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INTRODUCTION

In an influential paper published in 1892, Hilbert proved the following
result, which in some sense could be considered the first theorem in Ram-
sey theory. For positive integers m, a, and ak , 1 <, k < m, define an m-cube

Qm-Qm(a, a	a,,,) t0 be the set

1,1

(a+ Y Ekak :Ek=0 or 1, 1<k<,m } .
k=~

LEMMA (Hilbert [7]) . For any positive integers m and r there exists a
least integer h(m, r) such that if the set 11, 2, . . ., h(m, r)} is arbitrarily par-
titioned into r classes Ck, 1 < k < r, some C; must contain an m-cube .

Hilbert needed this lemma in connection with certain results on the
irreducibility of rational functions and, as far as is known, never pursued
the combinatorial directions to which it pointed . Others did, however,
beginning with Schur, who in 1916 showed that for any r, there is an s(r)
so that in any partition of 11, 2, . . ., s(r) } into r classes, some class contains a
projective 2-cube, i .e ., Q *(a, , a2) = Q z ( a, a, , a2) - 101 with a=0. (This
combinatorial result actually arose in Schur's investigations [11] of a
modular version of Fermat's conjecture .) This was later extended by Rado
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[9] (who was Schur's student) who (implicitly) proved that any partition
of a sufficiently long interval of integers into r classes must have at least
one class which contains a projective m-cube . This was also proved
independently later by Folkman (see [3]) and Sanders [10] . Finally, in
1974, Hindman [8] proved the much stronger result that in any partition
of all the positive integers into finitely many classes, some class must con-
tain an infinite projective cube, i .e ., for positive integers a,, a 2 , . . ., a set

In this note we investigate the function h(m, r) and several related ones .
In particular we derive rather sharp bounds on them for the (first
interesting) case m = 2 . We should point out here that in contrast to the
rapidly growing functions associated with projective m-cubes (e .g ., s(r) is
known [ l, 2, 1 1 ] to satisfy c - 315" s < s(r) - [er! ], for a suitable e > 0),
for any fixed m, h(m, r) is bounded by a polynomial in r.

2-cubes

To begin with, an easy calculation shows that a set A 7' (the positive
integers) contains no 2-cube if and only if

a, h, c, de A, a+b=c+d={ a,b}= {e, d},

	

(1)

i .e ., all the pair sums x + y, x, y c A, are distinct . Such sets A (often called
B 2-sets) have been extensively studied in the literature (e .g ., see [6]) . In
particular, it is known [6] that if A-- [n] :_ 11,2, ._n} satisfies (1) then

JAI <(I +0(1))

	

(2)

Thus, if we partition [n] into B 2-sets, say,

then by (2) we must have

This implies
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Y Eka k : B,, =O or 1 with O < Y Ek < x .
k-I

	

k=1

[n] = U Ak

	

(3)
k=1

n
t>

maxk. Ak I
>(I+0(1))

	

(4)
J

h(2, r) < (1 + 0(1)) r 2 . (5)

Our next goal is to establish the reverse inequality in (5) . It is well known
(see [12]) that for any prime p there exists a simple difference set
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D = { do , d, , . . ., dp { (mod p' + p + 1) . That is, any nonzero t E Zp2 + p +, has
a unique representation as t - d ; - d; (mod p 2 + p + 1) and consequently, all
d i - d,, i zA j, are distinct . Define

D,:=D-d,={di-d, :0<i<p} (mod p 2 +p+1),

where we have translated all the elements of Dj so that they lie between 0
and p'+ p . We claim that D, satisfies (1) . For if not then for some i,, i z ,
i3 , i, with {i,, i z } 54 { i 3i i4 },

(di,-d,)+(di,-d,)-(d -d,)+(di,-d, ) (mod p2 +p+1),

dig -d i,-di,-d,2 (mod p 2 +p+1)

which by the definition of a simple difference set implies i4 , i 3 = i z .
However, this implies {i,, i z } _ { '3,'41 which is a contradiction . Further-
more, observe that since any t C Zpz + p+ , can be written as t- di - d,
(mod p 2 + p + 1) then the D,, 0 < j < p, cover [p 2 + p] . Thus, [p2 + p] can
be partitioned into p + I B 2-sets and so,

h(2, p+ 1) > p2 + p+ 1 .

	

(6)

Since the ratio between consecutive primes tends to 1 we then have

h(2, r) > (1 + o(l )) r` .

	

(7)

Combining (5) and (7) we finally obtain :

THEOREM l .

h(2, r) _ (1
+0(1»r2 .

	

(8)

We should point out that this result is closely related to the value of the
Ramsey number for 4-cycles (see [4]) .

Deleted 2-cubes

It is natural to expect that if the conditions on the forbidden subsets are
relaxed then the number of classes in a valid partition must increase . As an
example of this, we now consider what could be called deleted 2-cubes . By
this we just mean sets of the form {a + x, a + y, a + x + y { for some a > 0
and x, y > 1, i .e ., an ordinary 2-cube with the point corresponding to
a, - a, = 0 deleted . It turns out it makes a rather substantial difference
whether we allow x= y or not . Define h(2, r) to be the least integer h such
that in any partition of [h] into r classes, some class contains a set
Q(a,x, y)={a+x, a+y,a+x+y} for some a>0 and 1<x<y.



Similarly define h*(2, r) in the same way except that now we require
1<x<y.

THEOREM 2 .

(i) h(2, r)=2r ;

(ü) h*(2,r)>(I +0(1))'á'r ;

(iii) h*(2,r)<(I +o(t)) de r .

Proof. The proof of (i) is straightforward. For any partition of
[2r] into r classes, some class C must contain integers u and v satis-
fying r < u < v < 2r. Since a := 2u - v >, 0 then the set Q(a, v - u, v - u)
belongs to C, and so, h(2, r) < 2r . On the other hand, the partition
[2r-1]=Uti' ', {k,k+r}v{r} shows that h(2, r)>2r- 1 .

Proof of (ü) . It is easy to check that a set A S 7Z+ contains no set of the
form ',a+-v, a + r, a + x + ti } with a>.0, and 1 < x < y if and only if

u, v, wcA with u<v<w->u+v<w .

	

(9)

We want to show that it is always possible to partition [lln] into
3n + o(n) such sets . To do this, we describe a specific construction . Define
A(k), B(k), and C(k), 1 < k < n, by

A(k)= {2n-2k, 2n+k, 4n-k+ 1, 7n-k+ l, Iln-2k+3}

B(k)= {2n-2k-1, 7n+k, 9n-k}

C(k)= }5n-k, 6n-k, l ln-2k+2} .

It is easy to check that for 1 < k < n, each of A(k), B(k), and C(k) satisfies
(9) and furthermore, with the exception of a bounded number of elements,
their union covers [ 1In] . Thus
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h*(2, 3n) > I In +o(1)

and consequently (ü) holds .

Proof o1 (iii) . Suppose we have a partition of [II n_., n] into classes,39
each of which satisfies (9) . We will show that there must be at least

27 n+o(n) classes, which in turn, will establish (iii) . We distinguish three
types of classes in the partition, depending on the number of elements in
the class . We have

A ; = {a (,"<az'<a3" <a;''} 1<i<an,

B; = {h ; " <bz'<h3"} bn,

C ; = {c', " <cz"},

	

15i<cn.
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Note that since all elements are greater than n/5 and each class satisfies (9)
then no class can have 5 or more elements. Also, any two sets each with a
single element can be combined without loss of generality to form a C i . By
hypothesis,

a(i) + a (i) < a (i)1

	

2

	

3

a ( ' ) +a(i ) < a (11

	

(10)2

	

3

	

4

b(1i)+b2(i1 <b(li)

Summing these inequalities we obtain

an

	

ha

	

an

	

hn

(a(,'+2a2'))+

	

(b ; ) +b2 )<

	

a4 +

	

b(i

	

(11)
i=1

	

i=1

	

i=1

	

j=1

Also, by counting the total number of elements we have

4a+36 +2c< 39 .

	

(12)

We want to minimize the number of classes w = (a + b + c) n .
To begin with, it is not difficult to see that the least value the LHS of

(1 1) can assume is obtained by taking the a2í) as small as possible (because
of the coefficient 2) . Basically, this means that [,qn, . . ., n] is partitioned as

Thus

( a 11 1) a 211a (, a iz1a ~31a 231 . . . b(11bz1)b12)h(2) . . . ] .

an

	

hn
(aj" +2a2i11+ (b(i)+b(")

i=1

	

i=1

(2a + 2h),,

	

an
(3~,n+k)+

	

(3qn+2k)
k= 1

	

k=1

=n2((3a+2b) •,g+2(a+b)2+a2)+o(n`) .

	

(13)

On the other hand, the RHS of (11) is bounded above by

an

	

hn

	

(a+h)n
u4 +

	

b(
X (n-k+ 1 )

=1

	

=1

	

k=1

= n 2(a + b - ;(a + b) 2 ) + o(n 2 ) .

Combining (1 1), (13), and (14) we obtain

111(áa+2b)+2(a+b) 2 +a2 <a+b-2(a+b )`+o(1 )



which simplifies to

za p +5ab+zb 2 ~ 3-a+39 b .

	

(15)

It is now straightforward to solve this quadratic programming problem
(subject, of course, to the conditions that a, b, c >, 0) . The result is that the
minimum value of a + b + c is 26 , which is attained when a= 39, b = 5 39 ,
c = 26 . This proves (iii) .

With more complicated arguments, it is possible to increase the bound
n somewhat, but at present we are unable to close the gap between the

lower bound and the upper bound of ;, n (which may well be the "truth") .

Larger values ofm
Relatively little is known for h(m, r) with m > 2 . An easy induction

argument (used in [7]) shows that

QUANTITATIVE FORMS OF HILBERT'S THEOREM
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where F,, denotes the kth Fibonacci number, i .e., F, = 0, F, = 1, and
F1,+a=F, ,+F,. . Thus

for a suitable e .
In fact, a stronger "density" result actually holds here. In [13] (see also

[5]), Szemerédi shows that if A c [M] has

and

h(m, r) < (r + 1)`-,

h(m, r) < r`"'

I A I > M/r

M> (3r)`

then A contains an m-cube .
We do not at present have anything interesting to state concerning lower

bounds for h(m, r) (although bounds of the form r"" are easy to obtain) .
For projective in-cubes, Taylor [14] has recently shown that if the set

[N] is partitioned into r classes then some class contains a projective
m-cube provided

While this bound may appear large, it was actually a tremendous
improvement over previous bounds (being primitive recursive, for exam-
ple) .



216 BROWN ET AL .

REFERENCES

L F. R . K. CHUNG AND C . M. GRINSTEAD, A survey of bounds for classical Ramsey num-
bers, Journal of Graph Theory 7 (1983), 25-37 .

2. H . FREDERICKSON, Schur numbers and the Ramsey numbers N(3, 3, . . ., 3 ; 2), J. Combín .
Theory Ser. A 27 (1979), 376 377.

3 . R . L. GRAHAM AND B . L . ROTHsCHiLD, A survey of finite Ramsey theorems, in "Proc . 2nd
Louisiana Conf. on Combinatorics, Graph Theory and Computing, Louisiana State
Univ ., 1971," pp . 21-40 .

4 . R. L. GRAHAM, "Rudiments of Ramsey Theory," Amer . Math . Soc ., Providence, R .I .,
1961 .

5 . R . L. GRAHAM, B. L. ROTHSCHILD, AND J . H . SPENCER, "Ramsey Theory," Wiley, New
York, 1980.

6 . H. HALBERSTAM AND K . E. ROTH, "Sequences 1," Oxford Univ . Press, Oxford, 1966 .
7 . D . HILBERT, Ober die irreducibilitat ganzer rationales Functionen mit ganzzahligen Koef-

fizienten, J. Reine Angew . Math . 110 (1982), 104-129 .
8 . N . HiNDMAN, Finite sums from sequences within cells of a partition of N, J. Cornbin .

Theory Ser. A 17 (1974), 1-11 .
9 . R. RADo, Studien zur Kombinatorik, Math . Z . 36 (1933), 424-480 .

10 . J . SANDERS, "A Generalization of Schur's Theorem," dissertation, Yale University, 1969 .
11 . 1 . SCHUR, Uber die Kongruenz x"'+

	

=z" (mod p), Jahresber . Deut .sch. Math .- Verein
25 (1916), 114- 116 .

12 . T . STORER, Cyclotomy and difference sets, Lectures in Adv . Math. No. 2, Markham,
Chicago, 1967 .

13 . E . SZEMERÉDI, On sets of integers containing no k term arithmetic progression, Acta Arith .
27 (1975), 199-245 .

14 . A. D. TAYLoR, Bounds for the disjoint unions theorem, J. Combin . Theory Ser. A 30
(1981), 339--344 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

