flavor, but it is not suitable for our purposes.

A family of graphs G is called hereditary, if for every G ∈ G, every induced subgraph of G is also

a member of G. For any pair of graphs G1 and G2 with V (G1) = V (G2), the union of G1 and G2 is

defined as the graph G1 ∪G2 whose vertex set is V (G1) and edge set is E(G1) ∪ E(G2).

Lemma 13. Let G be a hereditary family of graphs. Suppose that there exist a constant c, 0 < c < 1,

and a monotone increasing function f : N→ R+ such that each member G ∈ G on n vertices contains

either a bi-clique of size at least n/f(n), or G contains a bi-clique of size at least cn.

Then there exists a constant c′ > 0 with the following property. If G1, G2 ∈ G, V (G1) = V (G2),

and |V (G1)| = n, then G1 ∪ G2 contains a bi-clique of size at least c′n/f(n) or the complement of

G1 ∪G2 contains a bi-clique of size at least c′n.

Proof. Let k = 1 + dlog2(1/c)e. We show that the constant c′ = ck+1/2 will meet the requirements.

Let G1, G2 ∈ G such that V = V (G1) = V (G2) and |V | = n.

We can suppose that if U ⊂ V such that |U | ≥ c′

c n, then both G1[U ] and G2[U ] contain a bi-clique

of size c|U |. Indeed, otherwise, either G1[U ] or G2[U ] contains a bi-clique of size c|U |/f(|U |) ≥
c′n/f(n), so G1 ∪G2 also contains a bi-clique of size c′n/f(n), and we are done.

For i = 0, . . . , k, we define disjoint sets Ui,1, . . . , Ui,2i ⊂ V such that |Ui,j | ≥ cin for j = 1, . . . , 2i,

and there is no edge between Ui,j and Ui,j′ in G1 for 1 ≤ j < j′ ≤ 2i. Let U0,1 = V . If Ui,1, . . . , Ui,2i

are already defined for i < k, let (Ui+1,2j−1, Ui+1,2j) be a bi-clique of size c|Ui,j | in G1[Ui,j ]. As

|Ui,j | = cin > c′

c n, such a bi-clique always exists.

Now let U =
⋃2k

j=1 Uk,j . Then |U | = 2kckn > c′

c n, so G2[U ] contains a bi-clique (A,B) of size at

least c|U |. Therefore, there exists 1 ≤ j ≤ 2k such that |Uk,j ∩A| ≥ |A|/2k ≥ c|U |/2k = ck+1n > c′n,

and there exists 1 ≤ j′ ≤ k such that j 6= j′ and

|Uk,j′ ∩B| ≥
|B| − |Uk,j |

2k
≥ c|U | − |U |/2k

2k
=

(
ck+1 − ck

2k

)
n ≥ ck+1n

2
= c′n.

There is no edge between A∩Uk,j and B∩Uk,j′ in G1 and G2, so the complement of G1∪G2 contains

a bi-clique of size c′n.

Now we can prove Theorem 3 for collections of x-monotone curves that intersect the same vertical

line.
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Lemma 14. Let C be a collection of n x-monotone curves such that each member of C intersects

a vertical line l. Let G be the intersection graph of C. Then either G contains a bi-clique of size

Ω(n/ log n), or the complement of G contains a bi-clique of size Ω(n).

Proof. Let G be the family of intersection graphs of collections of grounded x-monotone curves.

Clearly, G is hereditary. By Lemma 7, there exists a constant c > 0 such that each G0 ∈ G on n

vertices contains either a bi-clique of size cn/ log n, or the complement of G0 contains a bi-clique

of size cn. Thus, by Lemma 13, there exists a constant c′ > 0 such that if G1, G2 ∈ G with

V (G1) = V (G2) and |V (G1)| = n, then either G1 ∪G2 contains a bi-clique of size c′n/ log n, or the

complement of G1 ∪G2 contains a bi-clique of size c′n.

The vertical line l cuts each x-monotone curve α ∈ C into a left and a right part, denoted by α1

and α2. Let C1 = {α1 : α ∈ C}, C2 = {α2 : α ∈ C}, and let G1 and G2 be the intersection graphs of

C1 and C2, respectively. Then G1, G2 ∈ G and G = G1 ∪G2, so we are done.

Finally, everything is ready to prove our main theorem.

Proof of Theorem 3. For each α ∈ C, let r(α) denote the x-coordinate of the right endpoint of α.

Without loss of generality, we can suppose that r(α) 6= r(α′) for α 6= α′. Let α1, . . . , αn be the

enumeration of the curves in C such that r(α1) < · · · < r(αn).

Set m = bn/3c and consider a vertical line l = {x = r}, where r(αm) < r < r(αm+1). Let C′

denote the set of curves in C which have a nonempty intersection with l. We distinguish two cases.

Case 1: |C′| ≥ m. Let G′ be the intersection graph of C′. Then by Lemma 14, either G′ contains

a bi-clique of size Ω(m/ logm) = Ω(n/ log n), or G
′

contains a bi-clique of size Ω(m) = Ω(n).

Case 2: |C′| < m. Let A = {Ci : i ≤ m} and B = C \ (A ∪ C′). Then |B| ≥ n/3, and no curve in

A intersects any curve in B, because A and B are separated by l. Hence, G contains a bi-clique of

size m = Ω(n).

5 Sharp threshold for intersection graphs–Proof of Theorem 4

In this section, we prove Theorem 4. Part (1) of the theorem is an easy consequence of the following

result of Pach and Tóth [17]; see also [13].

Lemma 15. (Pach, Tóth [17]) Let V be an n-element set and let V1, V2, V3, V4 be a partition of V

into 4 sets. Let G be a graph on the vertex set V such that Vi spans a clique in G for i = 1, 2, 3, 4.

Then G can be realized as the intersection graph of convex sets.

Proof of Theorem 4, part (1). Let V be an n-element set and let V1, V2, V3, V4 be a partition of V

into four sets of size roughly n/4. Consider the graph G in which V1, V2, V3, V4 are cliques, and any

pair of vertices {u, v}, where u ∈ Vi and v ∈ Vj with i 6= j is joined by an edge with probability ε.

Then with probability tending to 1, G has at most (14 + ε)
(
n
2

)
edges, and G contains no bi-clique of

size 4 logn
ε . By Lemma 15, G can be realized as the intersection graph of convex sets and, therefore,

by x-monotone curves.
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In the rest of the section, we prove part (2) of Theorem 4. For the proof, we use the following

characterization of intersection graphs of x-monotone curves that intersect the same vertical line,

which was established in [15].

A graph G<1,<2 with two total orderings, <1 and <2, on its vertex set is called double-ordered.

If the orderings <1, <2 are clear from the context, we shall write G instead of G<1,<2 .

Definition 16. A double-ordered graph G<1,<2 is called magical if for any three distinct vertices

a, b, c ∈ V (G) with a <1 b <1 c the following is true: if ab, bc ∈ E(G) and ac 6∈ E(G), then b <2 a

and b <2 c. A graph G is said to be magical if there exist two total orders <1, <2 on V (G) such that

G<1,<2 is magical.

A triple-ordered graph is a graph G<1,<2,<3 with three total orders <1, <2, <3 on its vertex set.

Definition 17. A triple-ordered graph G<1,<2,<3 is called double-magical, if there exist two magical

graphs G1
<1,<2

and G2
<1,<3

on V (G) such that E(G<1,<2,<3) = E(G1
<1,<2

)∩E(G2
<1,<3

). An unordered

graph G is said to be double-magical if there exist three total orders <1, <2, <3 on V (G) such that

the triple-ordered graph G<1,<2,<3 is double-magical.

Lemma 18. (Pach, Tomon [15]) A graph is double-magical if and only if it is isomorphic to the

complement of the intersection graph of a collection of x-monotone curves, each of which intersects

a vertical line l.

Here, we will only use the easier direction that if G is the complement of the intersection graph of a

collection C of x-monotone curves, each of which intersects a vertical line l, then G is double-magical.

To see why this is true, let <1 be the ordering given by the intersection points of the elements of

C with the vertical line l, and let <2 and <3 be the orderings induced by the x-coordinates of the

right and left endpoints of the curves, respectively. Then it is not hard to show that G<1,<2,<3 is

double-magical.

Relying on the characterization provided by Lemma 18, part (2) of Theorem 4 reduces to the

following lemma about double-magical graphs.

Lemma 19. For any ε > 0, there exists a constant c = c(ε) > 0 with the following property. For

every positive integer n, every double-magical graph with n vertices and at least (34 + ε)
(
n
2

)
edges

contains a bi-clique of size cn.

Proof. Let G<1,<2 and G<1,<3 be magical graphs such that E(G) = E(G1
<1,<2

) ∩ E(G2
<1,<3

).

A triple of vertices (a, b, c) in G is called an i-hole for i = 2, 3, if a <1 b <1 c and b <i a and

b <i c. A 4-tuple (a, b, b′, c) of vertices of G is said to be forcing if

1. a <1 b <1 c,

2. a <1 b
′ <1 c,

3. (a, b, c) is not a 2-hole,

4. (a, b′, c) is not a 3-hole.
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Note that we do not exclude that b = b′. If (a, b, b′, c) is forcing, we say that the set {a, b, b′, c} is also

forcing. We are interested in forcing 4-tuples for the following reason: if (a, b, b′, c) is forcing such

that ab, bc, ab′, b′c are edges of G, then ac is also an edge. Indeed, if ab, bc are edges of G, then ab, bc

are edges of G<1,<2 . In this case, as G<1,<2 is magical and (a, b, c) is not a 2-hole, ac is also an edge

of G<1,<2 . Similarly, ab′, b′c are edges of G<1,<3 . Then, as G<1,<3 is magical and (a, b′, c) is not a

3-hole, ac is also an edge of G<1,<3 . Therefore, ac is an edge of G as well.

Let the order type of a 4-tuple (a, b, b′, c) of vertices be (s1, s2, s3, s4), where

s1 =

{
+ if a <2 b

− if b <2 a
, s2 =

{
+ if b <2 c

− if c <2 b
, s3 =

{
+ if a <3 b

′

− if b′ <3 a
, and s4 =

{
+ if b′ <3 c

− if c <3 b
′
.

Note that if (a, b, b′, c) is a 4-tuple such that a <1 b <1 c and a <1 b
′ <1 c, and the order type of

(a, b, b′, c) is (s1, s2, s3, s4), then (a, b, b′, c) is not forcing if and only if (s1, s2) = (−,+), or (s3, s4) =

(−,+).

Claim 20. Every set of 5 vertices in G contains a forcing 4-tuple.

Proof. There are (5!)2 = 14400 non-isomorphic triple orderings of a 5 elements set, so it is sufficient

to show that each of them contains a forcing 4-tuple. A quick computer search shows that this is

indeed the case. We provide a more detailed proof in the Appendix, which reduces the number of

cases to a 120.

As usual, let Kt denote the complete graph on t vertices. By a well known result of Erdős and

Simonovits [5], the condition |E(G)| ≥ (1− 1
4 + ε)

(
n
2

)
implies that G contains at least c0n

5 copies of

the complete graph K5, where c0 = c0(ε) depends only on ε.

Now each copy of K5 in G contains a forcing 4-tuple by Claim 20, which spans either a copy of

K4 or K3 in G (depending on whether b = b′). There are 16 order types of 4-tuples. Hence, there

is an order type τ such that either at least c0n
5/32 copies of K5 in G contain a copy of K4 that is

forcing with order type τ , or at least c0n
5/32 copies of K5 in G contain a copy of K3 that is forcing

with order type τ . As every copy of K4 is contained in at most n copies of K5, and every copy of K3

is contained in at most n2 copies of K5, we get the following two cases. Either there exist at least

c0n
4/32 copies of K4 that is forcing with order type τ , or there exist at least c0n

3/32 copies of K3

in G that is forcing with order type τ .

In the first case, we deduce that there exists a pair of vertices (b, b′) in G such that b 6= b′, and

there are at least c0n
2/32 pairs of vertices (a, c) such that (a, b, b′, c) is forcing with order type τ , and

{a, b, b′, c} spans a copy of K4. Let A be the set of vertices a that appear in such a forcing 4-tuple

(a, b, b′, c), and let C be the set of vertices c that appear in such a forcing 4-tuple (a, b, b′, c). Then

|A||C| ≥ c0n
2/32, so |A|, |C| ≥ c0n/32. If a0 ∈ A, there exists c ∈ C such that {a0, b, b′, c} spans a

copy of K4, so a0 is joined to b and b′ by an edge. Similarly, every c0 ∈ C is also connected to b and

b′ by an edge. Finally, for every a0 ∈ A and c0 ∈ C, the 4-tuple (a0, b, b
′, c0) has order type τ . But

whether a 4-tuple is forcing depends only on its order type, so (a0, b, b
′, c0) is forcing. But then a0c0

is an edge, otherwise, either b <2 a0 and b <2 c0, or b′ <3 a0 and b′ <3 c0 holds by Definition 16,

12



which implies that (a0, b, b
′, c0) is not forcing, contradiction. In conclusion, a0c0 is an edge for every

a0 ∈ A and c0 ∈ C, so A ∪ C spans a bi-clique of size at least c0n/32.

In the second case, there exist a vertex b and at least c0n
2/32 pairs of vertices (a, c) such that

(a, b, b, c) is forcing with order type τ , and {a, b, c} spans a copy of K3. Now we can proceed in the

same way as in the previous case to find a bi-clique of size c0n/32.

Hence, Lemma 19 holds with c = c0/32.

Corollary 21. For any ε > 0, there exist a constant c = c(ε) > 0 and an integer n0 = n0(ε) such that

the following statement is true. For any n ≥ n0 x-monotone curves that intersect the same vertical

line, if the intersection graph G of the curves has at most (14 − ε)
(
n
2

)
edges, then the complement of

G contains a bi-clique of size cn.

Proof. By Lemma 18, the complement of G is a double-magical graph. Since G has at least (34 +ε)
(
n
2

)
edges, by Lemma 19 it must contain a bi-clique of size cn.

Similarly as in the proof of Theorem 3, we complete the proof of Theorem 4 by reducing the

general configuration of x-monotone curves to the case, where every x-monotone curve has nonempty

intersection with the same vertical line l.

Proof of Theorem 4, part (2). Without loss of generality, assume that ε < 1/2. Let C denote our

collection of curves. For each α ∈ C, let r(α) be the x-coordinate of the right endpoint of α. We can

also suppose that r(α) 6= r(α′) for α 6= α′. Let α1, . . . , αn be the enumeration of the curves in C such

that r(α1) < · · · < r(αn).

Set m = εn/2 and consider a vertical line l = {x = r}, where r(αm) < r < r(αm+1). Let C′

denote the set of curves in C which have a nonempty intersection with l. We distinguish two cases.

Case 1: |C′| ≥ (1 − ε)n. Let G′ be the intersection graph of C′. Then G′ has at most(
1
4 −

ε
4

) (|V (G′)|
2

)
edges. Therefore, the complement of G′ contains a bi-clique of size c( ε4)|V (G′)| >

c( ε4)n/2, where c is the constant defined in Corollary 21.

Case 2: |C′| < (1 − ε)n. Let A = {Ci : i ≤ m} and B = C \ (A ∪ C′). Then |B| ≥ εn/2, and

no curve in A intersects any curve in B, because A and B are separated by l. Hence, G contains a

bi-clique of size εn/2.
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[9] J. Fox, J. Pach, C. D. Tóth, Turán-type results for partial orders and intersection graphs of convex

sets, Israel Journal of Mathematics 178 (2010): 29–50.

[10] J. R. Lee, Separators in region intersection graphs, in: 8th Innovations in Theoretical Comp.

Sci. Conf. (ITCS 2017), LIPIcs 67 (2017): 1–8.

[11] L. Lovász, Perfect graphs, in: Selected Topics in Graph Theory, vol. 2, Academic Press, London,

1983, 55–87.
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Appendix - Proof of Claim 20

Let <1 denote the natural total ordering on {1, . . . , 5}. We need to prove that for any two total

orderings <2 and <3 on {1, . . . , 5}, there exists a 4-tuple (a, b, b′, c) in {1, . . . , 5} such that a <1 b <1 c,

a <1 b
′ <1 c, (a, b, c) is not a 2-hole, and (a, b′, c) is not a 3-hole.

If ≺ is a total ordering on {1, . . . , 5}, let H(≺) denote the graph on vertex set {1, . . . , 5}, where

a <1 c are joined by an edge if there exists b such that a <1 b <1 c, and b satisfies at least one of the

inequalities a ≺ b and c ≺ b.
Our task is reduced to proving E(H(<2))∩E(H(<3)) 6= ∅. Indeed, if ac ∈ E(H(<2))∩E(H(<3)),

then there exists b, b′ such that (a, b, b′, c) is a desired 4-tuple. Say that a graph H is attainable, if

there exists a total ordering ≺ such that H(≺) = H. We want to show that if H and H ′ are both

attainable, then E(H)∩E(H ′) 6= ∅. Note that if a graph is attainable, then its edge set is a subset of

the 6 element set {13, 14, 15, 24, 25, 35}. Using a quick computer search on all the possible 120 total

orderings ≺ (which might also have been done by hand, if one is patient enough), we determined all

the possible attainable graphs. We found that each of the attainable graphs has at least 3 edges, so

if E(H) and E(H ′) does not intersect, then we must have |E(H)| = |E(H ′)| = 3. In total, there are

5 attainable graphs with 3 edges:

{13, 14, 24}, {13, 14, 35}, {14, 24, 25}, {13, 25, 35}, {24, 25, 35}.

It is easy to check that any two of these edge sets have a nonempty intersection.
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