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Intersection Graphs for Families of Balls in R"

P. ERDŐS . C . D. GODSIL, S . G. KRANTZ* AND T . D . PARSONS * t

1 . INTRODUCTION

If F is a finite family of sets, then the intersection graph r(F) is the graph with vertex-set
F and edges the unordered pairs C, D of distinct elements of F such that C n D # 0 . It
is easy to see [6, p . 19] that every graph G is isomorphic to some intersection graph T(F) .

Some interesting classes of graphs have arisen by letting F range over families of balls in
some metric space, such as arcs on a circle or intervals of the real line [4], or cubes, boxes
or spherical balls in n-space [9, 11, 12] .

For the case of balls in R" with the Euclidean norm, Guttman [5] and Havel [7] have
defined the sphericity, sph(G), of a graph G to be the least dimension n in which G is
isomorphic to F(F) for F some family of open (equivalently, closed) balls of radius 1 ; and
Maehara [111 has defined the contact dimension, ed(G), to be the least n for which G is
isomorphic to T(F) for F some family of closed balls of radius 1 such that no pair of
balls intersects in more than one point . Maehara has shown that sph(G) < cd(G) <

I V(G)I - I for all graphs G, and has studied sph(G) and cd(G) as functions of the structure
of G [9-11] .

Roberts [12] has defined the cubicity, cub(G), of G to be the least n for which G is
isomorphic to F(F) for F some family of unit cubes with edges parallel to the Cartesian
co-ordinate axes in R" . Such cubes can be viewed as balls with respect to a different norm
on R", and the question arises as to how the shape of the unit ball in an n-dimensional
normed linear space is related to the least n in which G can be represented by an appropriate
T(F). Havel [7] has shown that there are graphs of sphericity 2 but with arbitrarily large
cubicity ; Fishburn [3] has shown that there are graphs G of cubicity 2 or 3 for which
sph(G) > cub(G ), but remarks that it is unknown whether sph(H) > cub(H) can hold for
graphs H of arbitrarily large cubicity.

In this paper, we are concerned with a different type of problem . LetF be the set of all
graphs F(F), where F is a family of balls of arbitrary radii in R" in the Euclidean norm
(where we allow both open balls and closed balls to be in F, since the distinction here will
be unimportant) . We are interested in what happens if none of the balls in F is allowed to
penetrate too far into another ball of F. That is, we relax the notion of `contact dimension'
to allow more contact than a single point (and to allow arbitrary radii), but we shall restrict
the amount of contact between any two balls in F . For 0 < a < 1, let r,, be the set of all
graphs r(F) in I'" such that no ball in Fcontains more than the fixed proportion (1 - e)
of the voluem of another ball in F. We shall see that the graphs in I;, have bounded
chromatic numbers, which seems somewhat surprising for small e .

Let B(x, r) denote a ball (either open or closed), of radius r > 0 and center x, in the
Euclidean space R" . Let B°(x, r) _ { y : lIx - ylll < rj, and B°(x, r) _ { y : IIx - yll < r},
be the corresponding open, and closed balls . Let µ[A] be the n-dimensional Lebesgue
volume of the subset A of R" . Henceforth, c always denotes a real number in (0, 1] . A pair
of balls B, B' are e-disjoint if u(B n B') < (I - e) min {µ(B), µ(B')} . If two balls B, B'
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are not e-disjoint, then we say they are (1 - e)-friendly, since in this case they overlap on
more than a proportion of (I - c) of the volume of the smaller ball . A family F of balls
is e-disjoint whenever every pair of balls in F is e-disjoint . Thus r, is the set of all
intersection graphs F(F) for e-disjoint families F of balls in R" .

Note that as e tends to l, the `disjointness' of e-disjoint balls B, B' increases, and the
1-disjoint balls are either disjoint or else they intersect in a single point . In particular, r ,
is the set of graphs G such that cd(G) _< n, and so contains all G with I V(G )I _< n + 1,
by [l1] .

Clearly, 0 < a < e' < l implies IF, ., r,,,, c. Fn _, S IF, . Let Z(G) denote the chromatic
number of graph G, N(v) denote the set of neighbors of vertex v in G, and <A) denote the
subgraph induced by the subset A of vertices of G . For terms not defined here, consult [6] .
We summarize our results as follows :

THEOREM 1 . There exists a least integer d = d(n, e) such that every graph in r„,„ has a
vertex of degree at most d .

COROLLARY 2 . Max {y(G) :G e rt} 5 d(n, a) + 1 .

THEOREM 3 . There exists a least integer m = m(n) such that every graph G in F„ has a
vertex v .for which <N(v)) contains no independent set of size greater than m .

COROLLARY 4 . The complete bipartite graph Kp.p ~ r„ for all p _> m(n) .

We remark that Janos Pach of the Mathematical Institute, Budapest, has independently
proved, but not published, the result of our Corollary 2 .

2. PRELIMINARY LEMMAS

LEMMA A . if X is a compact metric space and d > 0, then there is a least integer
N = N(X, S) such that X contains no more than N points which are pairwise at least
S-distance from each other.

Lemma A is well known. We omit its easy proof. Henceforth, we let 0 < e < I and
_ (I - of" . Note that 0 < ti < I .

LEMMA B . B(y, r) and B(z, s) are (I - e)friendly if either
(1)s-Iy-zJI>2r

	

or

	

(2)0<r_<sandlly-zll<r(1-ti) .

PROOF . Suppose that s - I y - zll > ar. We may choose r such that i.r < r < r and
r < s - I y - z I . Then B°(z, s)

	

B(y, i), so that u[B(y, r) n B(z, s)] > u[B(y, r) n
B( )', i)] = u[B(y, r)] > µ[B(y, r ;.)] _ ~!'u[B(y, r)] _ (I - e)u[B(y, r)] . Therefore B(y, r)
and B(z, s) are (1 - e)-friendly . If 0 < r < s and I y - z1I < r(1 - ti), then l y - zll <
r - rR _< s - rn, so that ri. < s - Il y - zll, and the previous case applies .

	

1-1

Let F(x, 0) denote any closed sector in the plane between two rays with vertex x and angle
0, and for d > 0 let E(x, 0, d) _ {w e E(x, B) : I w - x I > d } .

LEMMA C . There exist d > 0 and an acute angle 0 > 0 such that ifr, s > 0 and y, z e R2,
and r, s, ,v, z satisfy all of the conditions



Intersection graphs for families of balls

	

503

(i) Ix-y11 - lx-z1 and y,zc1(_r,0,d),
(ü ) B(x, 1) n B( y, r) # o # B(x . 1

	

B(-- , s), and
(iii) B(x, 1)

	

B(y, r)
then .s - 11 y - z I' > í,r .

PROOF . Choose 0 such that 0 < 0 < n/4 and cos 0 - sin 0 > A . (This is possible since
cos 0 - sin 0 increases to I as 0 decreases to 0 .) Let d = (I + A)/(cos 0 - sin 0 - R) .
Note that 0 < cos 0 -sin 0 - A < 1 - A, so that d > (I + A) > I +),and
(d-1);(d+1)>i. .

Suppose that r, s > 0 and y, z e R 2 and r, s, y, z satisfy (i), (ü) and (iii) . Let a = llx - yll
and b = II y - zll . From (i), Ilx - zl1 > a > d . From (ü), r > a - 1 and s > llx - zll - 1
From (iii), a + 1 > r.

If the line M through x and y contains z, then s - II y - zll > IIx - z1l - I -
Iy - zl=Ilx - zll - 11 y - z1l - I=llx - yll - I=a - 1 >d(a+1)>i.r. This
holds because (i) implies that llx - z1l = Ix - yl' + 11 y - zll, and because a > d implies
that (a - 1);(a + 1) > (d - 1) ;d + 1) > i. > 0, where a + 1 > r. (Here we use that
(x - 1)/(x + 1) is increasing for x > 0 .) Thus we obtain s - 11 y - 711 > i.r in this case .

Now suppose that z does not lie on M, and let L be the line through x and z, and let T
be the triangle with vertices x, y, z (see Figure 1) .

FiGURE I

We have 0 0, since y, z e E(x, 0) . Let p be the foot of the perpendicular from y to L.
Then a sin ¢ = b sin 0 = I y - p'1 . Let q be the point on segment xz of L such that
Ilq - zll = b . Our conditions imply that 0 < angle xyz, so that b < IIx - zll . Then
Ilq - pl = b - b cos 0, so that IIq - xjj = a cos 0 - Ilq - pll = a cos 0 +
bcos0-b . Now s-b=s-fq-z1I>(Ix - zll-1)-lq-z11=(IIX - zll -
I q - z'l) - I = lq - xll - I = a cos 0 + b cos q1 - b - 1 = a cos 0 + ( b' - b 2
sin' 41)" - b - 1 = a cos ¢ + [(b 2 - a2 sin'- 05)"r - b] - I = a cos

	

- I -
(a` sin` (P)/[b + (b r - a2 sin2 01 .
We must have 0 < 0 < r7E,/2, because i f >V >7c/2then the sid e a of the triangl e T would

be the (unique) largest side o f T, violating the conditiong that lx - zII > a = Ilx - y1l •
Now 0 < a sin = b sin Vi < b < b + b cos 0 = b + (b` b2 sine 0)''2 _
b + (b2 - a'` sine 0)1/2, so that 0 < (a sin 0)/[b + ( b2 - a 2 sin' O)''] < l . Therefore
0 < (a2 sin e 0)/[b + (b- - a2 sin' 0)1121 < a sin 0 . Applying this to our previous inequality
for s - b, we obtain s - b > a cos O - 1 - a sin 0 . But g(y) =cosy -sin ,., is
decreasing for 0 < y < tc/2, and we have that 0 < (P -< 0, therefore 0 < cos 0 -
sin 0 - i. -< cos ¢ - sin (P - ti . Also, a > d = (1 + ti)Jcos 0 - sin 0 - ti)
(1 + ti)/(cos 0 - sin 0 - ).); thus s - b > a(cos q5 - sin ~) - 1 > R(a + 1) > Ar .
Therefore s - II y - Z11 > )r

	

El

LEMMA D . Let Bo = B`(0, 1) be the closed unit ball at the origin in R" . There exists an
integer k = k(n, c), depending only on n and e, such that if h > k and {B(x„ r,) : 1 - i < h}
is any family of distinct balls ofradii r, > 1, each of which intersects Bo , then there are distinct
indices p, q e {1, . . . , h} such that either (i) Ba S B(x,,, rj or (ü) Bo L B(x q , ry ) or
(iii) B(xo , r.) and B(xy , rq ) are (I - e) friendly .



504

	

P. Erdös et al .

PROOF . Let d, 0 be as in Lemma C . Let S be the unit sphere {x e R' : IxJJ = I f .
Let C) = 2 sin (0/4) . The covering iB°(x, p) : x e S} of S has a finite subcover

1 < i < m}, where m is chosen to be least possible and clearly depends only
on n and 0, that is, on n and e . (In fact, it is easy to see that rn < N(S, Q), where N is from
Lemma A.) For 1 < i < m, let C; be the cone {x e R" : there exists some y e B°(y;, o) such
that x lies on the ray from 0 through y} . Let D = B`(0, d) and let C,* _ {x e C; : '~xJJ _> df,
for each i, l < i < m . Let S = l - ) _ (1

	

and let k = in + N(D, S) .
Now suppose that h > k and that {B(x i , r,) : 1 < i < h} is a family of distinct balls of

radii r, _> I such that each B(x,, r) n Bo 0 . Suppose that for every pair p, q of distinct
elements of il, . . . , h}, none of the conditions (i), (ü) and (iii) holds . At most N(D, S)
indices i have x, c- D; otherwise, by Lemma A, we obtain some Ix, - x y 11 < l - ti <

rá,(1 - ),) and, by Lemma B(2), (iii) would hold . Clearly, C,* U . . . v C,* v D = R", so
by the pigeonhole principle at least two distinct indices p, q in { 1, . . . , hf have both xr , xq
lying in the same C;*, for some j . Assume that n > I . (The case n = 1 is easy, and in fact
follows from the case n = 2.) The points x P , x„ and the origin 0 lie in a plane P, which we
identify with R', and the closure of P n C; is a sector E(0, 0) because of our choice of N .
Without loss of generality, we may assume that IIx,,1l < I'xy 11 . Then x = 0, y = x a , z = x,,,
r = r, and s - ry satisfy the hypotheses of Lemma C . Therefore r4 - ~ Ix, - .x, ;I > 2r,, .
But then by Lemma B, we have that condition (iii) holds . This is a contradiction . We
conclude that at least one of (i), (ü) and (iii) must hold.

	

1-1

3 . PROOF OF THEOREM I

If F = F(F) e F_ and B(x, r) is a ball of F of least radius r, then we may replace each
ball B(y, s) of F by the ball B(y - x, s/r), thereby obtaining a new family F' for which
F(F') c F, and where F (F) e T and has B(0, 1) as a ball of least radius in F' . This
is because the similarity transformation T( y) _ (y - x)/r preserves proportions of
t7-dimensional Lebesgue volumes . Therefore we may assume without loss of generality that
Bo = B(0, l) e F is a ball of least radius in F.

Let {B(xi , r) : I < i < h} be the balls in F which are neighbors of Bo in F . For all i such
that l < i < h, Bö n B(x,, r,) 2 B„ n B(x,, ri ) #

0
. Also, B0 B(xi , r,) for every i,

since otherwise for some i, µ[Bo n B(x,, r,)] = µ[Bo] > (1 - e)µ[B,], which would con-
tradict the e-disjointness of the balls Bo and B(x,, r) . Further, every ri > I, since B„ has least
radius in F . Now h < k(n, c) follows from Lemma D and the hypothesis that F is an
t,-disjoint family via F(F) e F",, .

	

El

REMARK . Corollary 2 is an immediate consequence of Theorem I, by an old argument
of Dirac [1] ; namely, assuming that all graphs in F", F with fewer vertices than F can be
colored with d(n, e) + 1 or fewer colors, delete a vertex of degree < d(n, e) from F and color
the vertices of the resulting graph . Then at least one color will be available for the deleted
vertex when it is restored to F . This shows recursively how to color properly the vertices
of any G e F„ . with d(n, e) + I or fewer colors .

Corollary 2 has an interesting geometrical interpretation : there is a least integer e =
c(n, e) such that every finite family F of balls in R" of arbitrary radii, such that none of the
balls contains more than the fraction (I - e) of the volume of another, can be partitioned
into at most c subfamilies in each of which the balls are pairwise disjoint . This generalizes
a result of two of the authors [8], which was inspired by related results in [2] .

4 . PROOF OF THEOREM 3

Let m = k(n, i ), where the positive integer k comes from Lemma D by taking e = ;. Let
17 E T" . Say F = F(F) . By the same argument used in Section 3, we may assume that
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Be = B(0, 1) is a ball of (east radius in F . Let {B(xi , r i ) : 1 _< i _< h1f be a maximum inde-
pendent set of vertices amongst the neighbors of B. in F . We claim that h _< m . This is clear
if h = l . Suppose that h > 1 . Now Bo n B(x i , r) 0 for each i, 1 _< i _< h, but
15 p < q S h implies that B(.x,, r,), and B(xy , r,) are disjoint, and hence they are cer-
tainly not 21 -friendly. Also, Bt , st B(.xi , ri) for every i ; indeed, if B„ s B(-'C,, rp ) for some p,
then choosing q A p we would obtain 0 = B(xp , rp ) n B(x,,, rt ) Be n B(x y , r y ) 56 0,
a contradiction . By Lemma D, we conclude that h _< m . 171
We note that Corollary 4 is an immediate consequence of Theorem 3 .
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