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Denote by M, the set of integers b for which there exists a 2-design (linear space)
with v points and b lines. M, is determined as accurately as possible. On one hand,
it is shown for v >, that M, contains the interval [v+v*" (1) —4]. On the other
hand for v of the form p* 4+ p+ 1 it is shown that the interval [v+ 1L v+p—1]is
disjoint from M, and if v > v, and p is of the form ¢* + ¢. then an additional inter-
val [v+p+ Lo+ p+qg—1]is disjoint from M, .« 1985 Academic Press, Inc.

Let S be a finite set, |S|=v, and let A= {A4,,.., 4,} be a family of sub-
sets of S. A is a 2-design (or pairwise balanced design) or linear space) if
every pair of elements of § occurs in exactly one 4, and |4,|>1 for
| <i<h. The elements of S are called the points, the subsets 4, are called
the lines or blocks of the 2-design. Doyen asked what are the possible
values of b for a given v? Let M, be defined as the set of integers b for
which there exists a 2-design with v points and b lines. So the problem is
the determination of M.
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M,.c‘:l. (;)] and (;)— 1, (;)—3¢M{:.

Also a well-known theorem of de Bruijn and Erdos [ 1] states that if h> 1,
then A >=v. Thus min M, =u.

Answering a question of Griinbaum, Erdos [2] proved the following:
Let there be given n points in the plane. Join any two of them by a line.
Denote by b the number of lines obtained. There is an absolute constant ¢
so that every b with cv’> <bh < (4), b#(3)— 1, b#(3) — 3 can occur as the
number of lines. (This result is best possible apart from the value of ¢.) This
obviously gives that with the same ¢ every b # (5) — 1, (5) =3, cv*? <bh < (})
occurs in M. For an arbitrary 2-design the situation is different. Let f(v)
denote the largest integer b < (5)—3 for which there is no 2-design on v
elements and b lines. We shall prove

Clearly

THEOREM 1. There is an absolute constant ¢ so that for v=>uv,
flv)<v+v'2re
where ¢ can be any value >4,

Remark. 1f we make plausible assumptions about the distribution of
primes we can prove f(v)<v+v"*(logv)* for some fixed « Further we
conjecture that

: Slv)—v
lim sup ——=—= o
I '\/lf e

Theorem | shows that all values in the upper portion of the range he [v,
(4)—4] are possible. For b close to v our results are quite different. To get
interesting results it will be convenient to assume v is of the form p*+p + 1
(here p is not necessarily a prime or prime power).

We shall prove

THEOREM 2. Let v=p>+p+1. Then for p*+p+1<b<p’+2p+1
there is no 2-design with v points and b lines.

Remarks. This result fails for v not of this form: projective planes from
which points have been deleted provide many examples where b —v < w’/;-

Theorem 2 is best possible in that it is easy to construct a 2-design with
bh=p*+2p+ 1 lines. To see this it suffices to consider the lines 4,.,..., 4, of
a projective plane of order p and replace 4,={x,,.,x,,,| by 4] =
(X0, X530 Xy b A= {2 x5 2€iISp+ 1
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In general we may take any projective plane and obtain a new 2-design
by “breaking up” any line, ie., by replacing it with the lines of some
2-design on the same set of points. In the above example 4, has been
broken up into a near pencil on p+ 1 points.

We further prove

THEOREM 3. If v=p>+p+1 and b=p> +2p+ 1, then the design is
obtained from a projective plane of order p by “breaking up™ one of its lines
into « near pencil or projective plane.

Theorem 3 1s in some sense sharp; nevertheless we prove a stronger
result.

THEOREM 4. Let v=p +p+1 and A= | A,..., A,} a 2-design which is
neither a projective plane nor a near pencil nor is obtained from a projective
plane by “breaking up” one of its lines. Then b>p* + (2 + ¢) p where ¢ can
he taken as 0.147899.

A special case of interest is for v=p*+p+1, where p=¢g’+gq. By
Theorem 2 applied to the p+ 1 =¢"+ ¢+ 1 points on a line of a projective
plane of order p, the breaking up of that line results in a 2-design on v =
p”+p+1 points with either

b=(p+p+l)y+p or  b=(p’+p+1)+p+yq.

This latter inequality must, by Theorem 4, also be valid (when b>v) for
2-designs on v = p* + p + | points which cannot be obtained by breaking up
a line of a projective plane (when v>wpg). In other words the interval
[v4p+ L e+ p+g—1]is disjoint from M.

Remarks. In the theory of designs or extremal set theory there are two
essentially different methods, the combinatorial and the linear-algebraic
one. There are just a few theorems where both methods work. This is the
case with Theorems 2 and 3. We give two proofs. Theorems 2 and 3 are
actually consequences of Totten’s classification [7,8] of all 2-designs
satisfying (h—v)” < v, but the proof in [7, 8] is substantially longer than
those we give here. One of the present authors (J.C.F.) has used the
algebraic approach to give a shorter proof of Totten’s complete result [4].
Our combinatorial prool of Theorems 2 and 3 gives with some additional
reasoning the proof of Theorem 4.

Proof of Theorem 1. First of all we restrict ourselves to the case when
v=p>+p+ 1. where p is a power of a prime. It is well known that in this
case there is a projective plane; A= {A4,,., A,] with |[4,|=p+ 1, 1 <i<v
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and |4,n A4, =1 for i# j. On the other hand, if there is such a projective
plane, then v must be of the form * 41+ 1.
To prove Theorem I, first we prove

THEOREM 1*. Let v=pi+p,+1, py be kth prime power (in natural
order). Then

SPE+pe+ 1)< pi+2p+pi2te, (1)
where ¢ can be any value >1k.

Proof. Let A,,.. A, be the lines of a finite geometry with v points.
Observe that it is necessary to construct a 2-design only for b< p;, , +
P+ L Forifh=pl | +p,, +1itiseasy to see that we can use for our
consideration the finite geometries of size p> + p, + 1, where p, is the least
prime for which p? +p,+ 1> 5.

Using a well-known theorem of Heath-Brown and Iwaniec [5] we have

P sy — Py plHA+E, (2)
Hence
Pisr+ Prer + 1< pi+ pPo+e,
Thus it suffices to consider the b's satisfying
:”i +2P,¢. + pLSI Wt E e PE + piilsllll+a..

From the result of Erdos [2], it immediately follows that the values of b
satisfying

pi+cpi?<b

can be taken care of by the block designs formed by breaking up the
elements of Ls into pairwise balanced designs. Thus it suffices to deal with
the b satisfying

Pit2pi+plVO < h < pl 4 eplt. (3)
Let L;= |X|... X, , | Let g be the smallest prime power satisfying

petl<gi+q+1<p+pPlante (4)
Consider now a projective plane with the lines B,..., B, ,, . Omit y=
¢ +q—pe<ple of the points of this projective plane (without

destroying any of the lines). Let the remaining points be identified by

{X|iww X, f. Thus we obtain a 2-design on our set {x,...x, .| and
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therefore on our set S of p; + p, + 1 elements. Now the number of lines of
this design is p; + p, +¢° + g+ 1; pi + p, of the lines have size p, + 1, the
other ¢7 +¢,+ 1 sets have size ¢, + 1 or less. (“Less” because we had to
omit x elements which are at our disposal.)

Let Bf..., BY, . be the blocks which remain after the omission of the
x elements and let 1, = |B¥|. By breaking up the lines B* we get b, new lines
for every b, satisfying ¢77? < b, < (4) — 3. Choosing the values of ¢, (1 <i<
¢* +q+ 1) properly we can get every value in the interval (p;#0, pi31201+1)
in the form Y./ | b, with appropriate

!
h, e [t‘!fv‘g. (i) - 4“.

This completes the proof of Theorem 1*,

The proof of Theorem | now can be completed by the same method.

We now proceed to the proofs of Theorems 2-4. Henceforth we assume
that we have a 2-design with v=p* + p+ 1 and b < p* + (2 +¢) p for some
¢ < 3. We use the following notation: A,, 4,..., A4, are the blocks (lines);
Xy Xa.w X, are the points; |A|=/=length of 4. r,=|{iix;eAd,
| <i<rv)| =degree of x,.

Lemma 1. No line of length > p+ | exists unless the design is a near
pencil.

Proof. From [6] we have b= 1+ (FP(v—1)/(v—1)) if a line of length /
exists. Let / be the maximum length of a block A. Suppose /= p+ 2.

Case 1. 1<3v. Note that I*(v—1) is increasing for 0 </< 2v. Thus

)[J{J+2}3{P2+P+l—(ﬂ+2]]

b 7
pr+p+1—1

=p’+3p+1—4/p,

a contradiction for p=2.

Case 2. [>3v. If there are two points off A then the line through them
and 4 both meet at least (/— 1) 2 other lines. Thus b= (/—1)242>%v=
4p*+4p+14, a contradiction for p= 1. Hence no more than one point lies
off of 4. So the design is either degenerate (only one line) or a near pencil.

In view of Lemma 1 we may assume that the maximum length of a block
is p+ 1. Given this and v=p°+p+ 1 we have the useful fact that a point
has degree p+ 1 if and only if it lies only on lines of length p + 1.

We will refer to blocks of length p+ 1 as long and <p+1 as short.
Clearly if all blocks are long the design i1s a projective plane. Thus we
assume that some short blocks exist.
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LemMa 2. Ifv=p>+p+ 1, b<p>+2p+ 1, and there exists a block A
all of whose points have degree p+ 1, then b=u.

Proof.  All blocks on a point of degree p + 1 have size p+ 1. Thus 4 and
the (p+ 1) p blocks which meet A provide a set of p>+ p+ 1 blocks of size
p+ 1. These cover (p*+ p+ 1)("1')=(4) pairs, so there can be no other
blocks.

Lemma 3. r.zp+ | for all i

Proof. Since v=p”>+ p+1, a point of degree p or less would lic on
some line of length p+ 2 or more.

LEmMMA 4. Some point of degree p+ 1 exists.

Proof.  Suppose that r,= p+ 2 for all i. Note first that a block, 4,, of
length p + 1 exists since otherwise

A =
bp=2Y 1= ri2(p+2)o=(p+2)(p>+p+1)
i=1 i=1
implying h = p* + 3p + 2, a contradiction.

Since min r, = p + 2, the number of lines intersecting 4, of length p+ 1 is
at least (p+ 1)(p+1). But any point not contained in A,, is contained in a
line not intersecting 4,. So we get at least p*/(p+1)=p—1+(1/(p+1))
lines which do not intersect 4,. By this, b= (p> +2p+ 1)+ p.

LEMMA 5. Every two lines of length p+ 1 meer.

Proof. Let |[A,|=|4,|=p+1, A,nA,=. Then together 4, and 4,
both meet (p+1)>= p>+ 2p + 1 blocks. Now any point contained in A4, or
A, is of degree = p + 2. Therefore for x e 4, there is a line B(x) containing
x and |B(x) < p+1; any point contained in B(x) has degree =p+ 2.
Hence we have at least |B(x)| —1 lines intersecting B(x) but not inter-
secting A4,.

If |B(x)| > p/2 for some x& 4, then b= p? + 3p. If | B(x)| < p/2 for every
xeA,, then x is of degree =p+3 if xed,. In this case we have, by
counting the lines meeting A,, b= (p+ 1)(p+2)> p>+3p.

Algebraic Proof of Theorem 2. To prove Theorem 2, let N be the vx h
incidence matrix of the design and U its row space. It is well known that
N'(NNT) ' N is the matrix of the orthogonal projection from R” (with the
standard inner product) onto U, provided that N has rank v, or equivalen-
tly, (NN") " exists.

In our case, NN' =4+ J, where 4 =diag(r,—1:x€S) and r, denotes
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the degree of the point x; and it is easily checked that (4+J) '=
A "4o4 'J4 ", where o=1/(1+ag) and ae=3  _(1/(r,—1)). The
b x b matrix

Q=1—-NY(NN") 'N=I—-N"4"'N+aN'4 'JA'N

is evidently the matrix of the orthogonal projection from R’ onto U*, a
subspace of dimension b — v. In particular, Q has rank b — .
For a subset 7 of the set S of points, let

=Y

xe7

l

=l

The rows and columns of @ are indexed by the blocks A, B..., of the
design, and with the above notation,
O=1—((2y-p5))+ollaag))

Let | be the set of r,, blocks on a fixed point x, and consider the r,, by
r,, principal submatrix Q, of Q whose rows and columns are indexed by
the members of [F. For distinct A, BelF, o, z=(1/(r ., —1)). Writing f , for
| —a,+(1/(r,,— 1)), we have

X0

Qo =diag(f,: AeF)—-

. J+0{('3:.|'IB”.-LHG F-

So far, this holds for any design.
With our hypothesis, Lemmas | and 3 show that all blocks have size
< p+ 1 and all points have degree = p + 1. Then

|
Ha=t— E:.-r re—1 i .\g.‘I ;20
L] X #£xXp

and f#,=0ifand only if |4| = p+ | and all points of 4 — {x,} have degree
p+ 1. Suppose, for contradiction, that f,>0 for all AeF. Then
diag(ff ;) +o((x,2%)). being the sum of a positive definite and positive
semidefinite matrix, is positive definite and hence has rank r . Subtracting
the rank 1 matrix (1/(r,,— 1)) J can reduce the rank by at most one, so

r,—1<rank Q,<rank Q=b—v<p—1,

which gives a contradiction r, < p to Lemma 3.

To summarize, there exists a block 4 on x, such that all points of
A—{x,} have degree p+ 1. We now take x, to be any point of degree
p+1 and Lemma 2 completes the proof.



138 ERDOS ET AL.

Algebraic Proof of Theorem 3. Let Y={xeS:r,=p+1}, Z={xeS:
r.>p+1}. By Lemma 2, there are no blocks 4 < Y. But let us call 4 good
when A is long and all but one of its points is in Y. Because of Lemma 2 we
may assume that each block on a point y, € Y contains at least one point of
Z,so |Z|zp+ 1.

The argument involving Q, in the previous theorem shows in this case,
that each point of Z is contained in at least one good block. Any two long
blocks intersect. Let G be a set of blocks consisting of one good block con-
taining z for each zeZ and consider the principal submatrix @, of Q
whose rows and columns are indexed by the members of G. For distinct
A, BeG, o, z=1/p (since A, B intersect in a point of ¥). Also, for 4 G
containing ze Z, o, = (1/(r-— 1))+ (p/p)<(1/p)+ 1. Then

. 1 1
0, =diag (1 +—— &_4) —=J4a((o o)) aneas
P P

being the sum of a positive definite, a positive semidefinite, and a rank 1
matrix, is seen to have rank =|G|—1=|Z| - 1. So

|Z| —1<rank O, <rank Q=h—v=p.

We have now proved that |Z| = p+ 1.

Recall that all blocks containing a point of Y are long. Consider two
good blocks A, A’ containing z, z'€ Z. There are p® blocks other than 4
containing points of 4— [z}, all of which are long. There are p blocks
(including A) on z containing a point of 4" — {z'} and these too must be
long. Thus there are at least p° + p long blocks. These cover (p* +p)("3")
pairs, leaving only (?3!) pairs uncovered. The remaining p + | blocks are
short and cover these (71 ') pairs. But all short blocks are contained in Z,
and |Z| = p+ 1. Evidently, the short blocks form a (possibly degenerate)
projective plane on Z.

Finally, the long blocks together with Z form a projective plane of order
p on x, which proves Theorem 3.

Now we present combinatorial proofs of Theorems 2-4. Note that it suf-
fices to prove Theorem 4 only since (using the de Bruijn-Erdés Theorem)
the breaking up of a line in a projective plane immediately results in
b= p>+ 2p+ 1. Equality holds only if the line is broken into a projective
plane or near pencil.

We show first that the number of lines of length p+ 1 is at least p? + 1
and then show that this implies that exactly one line was broken up.

Let ¢ = (number of lines length p+1) and let the longest line not of
length p+ 1 be A, of length ap, 0 <2< 1. Thus every line has length p + 1
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or <op. By counting triples (x,, x;, 4,) with x, e 4, x;e 4,, x;#Xx;; we
have

(b—q)aplap—1)+gp(p+1)zv(v—1).

Using v=p>+p+ 1 and b<p’+ (2 +¢) p we have

l—2cx3—.:'as:) (14+oxc)p+1

=pt 4 = ]
=4 ‘D( | —a’ pll —a®)+ 1 4o

Sog=p*+1 for a</1/(2+¢). We now take care of larger o.

Let x be a point of degree p+ 1. Then x ¢ A. Since A is short there exists
a line of length p+ 1 through x missing A. Denote this line by 4 and the
lines through x meeting A by A,, 45,... 4,,.

Consider now A, and 4. Together both meet (p+1—1)(p+1—1)+
degree(x)=p*+p+1 lines.

Through each point ye A\ A4, there is at least one line meeting 4 and
missing 4, (i.c., at least one of the p+ 1 lines from y to A must miss A4,
since A through v meets A4, and misses 4). Thus there are at least ap — 1
lines meeting 4 and missing 4,. Similarly if 4% is a line meeting 4 and
missing 4, there are at least |4*| — | lines meeting 4, and missing A.

Adding these up, we have

b=(p>+p+1)+(ap—1)+(|A% —1).

Hence [A*| <(14+¢—a) p+ 1.

Thus any line meeting 4 but missing 4, has length <(l14+c¢—a) p+ 1.
This same argument holds for any A4,, | <i<ap. Now suppose A" is any
block meeting 4. I[ A" misses some A4,, 1<i<agp then |A4']<
(I 4+e¢—u) p+ 1 by above. If A" meets every A,, Ay Ay, in addition to 4
then [A'| zap + 1. So |4 =p+ | by maximality of A.

We have shown that every block meeting 4 has length p+1 or
<(l+¢—ua)p+1. Let u be any point on 4 and

N, = No. of lines of length p+ | through « other than A.

Then

( No. of lines through « of ) 5 p>—pN, p—N,

length <(14+c—a)p+1 +c—s¢]p+l~]=[l+t'—:ﬁ]'

So
p—N,

degree(u)— 1 =N, +—=—.
el (I+c—2)
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Summing over we A then gives

[ plp+1)
b—1>Y (d =hEig=n 1= '
Y (degree(u)—1)=(q )( ]+f._a)+1+;-—1

T

since ¢ — 1 =3, N,. Solving for ¢ gives

a—c a—c

1= ) e
q2p3+p( (24 el +c¢ ac])+ 1

Thus g=p*+1 for 1+ce—a<1/2+¢), ie, az=(c2+3c+1)/(c+2)
Previously ¢ = p* + 1 for  </1/(2+ ¢). We choose ¢ so that these ranges
overlap, i.e.,

2 +3c+1 e
—— < /1/(2+¢).
c+2 iz
Equivalently 0> ¢*+ 6¢ + 11¢* 4 5¢ — 1. To within six decimal places we

can take ¢ =0.147899.

We now complete the proof by showing that ¢ = p” + | implies one line
was broken up. Let 4,,.., 4, , be the lines of length p+ 1, r > 1. Here we
use the following theorem of Vanstone [9]: Let |S|=p*+4+p+1, B=
| By.... B,,}. m=p® be a family of subsets of S, |B|=p+1fori=12_.,m
If |B.nB|=1,1<i<j<m then B is embeddable into a finite projective
plane of order p.

We apply this theorem to the system {A4,,.. 4, ,|. Let By..., B, .,
be the finite projective plane into which we embed our system, and B,,
I <i<p—1t+1 the lines not belonging to our system. Then the pair
covered by the lines B, i<p—1¢+1 must be covered by our lines 4,,
J>pitt

Observe that to every line B, i<p—1t+1 there is an x,, x,€ B, and
X, ¢B, j=sp—1t+1, j#1. This is obvious because p—r<p+1 and
|B,nB,| =1 for i# j Now for every A,, j> p’+ 1t which contains x, we
have A, < B, since for y¢ B/(x,, v) is covered by a line A,, v< p*>+ 1. Since

call the pairs (x;,y), ve B, must be covered by such a line 4, and
|A4,[ < p+ 1, we have at least two lines which are contained in B,. The short
lines meeting some B, induce a sub 2-design on the p+ 1 points of B,. So
by the de Bruijn-Erdos theorem the number of short lines which meet a B,
is at least p+ |. Fixing B, we have at least p+ | short lines meeting B,.
The remaining p — ¢ lines B, each contain at least two short lines. Thus

bzp +it+(p+D)+2p—1)=p*+2p+1

and equality holds iff p=1, i.e.. exactly one line of a projective plane of
order p was broken up.
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If t=1, we have b= p*+3p— 1. Now we suppose 2< p+1—1<p—1.
In this case every B, 1 <i/< p+1—( contains at least { + | points not con-
tained in any other B, i# j, 1 <j< p+1—1t Thus the short lines contain-
ing these points lie entirely within the given B,.

Let B,=C,uD,, 1 <i<p+1—1t where

C= {-\';5 X, €B;, x¢ U B\.}

VEL
l=vs p+ 11t

D;=B)\C,.

Case a. Foran i, 1 <i<p+1—1, the pairs of C, are covered by one
short line 4, . Then for any x,e C, we need at least one line to cover each
of the pairs (x,,y), ve B)\A, (#JJ). For different xs we have different
lines. This gives at least |C,| =1+ 1 different short lines within B,.

Case b. The pairs of C, are covered by more than one line. In this case
the de Bruijn—Erdos theorem gives at least |C,| =+ 1 different short lines
within B,.

The lines we considered are different for different /’s. This gives, that the
number of short lines is at least (p+1—1¢)(t+1). Hence h=p*+ 1+
(p+1—0)t+1)=p>+3p—1for 2<1<p—1. This completes the proof.

Before closing with several open problems we remark that a forthcoming
paper by Erdos, Mullin, Sos, and Stinson [3] contains related results.

ProBLEM |. Theorem4 is not best possible. We conjecture that
Theorem 4 holds with

b= p*+3p+0(1).

Remark. Let |S|=0v, A=1{4,...4,} a 2-design. Assume 1<|A4,|<
v — 2. We can prove that the number of 4;'s not containing x for every xe S
is greater than v — \;’fu. We have equality for finite geometries. This might
be connected with the following conjecture of Dowling-Wilson.

PrOBLEM 2. Let xe S, and x ¢ 4,. Assume that there are ¢ lines through
x not meeting A,. Then b=v+1.

This is equivalent to the assertion that the number of lines not contain-
ing x is never less than the number of points not on A4,.

PROBLEM 3. Assume again A=1{A,,.,4,} is a 2-design, 1<|4,| <
v — 2 and that the 2-design is not a finite geometry, further that 5 is minimal
satisfying this condition. Furthermore assume there is no finite geometry of
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order v and v,>v is the least integer >v for which there is a finite

geometry. Is it true, that we obtain our 2-design by omitting elements from

the finite geometry of size v, (perhaps we can completely omit some lines if
ALY

vy —v>/v)?

ProBLEM 4. Let b be the minimal number of blocks of a design on v
elements satisfying |4,| <v— 2. Is it true that

PROBLEM 5. Let {A;} be a design on v= p”+ p+ 1 elements for which
|4\ =|4,=p+1, A;nA,= . We proved in Lemma 6 that b= p* + ip.
Determine the smallest possible value of » or give a better estimation.
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