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Graphs are finite, undirected, may have loops and
multiple edges. H is a minor of G if H can be obtained
from a subgraph of G by contracting edges.







KNOT THEORY

All embeddings are piecewise linear

THEOREM (Papakyriakopolous) A simple closed curve
in R is unknotted < its complement has free
fundamental group.



LINKING NUMBER

Lk(C,C") = # times C' goes over C’ positively — #
times C goes over (' negatively



LINKING NUMBER

Lk(C,C") = # times C' goes over C’ positively — #
times C goes over (' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C’ of G.



LINKING NUMBER

Lk(C,C") = # times C' goes over C’ positively — #
times C goes over (' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C’ of G.

THEOREM (Conway and Gordon, Sachs) Kg does not
have a linkless embedding.



Lk(C,C") = # times C' goes over C"’ positively — #
times C' goes over C' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C" of G.

THEOREM (Conway and Gordon, Sachs) K¢ does not
have a linkless embedding.



Lk(C,C") = # times C' goes over C"’ positively — #
times C' goes over C' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C" of G.

THEOREM (Conway and Gordon, Sachs) K¢ does not
have a linkless embedding.

PROOF Fix embedding of K. Consider
Y IE(C,C") mod 2,

sum over all unordered pairs of disjoint cycles C, C" of G.



Lk(C,C") = # times C' goes over C"’ positively — #
times C' goes over C' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C" of G.

THEOREM (Conway and Gordon, Sachs) K¢ does not
have a linkless embedding.

PROOF Fix embedding of K. Consider

Y IE(C,C") mod 2,
sum over all unordered pairs of disjoint cycles C, C" of G.
e Does not depend on the embedding



Lk(C,C") = # times C' goes over C"’ positively — #
times C' goes over C' negatively

An embedding of G in 3-space is linkless if [k(C,C") =0
for every two disjoint cycles C, C" of G.

THEOREM (Conway and Gordon, Sachs) K¢ does not
have a linkless embedding.

PROOF Fix embedding of K. Consider
Y IE(C,C") mod 2,
sum over all unordered pairs of disjoint cycles C, C" of G.
e Does not depend on the embedding
e — 1 for some embedding
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MAIN THEOREM

THM RST A graph has a flat embedding < it has no
minor isomorphic to a member of the Petersen family
COR <« it has a linkless embedding
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HM (Scharlemann, Thompson) An embedding of a
graph G is spherical <

(i) G is planar, and

(il) m(R® — G) is free for every subgraph G’ of G

THM RST An embedding of a graph G is flat
m(R® — G') is free for every subgraph G’ of G.

COR If G is embedded non-flatly then for every non-loop
edge e either G'\e or GG/e is not flat.

PROOF Let m(R> — G’) be not free. If e € G’, then G\e
is not flat. Otherwise GG/e is not flat.
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COROLLARY A graph has a unique flat embedding < it
Is planar.
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LEMMA In a 4-connected graph G, every two K33
minors “‘communicate’ .
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UNIQUENESS THEOREM Let ¢4, ¢ be two flat
embeddings of a 4-connected graph G. Then either

P1 > @2 O O1 >~ —o.

ABOUT THE PROOF WMA G has a K3 3-minor, call it
H. WMA ¢, | H ~ ¢5 | H (by replacing ¢ by —¢, if
necessary). By the Lemma, ¢ | H ~ ¢ | H' for every
K3 3-minor H. By the previous theorem, ¢ >~ ¢».



MAIN THEOREM

(G has no minor isomorphic to a member of the Petersen
family = G has a flat embedding.



OUTLINE OF PROOF Take a minor-minimal
counterexample, G, WMA no triangles. It can be shown
(G is “internally 5-connected.” Take edges e = uv, f
such that G/ f/e, G/f\e are “Kuratowski connected.”
_et ¢ be a flat embedding of G'\e.
_et ¢y be a flat embedding of G/e.
_et ¢3 be a flat embedding of G/f. WMA

d1/f = P3\e

G2/ | > ¢p3/e

It can be shown that the uncontraction of f is the same
in both of these embeddings. Let ¢ be obtained from ¢3
by doing this uncontraction. Then ¢\e >~ ¢, ¢/e = ¢o,
and so ¢ is flat.
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e The theorem implies an O(n’) recognition algorithm
e Not known how to verify if an embedding is linkless
e Is there a certifiable structure?

e Structure of graphs with no Ky minor?

JORGENSEN'S CONJECTURE Every 6-connected graph
with no Kg-minor is apex (=planar + one vertex).
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Let 11(G) be the maximum corank of a matrix M s.t.

(i) fori £ 3, M;; =0 if i € E and M;; < 0 otherwise,
(i) M has exactly one negative eigenvalue,

(iii) if X is a symmetric n X n matrix such that M X =0
and X;; = 0 whenever 1 = j or 15 € E, then X = 0.

THM pu(G) < 3 < G is planar.

HM Lovasz, Schrijver u(G) < 4 < G has a flat
embedding.
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An embedding of a graph G in R’ is knotless if every
cycle of GG is the unknot.

HM Conway, Gordon K7 has no knotless embedding.

THM There exists an O(n?) algorithm to test if a graph
has a knotless embedding.

PROOF Let Ly, Lo, ... be the minor-minimal graphs that
do not have knotless embeddings. By the Graph Minor
Theorem of Robertson and Seymour the set is finite.
Whether G' has an L; minor can be tested in O(n?) time
by another result of Robertson and Seymour.

NOTE No explicit algorithm is known.



