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NOTE

Isomorphic Subgraphs in a Graph

P. ERDOS, J. PACH and L. PYBER

At the combinatorics meeting of this Proceedings J. Schonheim posed the
following problem: Is it true, that every graph of n edges has two (not necessarily
induced) isomorphic edge disjoint subgraphs with say \/n edges? In the present
note we answer this question in the affirmative. In fact we prove that every graph
of n edges contains two isomorphic edge disjoint subgraphs with en?/? edges and
apart from the constant factor this result is best possible. Various generalizations
are considered.

For any hypergraph ¥, let V(X) and E(X) denote the set of vertices and the
set of (hyper)edges of X, respectively. |E(X)| will be called the size of ¥. Given
any natural numbers r,s > 2, let f, ,{n) denote the maximum integer f such that
in every r-uniform hypergraph X of size n one can find s pairwise edge-disjoint
isomorphic subhypergraphs ¥;, ¥3,..., X, € X of size f. We can summarize our
results in the following.

Theorem. (i) For every s > 2 there exist ¢,,d, > 0 such that

c'na{[za—l} < le,(ﬂ.) < d’nsﬂm-ll ) ‘_';:;_DE;E;

(ii) For every r > 3, s > 2 there exist ¢, ,,d, , > 0 such that

eran®/ (=1 < f, (n) < d, nt/lremrt) . ogn

Proof. First we establish the upper bounds for all r,s > 2. Let us consider a
random r-uniform hypergraph ¥ with n edges and

v= nu}[rs—ri—ll
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vertices. On this vertex set one can choose s isomorphic hypergraphs X, ¥o,..., X,
a—1
of sise f in at most (( )) (9)*™ Jifferent ways. Thus the probability that X

contains s pairwise edge-d]s;omt isomorphic subhypergraphs of size f does not
exceed

o 1
()5 ('(‘{3;)"(@: o ()" (i o)

Clearly, this number is smaller than 1, provided that § <e,, lﬁfo]?ogl for a suitable
positive constant &, ,. In particular, for

f= iﬂu’lra—rﬂi

T oene loglogn’

logn

with positive probability ¥ does not have s edge-disjoint isomorphic subhyper-
graphs of size f.

To prove the lower bound in (i), we shall need a simple observation. A siar of
a graph G is a nonempty collection of edges incident to the same vertex. A graph
is called a star-system, if all of its connected components are stars.

Lemma. Let G* be a star-system on v > 32(s — 1)® vertices. If G* does not
contain s pairwise edge-disjoint isomorphic subgraphs of size f, then

v<ds(f-1).

Proof of the Lemma. First we show that if G* is any star-system on v vertices
then, apart from at most y/2(s — 1)°v edges, E(G*) can be partitioned into s
isomorphic classes.

If G* contains s components of the same size, then the assertion follows by
induction on the number of vertices. Otherwise, denoting by ¢t the number of
components of G*, we have

s—1 2|s—1

v—t=|E(C")| 2 (s—1) (1+2+...+ [L]) ¥ [ J }

Therefore
\/Zu(s — 1].

Since, apart from at most s —1 edges, each component can be divided into s stars of
the same size, the number of “exceptional” edges is at most (s— 1)t < 1/2(s — 1)7v,
and the assertion follows.
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Assume now that v > 32(s — 1)°. Then /2(s — 1)%v < ¥, i.e., G* has at most
% “exceptional” edges. Hence the number of edges which occur in a given class of
the partition is at least (|E(G*)| — [v/4])/s > v/4s. Using the fact that each class
is of size at most f — 1, we obtain the Lemma. B

We turn to the proof of the lower bound in (i}. Let G be a graph with n edges
and v non-isolated vertices, and let f be a natural number. Let us partition E(G)
into s as equal parts as possible: E(G) = E;UE;U...UE,, |E| > [n/s| for every 1.

If there exist s — 1 permutations of the vertex set, =y, m2,..., m,—1 such that
1?T|_El AmgEan...Nme_1 By N E,: =>f

then G obviously contains s pairwise edge-disjoint isomorphic subgraphs of size f.
Otherwise, the average size of mE, N...N m,—1E,_1 N E, over all choices of
Miy.e.,Ma—q is at most f — 1, ie.,

=12 g [ a2 B (3)

Let G* C G be any star-system spanning all non-isolated vertices of G. If G
does not contain s pairwise edge-disjoint isomorphic subgraphs of size f, then the
same is true for G*. Hence we can apply the Lemma to deduce

v < 4s(f - 1).

Combining the last two inequalities we obtain that, if G does not have s pairwise
edge-disjoint isomorphic subgraphs of size f, then

% 1—1
1-12[2) (soke)
ny4/(2e-1) 1
ey 2 R,
/ = [s] 3s
This proves the lower bound in (i).

The (weak) lower bounds in (i) can be established by induction on r. Let ¥
be an r-uniform hypergraph with n edges. If there is a vertex € V(X) of degree
m, then we can find s edge-disjoint isomorphic subhypergraphs of size f,_; ,(m)
among the edges of ¥ containing z. Otherwise, we can choose at least n/rm
pairwise disjoint edges, hence

fr,n{“) e mﬂi“ max {fr—- 1,8 {m]a [%]}

and the result follows by easy calculation. W
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It would be interesting to improve the bounds for hypergraphs. The first
unsolved problem is the following: Is it true that every 3-hypergraph of n edges
contains two edge disjoint subgraphs with cy/n edges?

Note added in proof: Similar results have benn obtained by the authors I.
Krasikov and N. Alon and the authors R. Gould and V. Radl.
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