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ON DIVISIBILITY PROPERTIES OF INTEGERS
OF THE FORM a+a

P. ERDOS, member of the Academy and A. SARKOZY (Budapest)

1. Throughout this paper, we use the following notations:

For any real number x let [x] denote the greatest integer less than or equal to
x, and let || x|| denote the distance from x to the nearest integer: ||x|| =min (x—[x], 1+
+[x]—x). We write e*™*=e(x). The cardinality of the set X is denoted by |X]|.
A(n) denotes the Mangoldt symbol.

In this paper, our goal is to study the following problem: how large can ||
be if o/c{l,2,...,N} and a+a’ is squarefree for all a€.o/, a’€.o/? (See [1],
[2] and [4] for other somewhat related results. In fact, in all these papers arithmetic
properties of sums of sequences of integers are studied.)

We will prove the following results:

Turorem 1. For N=N,, there exists a sequence </ {l,2, ..., N} such that

I
(H || = - log N

and a+da" is squarcfree for all ac of, a'€ 5.

Tueorem 2. If N=N,, S/ c{l,2, ..., N} and a+d issquarefree for all ac o,
a’c .o/ then we have

(2) o/ =3N*log N.

There is a considerable gap between the lower and upper bounds above. We
guess that the lower bound is nearer to the truth. In fact, we conjecture that the
upper bound in (2) can be replaced by N° (for all £=0 and N=N,(e)) and, perhaps,
even by (log N)°. Unfortunately, we have not been able to prove this.

By similar but slightly more complicated methods we can get analogous results
for k-th power free numbers.

Also the following related problem can be considered: Let 1=a,=a,=...
o=y =N, 1=by=by,=...<b=N be two sequences ol integers. Assume that all
the sums

a+b;, l=i=k 1=j=1

I1A

are squarefree. Our method gives that
kl = N3/2+e

and we can show that kl/N--s= is possible, but we of course have no satisfactory
upper bound for k/. Perhaps the following remark is of some interest: there is an
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118 P. ERDOS and A. SARKOZY
absolute constant ¢ so that k=c¢N, /- is possible. Here perhaps / must be less
than log N or (log N)°.

2. In this section, we prove Theorem 1. Let p; denote the i-th prime number,
Let N be a large positive integer, define the positive integer K by

K—1 K
3) 11—71 7= NUt= QP?,

and put

K
P= [[p}.

i=1
Then by the prime number theorem we have

K
(€3] logP =2 >logp;, ~2 2 A(n) ~ 2pg
i=l1

nN=pge

so that for N-+ = we obtain from (3) that
4p P

(log P> pk

hence log Pm-zllog N, so that, in view of (4), for large N

<N¥2=Pp

K—1
(5) NU2=P = pt 5 p?<1/3(logPP N < % N2 (log N )2.
i=1

Let us take all the integers n satislying

(6) n=2 (mod4)
and
(N n#0 (modpf) for i=23..K

These integers lie in

1 1 1 2 1
- — —Pi—e—=—P=—P
Pq[ m] Rl ¢

residue classes modulo P. Let us take the mtersectlon of the set {1, 2, ..., N} with
each of these residue classes. In this way, we get [ [ (pi—1) arithmetic progres-

siong; let us denote the set of them by B, so that

®) 1m=éw%n>§P
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Then for #¢B, clexrly we have
) [N/P] =8| < [N/P]+1 (for 2cB).

If #¢B, nc %, then nsatisfies (6) and (7), so that » is not divisible by pi, ..., pk-
Thus if 7 is not squarefree then pin for some K—=i=n(N'?). In view of (4), the
number of the integers n with n=N, piln (K<i=n(N'?)) is

=(N1/%) N] 4o N 4o ] + oo 1
- =—— =N — =N _—=
ik Lo} £=‘§r1 pi ﬂ=.l?2,:+1 n* n=p2,:+1 (n—1)n
s 1 1 1 ! 3N
=N [ __}:N—-—v*:N———-ci
|'|=;:.‘Z,c'+1 n—1 n PK+1_1 Pk PlOgP

for N large enough. Thus, in view of (8) and (9), there exists an arithmetic progres-
sion #%,€B which contains less than

3N(logP)™' _ 3N(log P)* 15 N
|B| = P/5 Plog P
integers which are not squarefree (for N large enough). Let m<mn,<...<n, be
those integers in #4, which are not squarefree so that

15N

Put n,=0, n, ., =N+1,
M= max |8y (1 40l
=ist
and assume that this maximum is assumed at i=r:
M = | B, (1,5 1,44)].

In view of (5), (8) and (10), for large N we have

N N : L : ’
5p = [T] = | %] = i;:’ B[y m40)| = I_.;;(] 12,01 (g, i )l) =
! . 15N 3IIMN
-= - = 2 = | — o
= > (1H M) = (t+12M [Plogp—i-l]ZM PloT
hence, by (3),
1 1 2 1
(!]) M}-El(}gp;alog N”*:m-logN.

Let us write
By (0,0 = {2b,2b+P, ..., 2b+(M —1)P}.

(Note that by (6) and #,£B, all the elements of %, are even.) The elements of
By(n,, 1) are squarefree. In fuct, it neA,(n,, n,.,), then by (6) and (7),
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120 P. ERDOS and A. SARKOZY

n is not divisible by p3, p3, ..., p%, and by n,<n=n, ., it is not divisible by p% ..,
p?ﬂ’-)-zs api(ﬁ)
Let us put

m’={b,b+P, b+ ﬂzil P}.

Then for ac.o/, a'€s/ we have a+d'¢#B,N(n,, n.,), so that a+a’ is square-
free.
Finally, by (11) we have
1

_ M-I—l] M
|Jf|_[_-§— ::-_2-}-21§logN

which completes the proof of Theorem 1.

3. The proof of Theorem 2 will be based on the large sieve but we shall sieve
by squares of primes. In this section, we derive the sieve result needed in the proof.

LemMA 1. If M, N are integers, N=1, Guyi1,Qprrss - ey are arbitrary
complex numbers, we put

M 4N
S(x)= 2 bye(nx).

n=M+1
Let & be a set of real numbers for which
(12) lx—x =6=0
whenever x and x' are distinct members of X'. Then

2 SGP = (07 +nN) 2 bl

XEX
Proor. This is Corollary 2.2 in [3], p. 12.

LEmMA 2. Let M, N be integers, N=1, and let A" be a set of Z integers in
the interval [M+1, M+ N]. Put

{3 Z(ghy= 3 L
n= I':I{tn‘ljid q)
Then for Q=0 we have
- . VAY .
(14) > P2 (Z(p"’, h)——;) = (Q*+nN)Z.
=g =1 P

Proor. Let us write

Sx) = 2 e(nm).

ne A
Then by [3], p. 23, (3.1) we have
r zy g a
(15 » 3(zen-2) =5 s(%)|
h=1 P a=1 r
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Furthermore, by [3], p. 24, (3.4) we have

"L =, 2 [s(5)
> — L hl| = S1—1 .
qul Eﬁr d d 1;202;9' q
(a,4)=1
Putting g=p* here, we obtain that
‘ i : [ 2 a 2
(16 p Sz —Lzem) = 3 |s(4])
=1 P 1=a=p* p
(a, p)=1
By (15) and (16), we have
p 1y
(1) z r Elzwn-—) -
=0 =1

2 P Z 2
= 3 [ B[z -Lz0.m) +0 3 (z00-2)) =
4 2
a r-1 a
s(a) + 2 s (4)])
P’ ;§1 p
In order to estimate this last sum, we use Lemma 1 where & is taken as the set of

l=a=p? (a,p)=1) and % (p*=0

z[ =z

pP=Q\l=a=

(a, p)=1

the fractions of the form

l=a=p—1). Then for x= (:EL%', x’z%éi’f (where o, a,=1 or 2), x#x’
1 2"

we have

1 |

e - O°

so that (12) in Lemma 1 holds with 6=0~2. Thus by using Lemma 1, we obtain
from (17) that

_ |upz—aapit || _
pipe T

a

Z’ r’ Z(Z(p- k)*i]- (@*+rN) 3 1 =(Q*+nN)Z

neA

which completes the proof of Lemma 2.

4. In this section, we derive Theorem 2 from Lemma 2.

Let &/c{l,2,..., N} be a sequence such that for all a€.&/, a’c.o/ the sum
a+d’ is squarefree. Then for all p, a+a’20 (mod p?). Thus o/ may lie in at most
pi—1

2

residue classes modulo p?, hence, defining Z(g, h) by (13) (with 7 in place

=1 pi4-1
2 2

of A7), we have Z(p% h)=0 for at least p*— incongruent values
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122 P. ERDOS and A. SARKOZY: ON DIVISIBILITY PROPERTIES OF INTEGERS

of h. Thus the left hand side of (14) in Lemma 2 can be estimated in the following
way':

2 p’ o z § a ZE
(18) 2P Z(Z(P';h)__z] = FJp 2 ==
p’=0Q  h=1 P pP=Q  1sh=p* P
Z(p* h)=0
73 ) VAR RN A z*
= 1 = ——— i — 1 == 12
p‘:‘Q P 1=izp pé‘g P2 - 2 pi=o 2 R(Q )

Z(p*, M=0
Setting Q= N', we obtain from (18) and Lemma 2 that

Zz
5N < (N+aN)Z

hence, by the prime number theorem, for large N we have
2(1+m)N i 9N
1/ =
TC(N ) le-i [‘}“log N]

Z < < 3N3¥log N

which completes the proof of Theorem 2.
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