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Graphs are finite, undirected, may have loops and

multiple edges. H is a minor of G if H can be obtained

from a subgraph of G by contracting edges.
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KNOT THEORY

All embeddings are piecewise linear

THEOREM (Papakyriakopolous) A simple closed curve

in R3 is unknotted ⇔ its complement has free

fundamental group.
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lk(C,C ′) = # times C goes over C ′ positively − #

times C goes over C ′ negatively

An embedding of G in 3-space is linkless if lk(C,C ′) = 0
for every two disjoint cycles C,C ′ of G.

THEOREM (Conway and Gordon, Sachs) K6 does not

have a linkless embedding.

PROOF Fix embedding of K6. Consider∑
lk(C,C ′) mod 2,

sum over all unordered pairs of disjoint cycles C,C ′ of G.

• Does not depend on the embedding

• = 1 for some embedding
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THM (Sachs) No member of the Petersen family has a

linkless embedding.

An embedding of a graph G in 3-space is flat if every

cycle of G bounds a disk disjoint from the rest of G.

MAIN THEOREM

THM RST A graph has a flat embedding ⇔ it has no

minor isomorphic to a member of the Petersen family

COR ⇔ it has a linkless embedding



8
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∂Di = Ci.



8
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THM (Böhme, Saran) Let G be a flatly embedded graph,

let C1, C2, . . . , Cn be cycles with pairwise connected

intersection. Then there are disjoint open disks

D1, D2, . . . , Dn, disjoint from the graph and such that

∂Di = Ci.

DEF An embedding of a graph in R3 is spherical if the

graph lies on a surface homeomorphic to S2.

COR Let G be planar. An embedding of G is flat ⇔ it is

spherical.
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THM (Scharlemann, Thompson) An embedding of a

graph G is spherical ⇔
(i) G is planar, and

(ii) π1(R3 −G′) is free for every subgraph G′ of G

THM RST An embedding of a graph G is flat ⇔
π1(R3 −G′) is free for every subgraph G′ of G.

COR If G is embedded non-flatly then for every non-loop

edge e either G\e or G/e is not flat.

PROOF Let π1(R3 −G′) be not free. If e 6∈ G′, then G\e
is not flat.
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THM (Scharlemann, Thompson) An embedding of a

graph G is spherical ⇔
(i) G is planar, and

(ii) π1(R3 −G′) is free for every subgraph G′ of G

THM RST An embedding of a graph G is flat ⇔
π1(R3 −G′) is free for every subgraph G′ of G.

COR If G is embedded non-flatly then for every non-loop

edge e either G\e or G/e is not flat.

PROOF Let π1(R3 −G′) be not free. If e 6∈ G′, then G\e
is not flat. Otherwise G/e is not flat.
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FACT Every planar graph has a unique flat embedding.

PROPOSITION K3,3 and K5 have two flat embeddings

(up to ambient isotopy).
.

COROLLARY A graph has a unique flat embedding ⇔ it

is planar.



18

THEOREM Two nonisotopic flat embeddings differ on a

K3,3 or K5 minor.



18

THEOREM Two nonisotopic flat embeddings differ on a

K3,3 or K5 minor.

LEMMA In a 4-connected graph G, every two K3,3

minors “communicate”.
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UNIQUENESS THEOREM Let φ1, φ2 be two flat

embeddings of a 4-connected graph G. Then either

φ1 ' φ2 or φ1 ' −φ2.

ABOUT THE PROOF WMA G has a K3,3-minor, call it

H. WMA φ1 � H ' φ2 � H (by replacing φ2 by −φ2 if

necessary). By the Lemma, φ1 � H
′ ' φ2 � H

′ for every

K3,3-minor H. By the previous theorem, φ1 ' φ2.



20

MAIN THEOREM

G has no minor isomorphic to a member of the Petersen

family ⇒ G has a flat embedding.
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OUTLINE OF PROOF Take a minor-minimal

counterexample, G, WMA no triangles. It can be shown

G is “internally 5-connected.” Take edges e = uv, f

such that G/f/e, G/f\e are “Kuratowski connected.”

Let φ1 be a flat embedding of G\e.

Let φ2 be a flat embedding of G/e.

Let φ3 be a flat embedding of G/f . WMA

φ1/f ' φ3\e
φ2/f ' φ3/e

It can be shown that the uncontraction of f is the same

in both of these embeddings. Let φ be obtained from φ3

by doing this uncontraction. Then φ\e ' φ1, φ/e ' φ2,

and so φ is flat.
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COMMENTS

• The theorem implies an O(n3) recognition algorithm

• Not known how to verify if an embedding is linkless

• Is there a certifiable structure?

• Structure of graphs with no K6 minor?

JORGENSEN’S CONJECTURE Every 6-connected graph

with no K6-minor is apex (=planar + one vertex).
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COLIN de VERDIERE’S PARAMETER

Let µ(G) be the maximum corank of a matrix M s.t.

(i) for i 6= j, Mij = 0 if ij 6∈ E and Mij < 0 otherwise,

(ii) M has exactly one negative eigenvalue,

(iii) if X is a symmetric n× n matrix such that MX = 0
and Xij = 0 whenever i = j or ij ∈ E, then X = 0.
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COLIN de VERDIERE’S PARAMETER

Let µ(G) be the maximum corank of a matrix M s.t.

(i) for i 6= j, Mij = 0 if ij 6∈ E and Mij < 0 otherwise,

(ii) M has exactly one negative eigenvalue,

(iii) if X is a symmetric n× n matrix such that MX = 0
and Xij = 0 whenever i = j or ij ∈ E, then X = 0.

THM µ(G) ≤ 3 ⇔ G is planar.

THM Lovász, Schrijver µ(G) ≤ 4 ⇔ G has a flat

embedding.
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An embedding of a graph G in R3 is knotless if every

cycle of G is the unknot.

THM Conway, Gordon K7 has no knotless embedding.

THM There exists an O(n3) algorithm to test if a graph

has a knotless embedding.

PROOF Let L1, L2, . . . be the minor-minimal graphs that

do not have knotless embeddings. By the Graph Minor

Theorem of Robertson and Seymour the set is finite.

Whether G has an Li minor can be tested in O(n3) time

by another result of Robertson and Seymour.

NOTE No explicit algorithm is known.


