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. INTRODUCTION

Let X, X,;,.. be a sequence of independent, identically distributed
random vectors taking values from R* with distribution

PLX, =0, 1)} =P{X,=(0, —1}} =P{X,=(1,0)} =P{X, =(—1,0)} =4
and let

So=0=(0,0) and S(n)=8.=X,+X+ - +X, (n=1,2.)

ie, {5,] is the simple symmetric random walk on the plane. Further let
é{x! "J= # {k:{}{kﬂﬂ, S_Q :x}

(r=12, . x=(i fhi j=0 +1, +2 ..) be the local time of the random
walk. We say that the circle

Ny = {x=(L /) |xl=(F+ 7)) <N}
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170 ERD{IS AND REVESZ

i5 covered by the random walk in time n if

Elx,m)=0 forevery xeQ(N)
Let Rin) be the largest integer for which Q(R{n)) 15 covered in n. We are
interested in the limit properties of the random variables Rin) as n— o0,

This question was proposed by Erdiis and Taylor [5] and they claim “we
can show using the methods we have discussed above that™ for any ¢ =0

Rinyzexp((logn)'? %) 8

for all but finitely many »n “but we have failed to get a satisfactory upper
gstimate and have no plausible conjecture.”
This paper is devoted to the above gquestion and some related problems,

2. A Lower EstiMaTe oF Rin)

In this section we prove

THeorem 1. For any =0 we have

2
—{iag n) ) @5

R{ﬂ] = exp ({lngz n:.]l.'_q_ X

Sor all but finitely many n where log, is the k times iterated logarithm.

Before the proofl we present a few notations and lemmas,
Let y(x, n) be the probability that in the first n steps the path does not
pass through x ie. 1

i n)=P{flx,n-1)=0}.

Let (r) be the probability that the random walk {S,} hits the circle of
radius r before returming to the point 0= (0, D), ie.,

afr)=P{inl{n: ||S, | zr}<inf{n:nz=1,§5,=0}].

Further let fi(r, ¢) be the probability that starting from a point of the
circle-ring r=< | x| <r+ 1 the particle hits the point 0= {0, 0} before hiting
the circle of radius r, 1.e.,

ﬁ{ﬂ I.}:' P{mf{n Su . m:ﬂ} = inf{ﬂ: "SIF-I-HI" 3!‘!}[!’-‘; ”Sm" =r4 I JII
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Finally let
8(r) =8(r, r)=P{max ||S, || <r}
- e
and
plx)=plx, n)=PiE0,m<xlogn}.

Lemma 1. Let |xl = 'n'? with 20 <y <n'", Then

. _ oy 2log i log, w
].[x,r.r}—t Ingn (|+ﬂ(m)) {:1}
H_m plx, m)=1—exp(—nx) (2.2)

Jor 0=x < (log ny™ and the limit is approached uniformly in this range;

{l—exp{—ﬂl{i‘"}'l if =0,

A=\ expt—00)) i 1=,

(2.3)

Froof. (2.1) (resp. (2.2)) are proved in Erdos and Taylor [5] cf. (2.18)
(resp. Theorem 1). The proof of (2.3) is trivial.

Remark 1. (2.2) implies
PLED m)=0)=nlogn (24)
{cl. also Dvoretzky and Erdos, [2]).
Lemma 2. We have

lim a(r)logr=mn/2. (2.5)

Proof. Clearly we have
{inf{n: |5, 2r}>inf{n:n=1,8,=0}}

= {80, Flogr)=0}u{ max [S;<r}
k= rllogr

Since
PLE0, rPlogr)=0}=n/2logr by (24)
and

Pl max |5 r}=0(l/legr) by {23},

sk s logr

BELITA-12
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we have

a+oll)
2logr

a(r] =

Observe also

wry<P{ max S Zr}+P{EO, rPlogr) ') =0},

O & wz rtlog Fl—
Applying again (2.3) and (2.4) we obtain (2.5).
LemMa 3. For any 6=0 and r big enough we have

log, r
log r

flr, )= (14¢}) (2.6)

provided that 1 < 1< o((log log ¥}*) for any §=0.
Proaf. For any K>0 we have
Plr, ()< PLEO, KPP +m)— 80, m) 21| r< |8, <r 41}
+ P rnaxNII}S.,-II-ﬂﬂlrﬁ;HSmlI£r+!}=l+il.

rr ko= K
By {2.1)

2log
log Kr*

[=1—yx Kr¥)=

for any r< |lx|| <r+ 1. where ¢ = K'%/||x]| and

K

=P{ =
RS, I SR8 ({.' + 2}5)'

By choosing K= (1+2)*(loglogr)' ** (£=0) we obtain

log, r
logr

flr, 1)< (1 +35)

for any e>0 if r is big enough and | <t<o((log,r)*) (for any &=0)
Hence we have (2.6},

Lemma 4. For any £ =0 and r big enough we have
Bir,t)=1/elogr (27

provided that 1= (log log r)'?** for some 6 >0,
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Preof. For any K =0 we have

plr. )= P{EO, K +m)— (0, m)21|r<|S, | <r+1]}
—P{ max o 1Skl 2 rtlrs|S.lsr+1)=1—(1-1),

mosk
where

I=log Kjlog K*
and

I —l<P{ max ‘|l-5't||ér“—lj}xcxp(_{}(“' “_))

0= k= Ket K
provided that K =400 is an absolute constant and f=1t{r) — o0 as r— oo,
Choosing 7= (log, r)'* " with some § =0 we obtain (2.7).

In order to formulate our next lemmas we introduce some further
notations, Let

Pe=0, py=minfk:k>0,8,=0},..
pi=min{k:k>p, ,,8,=0} H=2.5 )

1| if max |5,z
X,{f‘}= ) R
0 otherwise,

Y (ri=% X(r)

i=1

Z.ff{r} = Y":ﬁ,m;{r}'

&

Clearly Y,(r) is the number of those excursions {among the first n) which
are going farther than r while Z, (r) is the same number among the excur-
sions completed before n;

=t (r)=minin: |5l =r},
ta=talr t)=minfninzt, 5. =i}

ty=tilr ty=min{n:nz=t |8, | =rh

Ty =Tyulr t)=min{n:nz1y _,, |5, =rt},
Tap =Ty (n t)=min{nnz e, |8, | <rh

@, =0(mr t)y=max{k: Ty, =0}

We say that @, is the number of the r — rt excursions completed before n.
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Levma 5. With probability ane for any &= 0 we have

1
oE2 -< £(0, n) < (1 4+¢) nllogn) logs n

(logsnm)'t

for all but finitely many n,

Proof, See Erdds and Taylor [5 Corellary on p. 145 and
Theorem 4.C7,

Lemma 6. Let r=r, be a sequence of positive mumbers with

n 3
rLoA O, — = (logn)***
N Iugr-ﬂ'[ zn)

for some & = 0. Then for any =10

(1 —¢)mn (1 4+&)mn
—é [
2logr Yyry< 2logr

with probability one for all but finitely many n.
Proof. 1t is a trivial consequence of Lemma 2,
Lemmas S and 6 imply
LemMma 7. Let r=r, be a sequence of positive numbers with

log m
A, ——=(logy )t
i logr (log, #)

for some § =0, Then for any £=10

log n 1 n* (log n) log, n
L, LR e, T L2 e e o+ e
(log, r:}l“'“]l::rgrﬁ r)<(1+e) 2 fogr

with probability ane for all bur finirely many n.
LEMMa B.  Let r=r, be a sequence of positive numbers with

log s
r,2 oy —— = (log. #)*t?
: Tog {log, m)

Sfor some § = 0. Then for any &> 0 and for all but finitely many n we have

A r 1)=ellogn)logyn Fi (2.8)
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pravided that

rz(log,r)'***  forsome §>0

logn |

n 1
i :'}Hﬂng, n) **log, r

(2.9)

provided that

r=olllogsr)*)  forall 6>0.

Proof. (2.8) follows from Lemmas 4 and 7, (2.9) follows from Lem-
mas 3 and 7.

Proof of Theorem 1. Let x be an arbitrary point of the circle of radius
rt, iz, Ix| <rt. Then by (2.1),

[P‘: bf[.f. Ty + Krlf]}'— f{.‘t’. T3 |_]

! log K
= 1|8ty or 1)} ;W ns, (2.10)

provided that 400 < K < r*t", By the law of iterated logarithm one gets that

Lo 112N bapgentity (1 )= Tqax ey (1 1) 2 Kr'ed (211)

Consider the paths

{8 Tapak g ety - o0 DS TS Tganiop-) (0 1 + K} (212)

) logn 1 1
Pt i [{]ng: n)'*“log, r (2K log, rn‘-“}

and observe that by (2.9) all of these paths are included in the path
{8, 1< /<n]. (211) implics that the paths (2.12) are disjoint and (2.10)
implies that for any x belonging to the circle of radius rf and for any 7 the
probability that the path of (2.12) does not pass through x is less than or
equal to

_ JogX
log Krit™’

assuming (29) and (2.11).
Consequently assuming again (29} and (2.11), the conditional
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probability that the path {5. 1< j<n| does not pass through x is less
than or equal to

( IDEK tog wilogs mi—t —4loga e H2AK logarr) - 12
] )

" log Krir?
log Klogn
Zexp| — T s > T 33
(log.n) " log, r{2K log, r1)"" log Kr-t
provided that
400 <K<rr?
1cﬁﬁ::s-l,llaj@,;: e for some =0,

logr

t=ol(log,r)") forall &=0.

Choosing K =400, r=log,r, r =exp((log n)"*- (logs n) " *2), we obtain
that the conditional probability that the path does not pass through x is

less than or equal to
(log n)'?
exp ( ~Toa, ™)'

Consequently the probability that the path does not pass through all points
of the circle of radius rr is less than or equal to

(logm)'* (log m)'?
e (E (ogan) “J e ( ~(log, m)" )

which easily proves Theorem 1.

3. Cmcres Coveren wWiITH Posmive DENSITY

Theorem | gave a lower estimate of Rin). Unfortunately we do not have
any non-trivial upper estimation, The result of Theorem 2 suggests that
Rin) can be much bigger. In order to formulate our result, introduce the
following notations

1 if El{x;m)=0,
’“"”'{n o E ) =0, (3.1)
KN, n)=(N°m)~* . d(x,n);
we N

ie, K(N, n) is the density of the points of Q(N) covered by the random
walk {5, 0<k=n]. We prove




CIRCLES COVERED BY RANDOM WALK

THEOREM 2. For any <o <12

limsup K{n®, n}= (1 —22)[1 = ({1 =)' =1)"?]  as.

N — oo

The prool is based on the following two lemmas.

LEMMA 9, Let 20 < ||x|| < n'? Then

177

2 .
I (, . (mg, ||:~||))‘ s
log n

log ||x|
Proof. See Erdds and Taylor [5, (2.16)].
Lenmaa 10, We have

(1 —plx— ¥ n) 1 —(y(x n) +3( ¥, 1))/2)

E(M{x, n) Iy, =
{(Hxom) My, m)) L —3(x— y,n)/2

Proof. For any lattice point = let
vi=minf{k: k>0, Sy=z}
Then we have
Eff(x, m} Ay 1))
=P{l(x,n)=1,1{y.n)=1)

= ), Plixn)=1yn)=1|v,=k<v,} Plv,=k<v,}
k=10
+ ¥ Plix,n)=L, Kpn)=1|v,=k<v,} Piv,=k<v,}

k=10

= ¥ Pllinn)=1|v,=k<v,} P{v,=k<v,)
&=y
i

+ ¥ Pilx, n)=1|v,=k<v, Py, =k<v,}

&
= i P{ly—xd—k)=1}P{v.=k<y}
k=1
+ i P{lix—yn—k)=1} P{v, =k<v,}
i
<PUx=nm=1)P{ § {{ro=k<y)+ =k <nd}]
&=

=P{lx=yn)=1}P{Hxn)=1or Ky,n)=1}
=F{lx—p.n)=1}[F{lixn)=1)
+B(Hy,ny=1)=B(lx,n)=1,1{y,n)=1)]
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Hence

P(l{x,m)=1, I y,n}=1)

_PUlx—p,m=1)[P{{x,n)=1)+ Py, n)=1]
- P(lix—y,n)=1)+1

and we have the lemma.

Proaf of Theorem 2. Apply Lemmas 1 (resp. Lemmas 9 and 10) with

n
= |"|! s lx— ¥l = il | 1 "
e =l I wll; lx— Il <n D<a<i)
We get
(1—2a)? ;
E(l(x, m) I{ y, n]) iﬂ-:-ﬁ— (n big enough)
and

Elix,n)=1-—2u

A simple calculation gives

(1 —2a)°

E(K(n®, n) —EK(n®, n))* < T

(1 —2a)?
and
EK{n®, n)=1—2a.
Hence by the Chebishev ineguality we have
P{K(n", n)=(1—el1=22)[1 = ((1 —a) ' =1)'"?]}=4,=0

for any &= 0 if n is big enough. Hence we have Theorem 2.

4. SoMe FurTHER PROBLEMS

[n Section 2 we have studied the area of the largest circle around the
origin covered by the random walk {S,, k<n}. The analog problem is
clearly meaningless since in RY (d=3) the largest covered sphere is finite
with probability one. However, one can ask in any dimension about the
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radius of the largest sphere (not surely around the origin} covered by the
random walk in time n. Formally speaking, let

O(N, u)={x: |x—ull €N}

and R*(n) be the largest integer for which there exists a rv. w=wuln) such
that

Ex,nizl il xe@(R*n), ul
It is trivial to see that in R
R*(n) = Const{log n)"",

However, we do not have any non-trivial estimate.

In case d=2 clearly B*(n)= Rin). We conjecture that R*{n) will not be
larger than R{n), but cannot settle this question. In fact this question is
somewhal related to the problem of favourite values (cf. Bass and Griffin
[1]. Erd6s and Révész [3], (1984), Erdos and Révész [4])

The analogous question in the case of spheres covered with positive
density can be also raised.

We also propose to investigate the area T, of the smallest convex hull of
the path {§,, k=n). Here we mention only a trivial result,

T, =2nnlog;n a8, 4.1

for all but finitely many n,

T, zanlog.n 4.5 1.0 (4.2)

with some suitable &= 0.

Proof. (4.1)is a trivial consequence of the law of iterated logarithm. Let
§,=(U,, V,). Then for any >0

PV, <& \/f_ U, =e(nlogsn)'?} =0((log n) " 7).

Consider the first crossing of the path after n with the positive p axis
assuming that |V, |<e/n, U,=e(nlog,n)'? Then with a positive
probability this crossing point will be farther from the origin than
{&/2)(nlog, n)'?, The time needed to get this point will not be more than n
with probability ©((log n)*). Hence the path {S,, k=2n} meets the
points  (z(nlog, n)'?,0) and (0, (42)(nlog, n)'?) with probability
O((log n) ™). Having this result, (4.2) can be obtained with the usual
methods,
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Nove added in progf,  The Tollowing result can be obtumed trivially:
THEOREM 2*.  For any 0 <o<1/2

g limsup K(e* ny=1—22 as

e ]
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