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SOME REMARKS ON INFINITE SERIES
P. ERDOS, I JOO and L. A. SZEKELY
Dedicated to Professor K. Tandori on the occasion of his 60th birthday

In the present paper we investigate the following problems. Suppose a,>0
for n=1 and 2 aq,=-c=.
n=1
N° 1. Does there exist a sequence of natural numbers Ny;=0, N; /<, such
that it decomposes the series monotone decreasingly:
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In order to state the second problem we define the index ,(c) as the minimum
m such that
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Now the second problem is as follows.

N°2, What is the relation between the behaviour of 2’ a® and the typical

behaviour of Z @, (o) (c is variable)? As it turns out, the two problems are related.

Problem N°l 15 motivated by the fact, that for every non-negative continuous

Tn 1

function f: [0, e=)~R it is easy to define a sequence x;, = such that f f=
7 m=0,1,..).

Tns1

oo

THEOREM 1. Suppose a,=0, a,=a,,, for every n=1, 3 a,=<. Then for

every ¢=0

2 a: and kg; Buec)

are equiconvergent.
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Proor.! We may suppose a,\.0, since in the opposite case the statement is
trivial. Hence we have for A=K(c)

M 41(€) = ni(c)
and

e a1 ()

> a;=c+o(l).

i= nk(c}-{—l

In view of monotonicity of (a,) for k=K(c)

my 4 4lc) ny44(€) 3 A4 4(€)
2 Wane= 2 a=( 2 a)an, o
i=nmlc)+1 i=mlc)+1 i=n(c)+1

and the equiconvergence holds. ||
Theorem 1 makes possible to give a partial solution for problem N° 1.
THEOREM 2. Suppose a,=0, > a,=-<e.

n=1
() If (a,) has a majorant (b,)El, with b,=b,,, for n=1, then 3 a, has
the decomposition required in (1).
(i) If a,=a,,, for n=1, (a,)¢1l,, then there exists a series >'b, having no
decomposition and 1/3<a,/b,<3.

ProoF. In the first step we prove the existence of the required decomposition
(1) for (b,). Let N,=0. We define N, so large, that

Ny
Jj=1
obeys
(3 K,/6 = max b,
4 kz; b kymy < Kif2.

The number N, exists, since >’ b, (. is finite by Theorem 1 and monotone decreas-
=1
ing in ¢, and K, is as large as we want.
Suppose N,, Ny, ..., N;, N;;, are defined and

Niia
Ki= > b;=K/2

F=N+1

Let N,,, be the largest index for which

Nisie
bj' Z bjn

J=N+1 J=N; ,+1

Nisa

Iy

1 The present simple proof is due to G. Petruska.
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N+
By (3) we have N;,,=>N;,,. We prove K, ,:= Z= b;=K,/2, what means, N;
J=Ni,+1
and K; are defined for i=0 with K,=K,=K,=... X

Assume m is the least integer with K,,,+1-<Kf2. First, K,=K,/2 and by
the choice of N;s and by (3) K,—K,:1<=K,/6, hence K, ,;=K,/3. On the
other hand

m+1 m41

Ky —Kpi1 = 2 by 41 = Z by (K1) = _mems)

Using (4) we have K, ,,=K,/2, a contradiction.
In the second step set My=0, select M, so large that

M,
K= 2a;
i=1
and let M;,, be the largest integer with
Mi*l MJJ!
a;= 2 a
j=M,+1 J=M; 41
Set
M[+|
L= 2 a
J=M+1

We have to prove M,,,.,>M, ., for m=0. Obviously, M;=N; and
m-+1 m+1 m+1

Li=Lys1 = Z M+l = Z b1 = Z by, yr1 = anuhzfﬁ] = Ky/2,

what means L,.,=K,/2, i.e. M, ,,>M,,,. In order to prove (ii) suppose with-
out loss of generality a,=1 and set f(0)=0,

f(n):=|{k: 2" = qp < 27"+
for n=1. It is well-known that

L=}
Zaz - oo

if and only if Z f(n)4="<es. If f(n)=0 we define a strictly monotone increasing
=1

sequence g, ; (_;-—I 2, ..., f(n)) obeying O=e¢, ;=47". For every natural number
I there exists a unique m  with

JO D+ ... +f(m—=1) < i =fO)+f(D)+... +f(m).
We define
() b;:=2""48 m-1
m.l—} {D I

and prove that > b; satisfies the requirements of (ii). Obviously, 1/3<a,/b,<3.
The sequence (b;) is monotone increasing in the intervals

(3 100, 3500]
of indices, by (5). g .
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Suppose there exists a decomposition required in (1) for >’ b; with indices
Ny=0<N;<N,<... and

B

Nt+1

4
J=N+1

We are going to prove K;=-<, a contradiction. If

©) E’:f(f) = Ni< N < 310

then K;—K;,.;=2-™ since N; . ,— N;.1<N;,1—N; by the strictly monotone increas-
ingness of (b;) in the above considered interval. Since K,=K,=K,=... by (1),
we have

|{i: (6) holds for i}| = Kf(n;)m -3.

Comparing our estimates we have

K, = é:}(Ki—KiH) = 2 (Ki—K)= g L [ é,(’?"' _3] == 1

(6) holds for i

M. Szegedy noted, that with a bit more effort one can prove (ii) with
bi=a;(1+0(1)). We have conjectured that (a,)€/l, is sufficient for having a decom-
position. Recently, the conjecture was proved by M. Szegedy and G Tardos [1].

Now we investigate what happens if we drop the condition a4,=a,., from
Theorem 1. It is clear, that dropping the condition a countcrexample can be given
for a fixed ¢, but we have

THEOREM 3. Suppose a,=0, fa,,:oo. If
n=10

S al <o, then X:={c: kZ Buye) =}
=1

n=0
is of measure zero, and if

oo

D ai=co, then Y:={c: 3 a, ) <=}
k=1

n=0
is meagre (i.e. of first category).

Proor. In the first case we have for 0<=g<b<=-<

- b
2 f Ay ey de <o,
k=1

what proves the first statement by Beppo Levi’s theorem. Indeed, we have for
k=K(c)

4 1

f Apyde = 3 JZJ’ a3

ka= kb
a “-El a=
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and

b
oo oo I
a, odc= > a3 — =
S omode= 2, 2 g

1 J )
-3 nlékﬁl X oa
b =1 a =1

s

a3 (log%-l-o(l)] <oo,

1

J

In the second case we prove for 0=a<b<o

w b
2> f Ay (oyde =oo.
k=1

It is trivial, if inf a,=¢=0. Ifnot, the previous estimates will be repeated for a<a'<
<b’<b in the inverse direction and

b
oo oo b
2 f Ay yde= 2 a3 [log
k=1 =1

r

+a(I)] = oo,

a/

The function c¢—f(c):= > a, ( is lower semicontinuous from the left side since
k=1

CEEH_ f(c)gf(fu)s so
H;:= {c: wé; Qnicy > 1}

contains a dense open set G;C(0, ). This way

{e: kg; Qpyey =} = N H;D Q G,
and

{e: kz; Upy ey <2}
is meagre. |

 The size of an exceptional set in Theorem 3 is still an open question. A par-
ticular answer is given by the next construction.

THEOREM 4. X can be residual, and Y can be of cardinality continuum.

PROOF. We construct 2” a,< == with a residual X. Suppose {«;: i€ N} is dense in

n=1
(0, =) and let f; be Bi:oci_(;«) if [!2{]{:‘*:‘— [k;rl]. For every f; set some seg-
ments a;: j€l;, so, that
— [ finite, a;: j€I; are disjoint,
— on the ray (0, ) all a;: j€I; is on the right hand from all a;: je€I,,
where k=i,

1
— Dlat=—, a, =1
je, 7 2 Ig; e

— all the segments a; have in their interior a multiple of f;.

We cover the rest of the ray with segments a;: j€J such that 3 aj<eoo,
jied
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If B; is the n-th repetition of «,, there is a neighbourhood V' of «,, such that
myo€a; (m;eN) implies mV¢ca; (jEI). Now clearly N (UVy) is residual
n k

and X contains it.

Now we construct a perfect set Y (i.e. of cardinality continuum) in the fol-
lowing way. Set I}=[100, 101], we are going to define closed intervals I} (i=1, ..., 2")
for n=1, 2, ... with the propcrty I} contains the disjoint intervals 12“ and 137
We have a perfect set ﬂ(U = ln U Il we select 2"*! numbers x;, ..., Xpn+1

independent over the ﬁcld of rationals, two of which are in int I} (i=1, ...,2").
By Kronecker’s Theorem for infinitely many «;

lot; —k;, ;x;] < 0,001

for i=1,2; .20 k,-_j integer. We are interested only in a,,...,%,. We set
an interval Ji (m=1, ..., n), |J?|=1/200 close to a; but right to it, Ji not con-
taining any multiple of x;,xz, ve.y Xgn+1, right from the previous J{V U{H 1=i=2).
Now we define /i , as short intervals centered at x;, so that none of the Jir

(m=1, ...,n) intersect any multiple of /i, ,. Finally we define the series > a,.
All the intervals J” (n=1,2,...; m=1,2, ...,n) occur as some dy,, ,, With -
s(n, m)

> a;=the right endpoint of J{".
i=1
The “undefined gaps” in > a, we fill with small numbers tending quickly to zero.
It is easy to check, that 2 a,=e, > ai=-, since a,+0. ccY implies
2, G (y=<o°, since the muluples of ¢ avmd all the intervals J(.

REMARK. With a little care we can construct a series with the above properties
with a,—0.

PrROBLEM 1. Is there a topological property ¢ such that
{e: 3 ey = o} if and only if 3 aj < =?
PROBLEM 2. Is there a series > ai<-<= in Theorem 3 with Y of positive measure?
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