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Abstract

The crossing number of a graph G is the minimum num-

ber of crossings in a drawing of G. We introduce several

variants of this definition, and present a list of related open

problems. The first item is Zarankiewicz’s classical conjec-

ture about crossing numbers of complete bipartite graphs,

the last ones are new and less carefully tested. In Section 5,

we state some conjectures about the expected values of var-

ious crossing numbers of random graphs, and prove a large

deviation result.

1 Introduction

Let G be a graph, whose vertex set and edge set are denoted by
V (G) and E(G), respectively. A drawing of G is a representation of

∗Supported by NSF grant CR-97-32101, PSC-CUNY Research Award 667339

and OTKA-T-020914.
†Supported by NSF grant DMS-99-70071, OTKA-T-020914 and OTKA-F-

22234.

1



G in the plane such that its vertices are represented by distinct points
and its edges by simple continuous arcs connecting the corresponding
point pairs. For simplicity, we assume that in a drawing (a) no edge
passes through any vertex other than its endpoints, (b) no two edges
touch each other (i.e., if two edges have a common interior point,
then at this point they properly cross each other), and (c) no three
edges cross at the same point.

Turán [23] defined the crossing number of G, cr(G), as the small-
est number of edge crossings in any drawing of G. Clearly, cr(G) = 0
if and only if G is planar.

Problem 1. (Zarankiewicz’s Conjecture [11]) The crossing number
of the complete bipartite graph Kn,m with n and m vertices in its
classes satisfies

cr(Kn,m) =
⌊
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Kleitman [13] verified this conjecture in the special case when
min{m, n} ≤ 6 and Woodall [25] for m = 7, n ≤ 10.

Problem 2. Is it true that the crossing number of the complete
graph Kn satisfies

cr(Kn) =
1
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.

Of course, the best known upper bounds for both cr(Kn,m) and
cr(Kn) are the conjectured values in Problems 1 and 2, respectively.
The best known lower bounds, cr(Km,n)≥ n2m2 (1/20 − o(1)) and
cr(Kn) ≥ n4 (1/80 − o(1)), can be deduced from Kleitman’s result
by an easy counting argument.

Garey and Johnson [10] proved that the determination of the
crossing number is an NP-complete problem. In the past twenty
years, it turned out that crossing numbers play an important role in
various fields of discrete and computational geometry, and they can
also be used, e.g.,to obtain lower bounds on the chip area required
for the VLSI circuit layout of a graph [14].
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2 Lower Bounds

The following general lower bound on crossing numbers was discov-
ered by Ajtai–Chvátal–Newborn–Szemerédi [1] and, independently,
by Leighton [14]. For any graph G with n vertices and e ≥ 7.5n
edges, we have

cr(G) ≥ 1

33.75

e3

n2
. (1)

This estimate is tight up to a constant factor. The best known
constant, 1/33.75, in (1) is due to Pach and Tóth [20], who also
showed that the result does not remain true if we replace 1/33.75 by
roughly 0.06.

For any positive valued functions f(n), g(n), we write f(n) �
g(n) if limn→∞ f(n)/g(n) = ∞. It was shown by Pach, Spencer, and
Tóth [19] that

lim
n → ∞

n � e � n2

min{cr(G) : |V (G)| = n, |E(G)| = e}
e3/n2

= K0 (2)

exists and is positive. It follows from what we have said before that
0.029 < 1/33.75 ≤ K0 ≤ 0.06.

Problem 3. Determine the precise value of K0.

Problem 4. (Erdős-Guy [8]) Do there exist suitable constants C1,
C2 > 0 such that

lim
n → ∞

C1n ≤ e ≤ C2n2

min{cr(G) : |V (G)| = n, |E(G)| = e}
e3/n2

= K0?

If the answer to the last question were in the affirmative, then,
clearly, C1 > 3. We would also have that C2 < 1/2, because, by [12],

for e =
(

n
2

)

, cr(Kn) >
(

1
10

− ε
)

e3

n2 holds for any ε > 0, provided
that n is sufficiently large.

Let G be a graph with vertex set V (G) and edge set E(G). The
bisection width of G, b(G), is defined as the minimum number of
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edges, whose removal splits the graph into two roughly equal sub-
graphs. More precisely, b(G) is the minimum number of edges run-
ning between V1 and V2, over all partitions of the vertex set of G
into two disjoint parts V1 ∪ V2 such that |V1|, |V2| ≥ |V (G)|/3.

Leighton observed that there is an intimate relationship between
the bisection width and the crossing number of a graph [15], which
is based on the Lipton–Tarjan separator theorem for planar graphs
[16]. The following version of this relationship was obtained by Pach,
Shahrokhi, and Szegedy [18]. Let G be a graph of n vertices with
degrees d1, d2, . . . , dn. Then

b(G) ≤ 10
√

cr(G) + 2

√

√

√

√

n
∑

i=1

d2
i . (3)

The example of a star (i.e., a tree consisting of a vertex connected
to all other vertices) shows that (3) does not remain true if we remove
the last term on its right-hand side. However, it is possible that
the dependence of the bound on the degrees of the vertices can be
improved.

Problem 5. Does there exist a constant t < 2 such that

b(G) = O





√

cr(G) +

(

n
∑

i=1

dt
i

)1/t




holds for every graph of n vertices with degrees d1, d2, . . . , dn?

3 Extensions

For every g ≥ 0, one can define a new crossing number, crg(G), as
the minimum number of crossings in any drawing of G on the torus
with g holes. It was shown in [19] that (2) remains true with exactly
the same constant K0, if we replace cr(G) by crg(G) and keep g
fixed. What happens if g tends to infinity with n?

Problem 6. Find a function g = g(n) tending to infinity such that

lim
n → ∞

n � e � n2

min{crg(G) : |V (G)| = n, |E(G)| = e}
e3/n2
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exists and is positive.

M. Simonovits suggested that the lower bound (1) for crossing
numbers may be substantially improved, if we restrict our attention
to some special classes of graphs, e.g., to graphs not containing some
fixed, so-called forbidden subgraph. Indeed, this turned out to be
true.

A graph property P is said to be monotone if (i) for any graph
G satisfying P, every subgraph of G also satisfies P; and (ii) if G1

and G2 satisfy P, then their disjoint union also satisfies P.
For any monotone property P, let ex(n,P) denote the maximum

number of edges that a graph of n vertices can have if it satisfies P.
In the special case when P is the property that the graph does not
contain a subgraph isomorphic to a fixed forbidden subgraph H, we
write ex(n, H) for ex(n,P).

Let P be a monotone graph property with ex(n,P) = O(n1+α)
for some α > 0. In [19], we proved that there exist two constants
c, c′ > 0 such that the crossing number of any graph G with property
P, which has n vertices and e ≥ cn log2 n edges, satisfies

cr(G) ≥ c′
e2+1/α

n1+1/α
. (4)

This bound is asymptotically tight, up to a constant factor.
In some interesting special cases when we know the precise order

of magnitude of the function ex(n,P), we obtained a slightly stronger
result: we proved that (4) is valid for every e ≥ 4n. For instance, if
P is the property that G does not contain C4, a cycle of length 4, as
a subgraph, then ex(n,P) = ex(n, C4) = O(n3/2), and we know that
the crossing number of any graph with n vertices and e ≥ 4n edges,
which satisfies this property, is at least constant times e4/n3. This
bound is asymptotically tight.

If the answer to the following question were in the affirmative, we
could extend this stronger result to many further graph properties
P.

Problem 7. Let G be a bipartite graph, and let G′ be a graph that
can be obtained from G by identifying two vertices whose distance is
at least three. Is it true that

ex(n, G) = O (ex(n, G′))?
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4 Three Other Crossing Numbers

We define three variants of the notion of crossing number.

(1) The rectilinear crossing number, lin-cr(G), of a graph G is the
minimum number of crossings in a drawing of G, in which every edge
is represented by a straight-line segment.

(2) The pairwise crossing number of G, pair-cr(G), is the minimum
number of crossing pairs of edges over all drawings of G. (Here the
edges can be represented by arbitrary continuous curves, so that
two edges may cross more than once, but every pair of edges can
contribute at most one to pair-cr(G).)

(3) The odd-crossing number of G, odd-cr(G), is the minimum
number of those pairs of edges which cross an odd number of times,
over all drawings of G.

It readily follows from the definitions that

odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤ lin-cr(G).

Bienstock and Dean [6] exhibited a series of graphs with crossing
number 4, whose rectilinear crossing numbers are arbitrary large.
The following is perhaps the most exciting unsolved problem in the
area.

Problem 8. Is it true that

odd-cr(G) = pair-cr(G) = cr(G),

for every graph G?

According to a remarkable theorem of Hanani (alias Chojnacki)
[7] and Tutte [24], if a graph G can be drawn in the plane so that
any pair of its edges cross an even number of times, then it can also
be drawn without any crossing. In other words, odd-cr(G) = 0
implies that cr(G) = 0. Note that in this case, by a theorem of
Fáry [9], we also have that lin-cr(G) = 0.
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The main difficulty in this problem is that a graph has so many
essentially different drawings that the computation of any of the
above crossing numbers, for a graph of only 15 vertices, appears to
be a hopelessly difficult task even for a very fast computer [22].

As we mentioned at the end of the Introduction, Garey and John-
son [10] showed that the determination of the crossing number is an
NP-complete problem. Analogous results hold for the rectilinear
crossing number [5] and for the odd-crossing number [21]. How-
ever, for the pairwise crossing number, we could prove only that it
is NP-hard.

Problem 9. Given a graph G of n vertices and an integer K, can
one check in polynomial time that pair-cr(G) ≤ K? In other words,
is the problem of finding the pairwise crossing number of a graph in
NP?

Concerning Problem 8, all we can show is that the parameters
cr(G), pair-cr(G), and odd-cr(G), are not completely unrelated.
More precisely, we proved in [21] that cr(G) ≤ 2(odd-cr(G))2, for
every graph G. The next step would be to answer the following
question.

Problem 10. Does there exist a constant C such that

cr(G) ≤ C · odd-cr(G)

holds for every graph G?

5 Crossing Numbers of Random Graphs

Let G = G(n, p) be a random graph with n vertices, whose edges
are chosen independently with probability p = p(n). Let e denote

the expected number of edges of G, i.e., e = p
(

n
2

)

. It is not hard to

see that if e > 10n, almost surely b(G) ≥ e/10. Therefore, it follows
from (3) that almost surely we have

cr(G) ≥ e2

4000
.

Evidently, the order of magnitude of this bound cannot be improved.
We do not have a formula analogous to (3) for the other two crossing
numbers.
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Problem 11. Do there exist suitable constants C1, C2 > 0 such that
every graph G satisfies

(i) b(G) = C1





√

pair-cr(G) +

√

√

√

√

n
∑

i=1

d2
i



 ,

(ii) b(G) = C2





√

odd-cr(G) +

√

√

√

√

n
∑

i=1

d2
i



 ?

We cannot determine the right order of magnitude of the ex-
pected value of odd-cr(G) and pair-cr(G) for a random graph
G = G(n, p).

Problem 12. Let G = G(n, p) be a random graph with n vertices,

with edge probability 0 < p < 1, and let e = p
(

n
2

)

> 4n. Do there
exist suitable positive constants c1 and c2 such that

(i) E [pair-cr(G)] ≥ c1e
2,

(ii) E [odd-cr(G)] ≥ c2e
2 ?

Although we are far from knowing the expectations of crossing
numbers of random graphs, it is not hard to argue that the cross-
ing numbers are sharply concentrated in very short intervals around
these values.

To show this, we need a simple observation.

Lemma. Let G be a graph with edge set E = E(G), and let G′ be
another graph obtained from G by adding an edge. Then

(i) cr(G′) ≤ cr(G) + |E|,

(ii) pair-cr(G′) ≤ pair-cr(G) + |E|,
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(iii) odd-cr(G′) ≤ odd-cr(G) + |E|.

Proof: Parts (ii) and (iii) are obviously true, because we can arbi-
trarily add to any optimal drawing of G an arc representing the new
edge.

To prove part (i), fix a drawing of G, which minimizes the number
of crossings. It is easy to see that in such a drawing any two edges
have at most one point in common [22]. Add a continuous arc a
representing the new edge so as to minimize the number of crossings
in the resulting drawing of G′.

In this new drawing, a cannot have two points, p and q, in com-
mon with any arc b representing an edge of E = E(G). Otherwise,
we could replace the piece of a between p and q by an arc running
very close to the piece of b between p and q. By the minimality of
the initial drawing of G, this replacement would strictly decrease the
number of crossings, because at least one crossing between a and b
would be eliminated. This would contradict the minimality of the
drawing of G′. 2

Theorem. Let G(n, p) be a random graph with n vertices, with edge

probability 0 < p = p(n) < 1, and let e = p
(

n
2

)

. Then

Pr
[

|cr(G) − E[cr(G)]| > 3αe3/2
]

< 3 exp(−α2/4)

holds for every α satisfying (e/4)3 exp(−e/4) ≤ α ≤ √
e.

The same result holds for pair-cr(G) and odd-cr(G).

Proof: Let e1, e2, . . . , e(n

2)
be the edges of the complete graph on

V (G). Define another random graph G∗ on the same vertex set,
as follows. If G has at most 2e edges, let G∗ = G. Otherwise,
there is an i <

(

n
2

)

so that |{e1, e2, . . . , ei} ∩ E(G)| = 2e, and set

E(G∗) = {e1, e2, . . . , ei} ∩ E(G). Finally, let f(G) = cr(G∗).
According to the Lemma, the addition of any edge to G can

modify the value of f by at most 2e. Following the terminology of
Alon–Kim–Spencer [2], we say that the effect of every edge is at most
2e. The variance of any edge is defined as p(1− p) times the square
of its effect. Therefore, the total variance cannot exceed

σ2 =

(

n

2

)

p(2e)2 = 4e3.
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Applying the Martingale Inequality of [2], which is a variant of
Azuma’s Inequality [4] (see also [3]), we obtain that for any positive
α ≤ σ/e = 2

√
e,

Pr
[

|f(G) − E[f(G)]| > ασ = 2αe3/2
]

< 2 exp(−α2/4).

Our goal is to establish a similar bound for cr(G) in place of
f(G). Obviously,

Pr [f(G) 6= cr(G)] ≤ Pr [G 6= G∗] < exp(−e/4).

Thus, we have

|E [f(G)] − E [cr(G)] | ≤ Pr [f(G) 6= cr(G)] maxcr(G) ≤

exp (−e/4)
n4

8
≤ αe3/2,

whenever α ≥ (e/4)3 exp(−e/4) (say). Therefore,

Pr
[

|cr(G) − E[cr(G)]| > 3αe3/2
]

≤

Pr [cr(G) 6= f(G)] + Pr
[

|f(G) − E[f(G)]| > 2αe3/2
]

≤

exp(−e/4) + 2 exp(−α2/4).

If α ≤ √
e, the last some is at most 3 exp(−α2/4), as required.

The same argument works for pair-cr(G) and odd-cr(G) in
place of cr(G). 2

6 Even More Crossing Numbers

We can further modify each of the above crossing numbers, by ap-
plying one of the following rules:

Rule + : Consider only those drawings where two edges with a
common endpoint do not cross each other.

Rule 0 : Two edges with a common endpoint are allowed to cross
and their crossing counts.

Rule − : Two edges with a common endpoint are allowed to cross,
but their crossing does not count.
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In the previous definitions we have always used Rule 0. If we
apply Rule + (Rule −) in the definition of the crossing numbers,
then we indicate it by using the corresponding subscript, as shown
in the table below. This gives us an array of nine different crossing
numbers. It is easy to see that in a drawing of a graph, which
minimizes the number of crossing points, any two edges have at most
one point in common (see e.g. [22]). Therefore, cr+(G) = cr(G),
which slightly simplifies the picture.

Rule –

Rule 0

Rule +

cr(G)

cr
−

(G)

pair-cr+(G)

pair-cr(G)

pair-cr
−

(G)

odd-cr+(G)

odd-cr(G)

odd-cr
−

(G)

Moving from left to right or from bottom to top in this array, the
numbers do not decrease. It is not hard to generalize (1) to each of
these crossing numbers. We obtain (as in in [21]) that

odd-cr−(G) ≥ 1

64

e3

n2
,

for any graph G with n vertices and with e ≥ 4n edges. We cannot
prove anything else about odd-cr−(G), pair-cr−(G), and cr−(G).
We conjecture that these values are very close to cr(G), if not the
same. That is, we believe that by letting pairs of incident edges
cross an arbitrary number of times, we cannot effectively reduce the
total number of crossings between independent pairs of edges. The
weakest open questions are the following.

Problem 13. Do there exist suitable functions f1, f2, f3 such that
every graph G satisfies

(i) odd-cr(G) ≤ f1(odd-cr−(G)),

(ii) pair-cr(G) ≤ f2(pair-cr−(G)),

(iii) cr(G) ≤ f3(cr−(G)) ?
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