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I conjectured more than 40 years ago that f (n)> c n/(log n) 2 .
The lattice points show that this if true is best possible . In this
paper we discuss problems related to the conjecture and other questions
related to this parameter .

I wrote many papers with this or similar titles, and will try to avoid repetitions as
much as possible.

Let xl,x2, . . .,xn be n distinct points in a metric space. Usually we will restrict
ourselves to the plane . Denote by D(xl, . . .,x„) the number of distinct distances
determined by x l ,. . .,xn . Assume that the points are in r-dimensional space . Denote by

fr(n) = min

	

D(xl,. . .,xn) .
X 1, . . .Xn

I conjectured more than 40 years ago that
(1)

	

f2(n) > c1n/(log n)1i2 .

I offer five hundred dollars for a proof or disproof of (1) . The lattice points show that
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(1) if true is best possible . Denote by d(xi ) the number of distinct distances from xi .
Probably for every choice of distinct points x l , . . .,xn in the plane, we have

(2)

	

max d(xi) > c2n/(log n)ü2
1 <i<n

and perhaps even
n

(3)

	

d(xi ) > cn 2/(log n)ti2 .

i=1

In 1946 I proved f2(n) > nli2 and this was improved by L . Moser to cn2/3 , and in fact

both Moser and I proved that max d(x i) >

	

respectively cn2/3 . A few years ago Fan
i

Chung achieved a breakthrough . She proved f2(n) > cn 5/7, but she did not prove max
d(x i) > cn5/7. f2(n) > n3i4 seems to be the best current result, due to Trotter and
Szemerédi (unpublished) .

It is not impossible that for every choice of x l , . . .,xn we in fact have
max d(xi) >_ (l+o(l))f2(n)

i

or perhaps even
max d(xi) >_ f2(n) - C

I
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for some absolute constant C . Perhaps the last conjecture is too optimistic .
Let x l , . . .,xn be a set of distinct points (in the plane) which implements f 2(n), i.e .,

the number of distinct distances D(xl, . . .,xn) determined by xl , . . .,x n is f2(n) . Consider
all these n-tuples . Is it true that for n > 5 there are always two such sets which are
dissimilar? i .e ., there is no similarity transformation which carries one into the other .
For n = 3 and n = 5 the equilateral triangle and the regular pentagon are the only sets
which implement f2(3) = 1 and f2(5) = 2 . Denote by h(n) the largest integer so that any

two sets Al(n) and A2(n) which implement f2(n) contain two sets of size h(n) which are
similar. The conjecture stated above is that, for n > 5, h(n) < n. Is it true that h(n) -+ -

as n -> - ? At present I cannot exclude the possibility that, for n > no , h(n) = 2, i .e.,
there are two sets x 1 , . . .,xn and y 1 , . . .,yn both of which implement f2(n) but no triangle
(xi,xi ,xp) is similar to any of the triangles (y i ,yi ,yn ) . I think this is unlikely since I
expect that for n > n o all these sets must contain equilateral triangles .

Another somewhat related problem asks : Let A(n) implement f2(n). For which k
must it contain a subset which implements f 2(k)? I think that for k = 3 and k = 4 this
must hold, but for k = 5 and n > n o , it fails in the following strong sense. No set A(n)
which implements f2(n) can contain a regular pentagon . I have no guess what happens
for k > 5 . More generally one could ask the following problem : Consider all the sets
x t , . . .,x k which can occur as subsets of a set A which implements f2(n) . What are the
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possible values of D(x l xk ), and, in particular, for which n and k is the value of
D(xl, . . .,xk) uniquely determined .

By the way, I suspect that A(n) must have lattice structure . Perhaps for n > no it
must be a subset of a triangular lattice . Again this conjecture could be completely
wrongheaded. A much weaker conjecture would be that if x l , . . .,x n implements f2(n)
then the points can be covered by cn li2 lines. I could not even prove that there is a line
which contains c1nti2 of the x i.

Many years ago I conjectured and Szemerédi proved that if D(xl, . . .,xn) = o(n) then
there is a line which contains unboundedly many of the x i 's . In fact he showed that
there is such a line which is a perpendicular bisector of two of our x i ' S .

It is easy to see that if D(xl, . . .,xn) = o(n) then for every fixed k there is a subset
xi , . . .,x i for which

I 1

	

k

(4)

	

D(x
1
.
1

, . . .,x
l
i k ) <_ 1 + (

k
2 ) .

In fact (4) follows already from the weaker assumption that there is an x i for which

d(xi) = o(n) . (4) follows trivially from the fact that there is a circle whose center is x i
and which must contain > k of our points . d(x i) = o(n) for one i only of course does not
imply that there are three of our points on a line . It is not clear to me that for how many
i's must d(xi ) = o(n) hold to imply that three of our points are on a line .

Perhaps (4) is best possible . In other words for every fixed k and n > n o(k) there is

a set x 1 , . . .,xk for which D(xl, . . .,xk) = o(n) and for every 3_< Q < k and every choice

of Q points xi , . . .,x i we have
~

	

Q

Q-1

D(xil, . . .,xi~) > 1 +

	

2

I cannot even prove this for Q = 3, in fact it may fail for Q = 3 but hold for Q = 4 . It may

be of interest to find out what happens if Q can tend to infinity with n . I would expect

that if D(xl, . . .,xn) <	cn	, then our set must contain equilateral (or at least isosceles)
lr2(log n)

triangles and four points with D(x11., x12. , x 13. , x 1. 4) = 2. I cannot even prove this with

3 instead of 4. I conjectured long ago that if x 1--xn is such that any set of four points

(x
11

. )
x12. , x13. , x l. 4) determines at least five distinct distances then

D(xl,x2, . . .,xn) > cn 2 .
If we only assume that D(x i1) x i2 , xi3 , xi4 ) >_ 4 for every choice of x il , x i2 , xi3 , x i4,

then I expect that this implies
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D(xl , . . ., xn)/n -+- ,
but I know that D(xl, . . .,xn) < n1+0(1) is possible . Clearly many related questions can
be asked and we leave their formulation to the interested reader .

The following question occurred to me a few weeks ago : Let S, and S2 be two sets
of distinct points x l , . . .,x n; y l , . . .,yn . The sets S, and S2 do not have to be disjoint .
Denote by d(S 1;S2 ) the number of distinct distances d(xi , yi ) . Is it true that

(5)

	

min d(S 1,S 2 )/f2 (n) --) 0
S PS2

as n tends to infinity? (5) is perhaps of interest for the following reason : By a well
known remark of Lenz, (5) certainly holds in 4-dimensions, since there min d(Si,S2) _
1 for every n. For 2 or 3 dimensions (5) is open and quite possibly the answer is
negative .

Here is one final problem of this type : Let x l ,. . .,x n be n points in the plane, no
four on a circle and every circle whose center is one of the xi contains at most two of our
points . Clearly for every x i we then have

d(xi) > n
21

Is it true that there is an absolute constant c so that

(6)

	

max d(x i) > (1+c)2 ?
1 <i<n

I offer 25 dollars for a solution .
We need the assumption that no four of our points are on a circle since otherwise

the regular polygon gives a counterexample . Perhaps in fact
n

		

2
d(xi ) > (l+c)2i=1

also holds . It might be of some interest to try to deduce (6) from as weak an assumption
as possible. It should certainly hold if we only assume that no k of our points are on a
circle where k is independent of n, perhaps this assumption can be weakened further .
We also assume that not too many of our points are on a line .

Let S be a set of n points in the plane no three on a line, no four on a circle . Denote
by h(n) the largest integer for which such a set determines at least h(n) distinct distances .
Pach just told me that h(2n) < 3n. The projection of the n-dimensional cube shows this .
Perhaps h(n)/n -+-, but as far as I know this is still open .

Pach and I now ask : Suppose the n points further satisfy that they do not contain a
parallelogram, or that no two lines determined by our n points are parallel . Is it then true
that our n points determine > cn2 distances?

To end this paper I discuss some decomposition problems, which are of a set
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theoretical character. Assume c = F, . Can one decompose E n, the n-dimensional
Euclidean space, as the union of X o sets Sn so that for every n all the distances in S n are
distinct? Kakutani and I proved that for n = 1 the answer is affirmative (but it becomes
negative if c > X 1 ). Davies proved that the answer is affirmative for n = 2 and Kunen
proved it for all n . A few years ago I asked whether such a decomposition is possible
for Hilbert spaces . Pása proved that the answer is negative in the following very strong
sense. There is a set S in a Hilbert space of power X 1 so that every subset S, of S with
power M 1 contains an equilateral triangle . c = X 1 was not needed here . If c = R 1 is
assumed, Pása shows that every subset of power 9 1 of his set contains an infinite
dimensional equilateral simplex. (This was just proved by Kunen in a surprisingly
simple way without using c = X 1 .)

Drop now the assumption c = K 1 . Can one decompose En into countably many
sets S i so that none of the S i contain an isosceles triangle? For n = 1 the answer is well
known to be affirmative, but as far as I know it is open for n > 1 . Clearly many related
questions can be asked .

Here is a Pizier type problem formulated by Nesetril, Rödl and myself . Let S be an
infinite set in the plane (or more generally in a metric space) . Assume that there is an
e > 0 so that for every n and every choice of n points x1,x2, . . .,xn of S there is a subset
x
i1

, . . .x i of these n points with m > E n so that all the distances among these m points
m

are distinct . Is it then true that S is the union of a finite number of sets S i ,
t

S=USi ,
i=1

where all the distances in S i are distinct? The condition is clearly necessary . Is it also
sufficient? Nesetril, Rödl and I have a paper in preparation about problems of this type .
The same problem could be asked about decomposition into sets not containing any

isosceles triples .
One could ask: Let ISI _ X 2 , S S En (we now assume c > K 1 ) . Assume that

every subset S 1 of S of power K t is the union of denumerably many sets S1til , vi
S10)

= S, so that for every i all the distances in S 1 0) are distinct. Does S then have such a
decomposition? Kunen just tells me that the answer is negative since his proof gives that
every S1 S En , ISI = K t has such a decomposition . Assume now c >_ M 3, ISI = X 3 ,
every subset S, g S, 1511 = K 2 has a decomposition into K o sets S 1 0) so that all the

distances in S 1 0) are distinct. Is it then true that S has such a decomposition?
The following sharpening of Kunen's result perhaps holds : One can decompose En

into countably many sets S i so that all the distances in S i are distinct and every distance

can occur in only a finite number of the S i 's . (Pósa just proved this for n s 2.)
Another interesting new type of decomposition problem was raised by Pach . Let S

be a collection of sets in En . Does there exist a constant k(S) such that any k-fold
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covering of E° by members of S can be split into two coverings? (A system of sets is
said to form a k-fold covering of En, if every point of the space is contained in at least k
sets.) Mani and Pach showed that if S is the family of all unit balls then the answer is in
the affirmative only if n = 2. In this case k(S) 48, but this bound is probably far from
being sharp. Perhaps the most interesting unsolved case in the plane is, when S is the
family of all strips, i .e ., all regions bounded by two parallel lines . For half planes and,
in general, for half-spaces the answer is positive and follows from Helly's Theorem .

One final problem : Let there be given n points in the plane no four on a line .
Determine or estimate the largest h(n) so that one can always find h(n) of them, no three

of which are on a line . Trivially h(n) >_ 2n . How far is this from being best possible? Mom

generally one can ask : Let x l , . . .,xn be n points no k on a line . Let Q < k. Determine
(or estimate) the largest h(n ;9,k) so that one can always find h(n ;Q,k) of them no 9 on a
line.
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