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Abstract. In 1978 Rousseau and Sheehan showed that the book-star Ramsey number
r(K(1,1,m),K1pn1)=2n—1 for n23m—3.

‘We show that this result is true when the star is replaced by an arbitrary tree on n vertices.

1. Preliminaries.

Let G; and G be simple graphs without isolated vertices. The Ramsey number
r(G4,Gy) is the smallest positive integer p such that coloring each edge of K, one of
two colors there is either a copy of G in the first color or a copy of G5 in the second
color. By tradition, we shall let the colors be R (red) and B (blue) with the resulting
edge-induced subgraphs denoted (R) and (B) respectively. Throughout the paper a
colored K, will always refer to one in which each edge is colored red or blue.

It is well known for a connected graph G; that
(1) r(G1,Ga) = (x(G1) — 1)(p(G2) — 1) +s(G1), p(G2) 2 5(Gh),
where x(Gi) is the chromatic number of Gy, p(G;) the order of Gz, and s(Gy) the
chromatic surplus of Gy. Here the chromatic surplus is the smallest number of vertices
in a color class under any x(G)-coloring of the vertices of Gi. Inequality (1) follows by
coloring red or blue the edges of a complete graph on (x(G1) —1)(p(G2) — 1)+ s(G1) —1
vertices such that the blue graph (B} is isomorphic to (x(G1) — 1)Kp(g,)-1 U Hy(g,)-1
and the red graph (R) is isomorphic to its complement. Of interest is the case when
inequality (1) is in fact an equality.

Let T, denote a tree on n vertices and let B,, denote the graph K(1,1,m) called an
m-book or a book with m pages. In this paper we investigate when equality holds in (1)
with Gy = By, and Gy = T, i.e., when r(Bm,T,) = 2n — 1. The more general problem
when G is the multipartite graph K (1,1,my,mg,...,m;) and Gy = T, with n large has
been considered in [2]. In fact the value of r(K(my,ma,...,my),T,) with n large has
received considerable attention (see [3,4]).

The following notation will be used. If the graph G has at least (at most) £ vertices
of a given type, or order at least (at most) £, we write > £(< £). This symbolism is
adopted to avoid frequent usage of the words ‘at least’ or ‘at most’. As is customary
[z] (lz]) will denote the least (greatest) integer > z (< z). Additional notation will
follow that used in standard texts, e.g., [1,5].

Since in this paper we wish to show r(By,,T,) = 2n —1 (for a certain range of values
of m and n) and from (1) r(Bp,Ts) > 2n — 1, it will be assumed throughout that
equality follows from showing r(Bm, Tn) < 2n — 1.
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Il. The Book Star Ramsey Number.

In [8] it is shown that r(Bp, K1,n-1) = 2n—1 when n > 3m — 3. Our main objective
is to show that the star K, ,_; can be replaced by an arbitrary tree T, with the same
result. The lengthy argument needed to prove this fact will be deferred to the next
section. In this section we wish to first establish that there is no hope to prove (in
general) that r(Bp,Kjn-1) = 2n — 1 for n < 3m — 3. To see this we introduce a
rectangular coloring of the edges of K into the classes R and B as follows: partition
V(K;) = {X11, ..., Xmn} and set [X;;]* € B, and

B ifi=dorj=7
X‘ 3 x" i C
s Xy ] € { R otherwise.
Set M =3, N = a, and |X;;| = b for all 7 and j. It is easy to check that a rectangular
coloring of E(K3q) in which both

(2) (e+2)b<n—1 and (a—2)b<m-1

contains no red By, and no blue K n—;. If a and b are chosen such that the inequalities
of (2) hold and 3ab > 2n — 1, then 2ab<n+m—2and 2n —1 < 3ab < (n+m — 2)
so that n < 3m — 4. In such cases the rectangular coloring shows

r(Bm,Kin—1) >3ab+1>2n—1 with n<3m-—4.

For the readers sake we include the counting argument of Ro u and Sheehan
which proves the book-star Ramsey number mentioned earlier.

Theorem 1[6]. The Ramsey number r(Bm, Kin-1) =2n —1 forn > 3m — 3.

Proof: Color Kzn_y such that (B) contains no Kj p—j. Then the red degree of z, dg(z),
satisfies dg(z) > (2n — 2) — (n — 2) = n for all vertices z. Thus (R) contains a K3. Let
{a,b,c} be the set of vertices of this red K3 and let Ng(a), Ng(b), and Ng(c) denote
the red neighbors of a,b and ¢ respectively. Further set A = Ng(a) — {b,c}, B =
Ng(b) — (Ne(a) U{a}) and C = Ng(c) — (Ng(a) U Ng(b)). If (R) contains no B, then
each of the following inequalities hold: (4| > n—2,|B|> (n—2)—(m —2) =n—m and
|C| = (n—2) —2(m —2) =n—2m + 2. Thus if both R 2 By and (B) 2 Ky a1, then

2n—1=|V(Kzu-1)| > [{a,b,c}UAUBUC|
>3+ (n—2)+(n—m)+(n—2m+2).

This gives n < 3m — 4, a contradiction, and completes the proof.

lll. The Book-Tree Ramsey Number.

As mentioned earlier the main objective of the paper is to prove that Theorem 1
holds when the star Ky, is replaced by an arbitrary tree T,. The proof of this is
lengthy and will be accomplished first for a special case and then in general through the
use of a collection of lemmas.
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Theorem 2. The Ramsey number r(By,,T,) =2n — 1 forn > 3m — 3.

Before proving this theorem when the tree T), satisfies a special condition we give a
useful lemma.

Lemma 3. Let K; be colored such that (R) By, and (B) ? T,. Then the red degree of
each of its vertices is <n+m — 2.

Proof: Suppose there exists a vertex of red degree > n+m — 1. Let this vertex be v and
its red neighborhood Njy. If each vertex in Ng has > n —1 blue adjacencies in Nz, then
the tree T, can be constructed in Ng using only vertices of Ng. Hence there exists a
vertex w in N that has > (n+ m —2) — (n — 2) = m red adjacencies in Ng. But then
v and w are red adjacent and are commonly red adjacent to m vertices, contradicting
(R) 2 Bm.

Proposition 4. Theorem 2 holds when A(T,) > %n.

Proof: Let K2,_1 be colored and suppose (R) 2 By, and (B) 2 T,. By the last lemma
each vertex in the colored graph has blue degree > (2n —2) —(n+m —2)=n—m >
n—(n+3)/3=2n— 1. Also by Theorem 1 (B) contains a star on n — 1 edges. Let =
denote the center of this star. Further let y be the vertex of largest degree in Ty, and
let A denote the set of endvertices of T, adjacent to y.

We first show that the subtree 7' = (V' (T},) — A) of T}, can be embedded in (B). Start
this embedding by mapping ¥ to z and extend this map to a maximal subtree T of T'
in (B). Observe, since the blue degree of each vertex of the colored graph is > 2n —1,
that " contains > %n vertices. Also since y is not adjacent to any endvertices of T",
> (%n —1)/2 > (n — 2)/3 of these vertices of T" are non-neighbors of y. But the degree
of y is > Zn so y has < (n — 1) — (3n) = in — 1 non-neighbors in 7’. Hence 7" = T’
and 7" is embedded in (B) with y mapped to z.

The embedding is easily extendable in (B) to all of T}, since z has n—1 blue neighbors.
This contradicts the supposition (B) 2 Tn, completing the proof.

For the remainder of this section we will assume that T, fails to satisfy the condition
of Proposition 4. Before we continue towards a complete proof of Theorem 2 we outline
the strategy followed. Assuming the colored graph Kj,- contains neither a red B,
nor a blue Ty, we will show V(Kz,-;) contains disjoint sets X and ¥ such that (X)
contains all blue forests of order < [%n] and (¥) contains all blue forests of order
< [§n]. Furthermore these forests can be embedded such that each component can be
rooted arbitrarily. Next we show that the tree can be split appropiately to fit its ‘parts’
into the blue graphs of (X) and (Y), and these parts can be connected by blue edges
from X to Y. This is the essential content of the next three lemmas needed in the proof
of Theorem 2.

Lemma 5. Let Kyn—1 be colored such that (R) 2 By, and (8) 2 Tn. Then there exist
disjoint sets of vertices X and Y in the colored graph, |X| > n, |Y| 2 n —m + 1, such
that the blue degree of each vertex in {X) is > n—m and the blue degree of each vertex
in(Y)is>n—2m+1.

Proof: Among all vertices choose one, say w, of largest red degree. Let X denote that set
of red neighbors of w. To see that |X| > n build a largest subtree T of Ty in (B). Since
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T is a proper subgraph of T, there exists a vertex n of T with all its blue adjacencies
to other vertices of T'. Thus v has (2r — 1) — (n — 1) = n red adjacencies and |X| > n.
For convenience assume |X| =n + ¢ with ¢ > 0,

Since (R) 2 Bm each vertex of X has > (n+t—1) — (m—1) = n+t — m blue
adjacencies in X. Using this blue degree build a largest blue subtree T of T}, in (X) and
extend T to a largest blue subtree T' of T, avoiding vertex w. Note that 7" contains all
but < m — 1 vertices of X.

Since T' is a proper subgraph of Ty, one of its endvertices, say z, is red adjacent to
> (2rn — 1) — (n — 1) = n vertices with m — 1 of them in X. Hence z is red adjacent to
> n—m+ 1 vertices not in X. Let ¥ denote this set of > n — m + 1 red neighbors of z
lying outside of X. Since (R) 2 By, each vertex in ¥ has m — 1 red adjacencies in Y,
so that each such vertex has > n — 2m + 1 blue degree in (Y).

Lemma 6. One of the following occurs.

(i) There exists an edge e of T, such that the two components of T, — e have orders
[3n] and |n| respectively.

(i) There exists a vertex v of T,, such that the components of T, — v of order < L%n]
contains > | in| vertices of T,.

Proof: Assume (i) does not occur. For ¢ = vw an edge of Ty, let C, and C,, denote the
components of T, — e containing vertex v and w respectively. Choose e such that C,
is of minimal order with |V (C,)| > [%n] and |[V(Cy)| < [}n]. From the minimality of
the order of C, it is clear that d(v) > 2. Thus let Cy,Cj,...,C, be the components of
C, — v with each v; in C; and adjacent to v and |V(Cy)| > |'V(C;)[ > .. V(e
If |in] > |V(Cy)|, then (ii) follows. Thus assume [V (Cy)| > |3n]. Since (i) does not
occur we can assume d(v;) > 2. Let C{,Cy,...,C} be the components of C; — v, m
C) with each w; in C! and adjacent to v; and {V[C ) 2 [V(ey)| = ... = |[V(C)-
|4n] > |V(C})|, then (i) follows by replacing v by vy, while if |V(G'1}| > |in] repea.t
the last argument replacing C; by C] and v; by wy. After an appropriate number of
repetitions (ii) occurs.

Lemma 7. One of the following occurs.

(i) There exists an edge e of the tree Ty, such that the order of each of the components
of Tp — e is < [2n].

(ii) There exists a vertex v of the tree Ty, such that the order of each of the components
of Ty — v is < [§n].

Proof: Assume (i) does not occur. As in the proof of the last lemma, for e = uv an
edge of Ty, let C, and C,, be the components of T, — e containing v and w respectively.
Choose ¢ such that Cy is of minimal order with [V (Cy)| > [2n] and |V (Cy)| < [4n].
Thus d(v) > 2. Let vy, vs,...,v, be the vertices (other than w) adjacent to v. Denote by
Cy,Cs,...,C; the components of Cy — v with v; € V[C ) for each 1. From the minimality
of |V(C,.,)| it follows that |V (C;)| < [4n] for all i. Also if |[V(C;)| > |in| for some
7, then the components of T — v;v would satisfy (i). Hence the components of T, — v
satisfy the condition given in (ii).

We are now in a position to complete the proof of Theorem 2,
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Proof of Theorem 2: Again suppose that the graph K3, 1 has been colored such that
(R} 2 B and (B) 2 T,. By Lemma 5 there exists disjoint sets X and ¥ in the colored
graph, |X| > n, [¥| > n—m+12>n—(3n+1)+1 = in, such that the blue degree
of each vertex in (X) is > n — m > %n — 1 and the blue degree of each vertex in (¥) is
>n—2m+12>in—1. For z € X and y € ¥ we denote these blue degrees by dx 5(z)
and dyg(y) respectively. More generally for each vertex z and each set of vertices W
we let dw p(2) denote the number of blue adjacencies of z in W.

Since |X| > n and (B) 2 Ta, there exists a pair of vertices z1,z; € X that are red
adjacent. But (R} 2 B, so that either dy,3(z;) or dy,a(zz) is > (|¥| - (m —1))/2 =
(n —2m + 2)/2 > n/6. Without loss of generality assume dy5(z1) > n/6. Also from
the blue degrees of vertices in (X) and (V) calculated above, it is clear that (X) ((¥))
contains an arbitrary forest in B of order < [2n] (< [1n]) with all components rooted
arbitrarily.

From Proposition 4 we assume throughout the proof that A(T,) < Zn. We break
the remainder of the proof into two cases.

Case 1: There exists a vertex v in T, such that the largest [n/6] components of
T, — v of order < in contain collectively > | in| vertices.

Let Cy,Cy,...,Cy be the components of Ty, —v of order < %n with |V (Cy)| = |V (Ca)| =
.. > |V(Cy)|- We show T, can be embedded in the blue subgraph of (X UY).

Embed v at z; and since dy,3(z;) > n/6, continue to embed sequentially all vertices
of components Cy,Cy,...,Clp6) in the blue subgraph of (Y) until all these vertices
are embedded or until the embedding stops. In the embedding procedure we only use
blue neighbors of z; in ¥ if no other choices are available. If all the vertices of these
components are embeddable in (Y}, being > | in| in number, the remaining vertices of
the tree are embeddable in the blue subgraph of (X). Thus assume in this embedding
all vertices of Cy, Cy, ...,C; have been embedded (5 > 1) and that the embedding stops
at some vertex wy of Cjyy. If |, V(Cy)| > L%n], then the remainder of the tree

Tn — W, C; can be embedded in the blue subgraph of (X).

Thus we assume | UL, V(C;)| < |3n] and that the embedding of the next component
Cj4+1 in the blue subgraph of (V) stops at some vertex w;. Continue this embedding
to a largest subtree T of C;; in the blue subgraph of (¥). This gives a collection of
endvertices wy,wz,...,w, of T which are red adjacent to all vertices of ¥ — (V(C;) U
V(Ca) U...uV(C;) UV(T)). Extend this embedding to vertices of X in (8). Recall
dx,3(z) > 3n—1forz € X and |V (Cj41)| < |4n], so that the remainder of Cj,, namely
Cj41 — T, is embeddable in the blue subgraph of (X} or this embedding stops at some
wy,1 < u < s. But dys(y) > in—1implies [V (C1)UV (C2)U...uV (C;) UV (T)| > |in].
Hence the embedding can be extended to all Ty, if the remainder of C;, is embeddable
in the blue subgraph of (X). Thus the embedding stops at vertex w, and w, is red
adjacent to all vertices of

(X —{z}) U[Y — (V(C1) UV(Ca) U...UV(C;) UV(T))).

Letting a = |V (C1)UV (C3)U...uV(C;) UV (T)| this implies w, has > (|X|—-1)+|Y|—a
red adjacencies.
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From the proof of Lemma 5 we can assume that no vertex in the colored K3n—1 graph
has red degree > |X|. Thusa > |[¥| -1 > %n — 1. But by assumption |}_, V(C;)| <
[3n] so [V(Cjua)| > [V(T)| = (3n— 1) — (3r — 1) = }n a contradiction to |V (Cy44)| <
Lgnj. This contradiction completes the proof in this case.

Case 2: Case 1 does not occur.

We first establish for each vertex v in T, that the largest component of T, — v is of
order > |in]. Let there be t nontrivial components in T, — v. Then if each component
is of order < [1n], it follows from the fact Case 1 does not occur that t < [r/6]
and that these nontrivial components collectively contain < L%n] — 1 elements. Hence
AlTp) = (n—=1) = [[%nj -1) = %n, a contradiction. This establishes what we need,
namely, for each vertex v in T, the largest component of T,, — v is of order > L%nj i

Next observe that if there is an edge e = zw in T}, such that the components of T, —e
have orders [2n] and |in|, respectively, then T, is embeddable in (B). This follows by
mapping e to any blue edge from z; to the set Y, and-embedding the large component
of T, — e in the blue subgraph of {X) rooted at z; and the smaller component of T, — e
in the blue subgraph of (Y) appropiately rooted. We therefore assume that Lemma 6
(ii) holds.

Let v the vertex of T, guaranteed by Lemma 6 (ii) and let T, — v have compo-
nents Cy,Cy,...,Cy with [V(Cy)| = [V(C3)| = ... > [V(C¢)|. Since Lemma 6 (ii) holds,
[V(€1)| < [£n] and by what was earlier established |in| < [V(Cy)|. Also we may
assume (Y') contains a red edge, otherwise the blue graphs of both (X) and (Y¥') contain
any rooted blue tree of order < [%n] which by Lemma 7 implies T}, is embeddable in
the blue graph of (X UY). Let y;52 be a red edge of (Y).

Since (R} 2 B, either despy 5 (81) or dx,s(v2) is > (|X|—(m=1))/2 = (n—-m+1)/2 >
in. Assume dx (y1) > in.

Consider the vertex v of T}, and the components Cy,C},...,Cy of T, — v given above
with [in] > V(Cy)| > [V(Ca)| = ... > [V(Cy)| and [V(Cy)| > [in]. Map v to
y1, embedding C; in the blue subgraph of (X) such that a minimal number of blue
adjacencies of y; to elements of X are used. Since Case 1 fails to hold, the total number
of vertices in the set of nontrivial components of T, — v of order < %n is < [én]‘ But
Lemma 6 (ii) holds so by including an appropriate number of trivial components of T, —v
with all those nontrivial ones of order < in, we find a set of vertices with exactly |1n|
elements which can be embedded in the blue subgraph of (Y) and which extends the
embedding of < {v} U V(C;) > described above. Since [V(C1)| > |3n], dxs(u1) > in
and the blue subgraph of (X) contains all forests of order < [4n] with arbitrarily rooted
components, the given embedding can be extended in the blue subgraph of (X UY) to
include all of Ty, a contradiction.

This final contradiction completes the proof of Case 2 and the proof of Theorem 2.

From Theorem 2 a more general result can be proved by induction.
Theorem 8. The Ramsey number r(Ky+ K, Tn) =£n—1)+1for£>2andn > 3m—3.

Proof: The usual canonical example shows r(K; + Km,Ty) = £(n — 1) + 1. Thus color
each edge of a Ky(n—1)+1 red or blue. By Theorem 2 the result follows for £ = 2. Thus
assume £ > 2 and that the result holds for all values < £.
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Build the largest order subtree T of T, in (B). If T is a proper subgraph of Ty,
then there exists a vertex v of T of red degree > (£ — 1)(n — 1) + 1. Denote this set
of red adjacencies of v by Nz. But since {B) 2 Ty, the red subgraph of (Ng) contains
by assumption the graph K;_; + Km. This red K;_; + Km with vertex v span a red
K; + K., completing the inductive proof.

IV. Conclusion

The rectangular coloring given in Section II showed that r(By,,Ty) > 2n — 1 for
certain n < 3m — 4. It is in fact shown in [8] that r(K; + K, T) < &(n — 1) + m and
that equality holds when n — 1 divides m — 1. Thus it is of particular interest to learn
more about 7By, T,) whenever m <n < 3m —4.
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