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Denote by M,, the set of integers h for which there exists a 2-design (linear space)
with r points and h lines . M,, is determined as accurately as possible . On one hand,
it is shown for r > r„ that M, contains the interval [r+r° s , (_) -4 ] . On the other
hand for r of the form p'-- +p+ I it is shown that the interval [u+ 1, r+p- I] is
disjoint from M, ; and if r > r„ and p is of the form q'-- +y, then an additional inter-
val [r + p + 1, r + p + q - I ] is disjoint from M,. .
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Let S be a finite set, I S1 = u, and let A = If A 1 , . . ., A,, } be a family of sub-
sets of S. A is a 2-design ( or pairwise balanced design) or linear .space) if
every pair of elements of S occurs in exactly one A i and l A i l > 1 for
1 < i < b . The elements of S are called the points, the subsets A i are called
the lines or blocks of the 2-design . Doyen asked what are the possible
values of b for a given u? Let M,, be defined as the set of integers b for
which there exists a 2-design with u points and b lines. So the problem is
the determination of M,, .
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Clearly

and (
2
v) - 1, (

2
v) -30M

Also a well-known theorem of de Bruijn and Erdös [ 1 ] states that if b > 1,
then b >, v. Thus min M, . = v .
Answering a question of Grünbaum, Erdös [2] proved the following :

Let there be given n points in the plane. Join any two of them by a line .
Denote by b the number of lines obtained . There is an absolute constant e
so that every b with cv 3 1z < b < ( z), b # (z) - 1, b (z)-3 can occur as the
number of lines. (This result is best possible apart from the value of c .) This
obviously gives that with the same c every b 54 (z)- 1, (z)-3, eV 3/2 < b < (z)
occurs in M, . . For an arbitrary 2-design the situation is different . Let_f(v)
denote the largest integer b < (z) - 3 for which there is no 2-design on v
elements and b lines . We shall prove

THEOREM 1 . There is an absolute constant c so that for v > v o

f(v) < v+ U I/2+e

where c can be any value > ó •

Remark . If we make plausible assumptions about the distribution of
primes we can prove .J'(v) < v+v'' 2(log v)' for some fixed a . Further we
conjecture that

-
lim sup' (v)	

v
= 00 .

Theorem 1 shows that all values in the upper portion of the range b E [v,
(z)-4] are possible. For b close to v our results are quite different . To get
interesting results it will be convenient to assume v is of the form p2 +p + I
(here p is not necessarily a prime or prime power) .

We shall prove

THEOREM 2 . Let v = p 2 + p + 1 . Then for p2+p+ 1 < b < p 2 + 2p + 1
there is no 2-design with v points and b lines .

Remarks . This result fails for v not of this form : projective planes from
which points have been deleted provide many examples where b - v < v .

Theorem 2 is best possible in that it is easy to construct a 2-design with
b = p2 + 2p + I lines . To see this it suffices to consider the lines A, , .. ., A„ of
a projective plane of order p and replace A, = lx,,..., xp+ , } by A ; _
-vvx3, . . .,x1,+,i, A',-{x,,x; }, 2<i<p+1 .
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In general we may take any projective plane and obtain a new 2-design
by "breaking up" any line, i .e ., by replacing it with the lines of some
2-design on the same set of points . In the above example A, has been
broken up into a near pencil on p + 1 points .

We further prove

THEOREM 3 . If v= p 2 + p + 1 and b = p 2 + 2p + 1, then the design is
obtained, from a projective plane of order p by "breaking up" one of its lines
into a near pencil or projective plane .

Theorem 3 is in some sense sharp, nevertheless we prove a stronger
result .

THEOREM 4. Let v = p' + p + I and A = JA , , . . ., A,, 'j a 2-design which is
neither a projective plane nor a near pencil nor is obtained from a projective
plane by "breaking up" one of its lines. Then b > p 2 + (2 + c) p where c can
he taken as 0.147899 .

A special case of interest is for v =P 2 +p+ 1, where p = q2 + q. By
Theorem 2 applied to the p + 1 = q2 + q + I points on a line of a projective
plane of order p, the breaking up of that line results in a 2-design on v=
p 2 + p + 1 points with either

b=(p`+p+ l )+p

	

or

	

b, (p2 +p+ 1)+p+q.

This latter inequality must, by Theorem 4, also be valid (when b > v) for
2-designs on v = p` + p + 1 points which cannot be obtained by breaking up
a line of a projective plane (when v > v o ). In other words the interval
[v+p+ l, v+p+q- 1 ] is disjoint from M,, .

Remarks . In the theory of designs or extremal set theory there are two
essentially different methods, the combinatorial and the linear-algebraic
one. There are just a few theorems where both methods work. This is the
case with Theorems 2 and 3. We give two proofs . Theorems 2 and 3 are
actually consequences of Totten's classification [7, 8] of all 2-designs
satisfying (b-v)' < r, but the proof in [7, 8] is substantially longer than
those we give here . One of the present authors (J.C.F.) has used the
algebraic approach to give a shorter proof of Totten's complete result [4] .
Our combinatorial proof of Theorems 2 and 3 gives with some additional
reasoning the proof of Theorem 4 .

Proof of Theorem 1 . First of all we restrict ourselves to the case when
v = p' + p + 1, where p is a power of a prime. It is well known that in this
case there is a projective plane ; A = { A, , . . ., A,, } with l A ; l = p + 1, 1 _< i <_ v
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and JA,n A ;I = 1 for i j . On the other hand, if there is such a projective
plane, then v must be of the form t 2 + t + 1 .

To prove Theorem l, first we prove

THEOREM 1 * . Let u = pk + Pk + l, Pk he kth prime power (in natural
order). Then

f(P2 +pk + 1) < P2 + 2pk
+ pk/2+

	

(1)

where c can he any value > 4M, .

Proof . Let A,	A,, be the lines of a finite geometry with v points .
Observe that it is necessary to construct a 2-design only for h < pk+, +
pk , , + l . For if h pk + , +Pk. , , + 1 it is easy to see that we can use for our
consideration the finite geometries of size p; + p, + l, where p, is the least
prime for which p 2 + p,. +

Using a well-known theorem of Heath-Brown and lwaniec [5] we have

Hence

Pk+i - Pk<ph.ii2oi + :

pk + i+Pk+i+ 1 <p +pk3i/2° + :

Thus it suffices to consider the b's satisfying

pk+2p k +P O1/ao)+r: <h< pk+ph;1 / 2oi+ :

From the result of Erdös [2], it immediately follows that the values of h
satisfying

p2+t . 3 2 <b

can be taken care of by the block designs formed by breaking up the
elements of L,'s into pairwise balanced designs. Thus it suffices to deal with
the h satisfying

Pá+2Pk+pk"lao + :<h<Pk+(.Pkz .

	

(3)

Let L, _ { x, , . . ., xk, A

	

Let q be the smallest prime power satisfying

Pk + 1 < q 2 + q + 1 < p k } p 31/aoi+,:,,2 . (4)

Consider now a projective plane with the lines B, , . . ., Bye+ v + , . Omit y =
q2 + q - Pk < p ; 2 ' 40

	

of the points of this projective plane (without
destroying any of the lines). Let the remaining points be identified by
i x, , . . ., x c, k + , i . Thus we obtain a 2-design on our set { x, , . . ., xPk 4 1 1 and

(2)
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therefore on our set S of pk + pk + 1 elements . Now the number of lines of
this design is pk + Pk. + q

2
+q+ 1 ; pk + Pkk of the lines have size Pk + 1, the

other q, + q, + 1 sets have size q, + 1 or less. ("Less" because we had to
omit x elements which are at our disposal .)

Let B*, . . ., By , y+ , be the blocks which remain after the omission of the
x elements and let t,= I B*~ . By breaking up the lines B,* we get h ; new lines
for every b, satisfying ct < h; < ( z) - 3 . Choosing the values of t ; (1 < i <
q2 + q + 1 ) properly we can get every value in the interval ( pk 4°, pk3' izo, + z: )

in the form J:'_, h,-, with appropriate

h ;,. E 1 ct,' 2 ,

This completes the proof of Theorem 1 * .

The proof of Theorem 1 now can be completed by the same method .
We now proceed to the proofs of Theorems 2-4. Henceforth we assume

that we have a 2-design with u = p - + p + 1 and h < p' + ( 2 + c) p for some
c < ;. We use the following notation : A,, A 2 , . . ., A,, are the blocks (lines) ;
x, , x,	x, are the points ; l A i l = l; = length of A, ; r, _ I i is x; E A„
1< i< r i I = degree of x ; .

LEmMA 1. No line of length > p + 1 exists unless the design is a near
pencil.

Proof: From [6] we have h > 1 + ( h(r - I)/(u - 1)) if a line of length I
exists. Let I be the maximum length of a block A. Suppose l > p + 2 .

Case 1 . /-< 3u . Note that 12(V - l ) is increasing for 0 < 1 < 3r. Thus

b>(p+2)'(p2+p+1-(p+2)) pz +3p+1-4/p,
p~+p+I-1

a contradiction for p > 2 .

Case 2 . 1 > 3r . If there are two points off A then the line through them
and A both meet at least (I - 1) 2 other lines . Thus h > (I - I ) 2 + 2 > 4u =
4p' + 4p + 4, a contradiction for p > 1 . Hence no more than one point lies
off of A . So the design is either degenerate (only one line) or a near pencil .

In view of Lemma 1 we may assume that the maximum length of a block
is p + 1 . Given this and u = p2 + p + 1 we have the useful fact that a point
has degree p + 1 if and only if it lies only on lines of length p + 1 .

We will refer to blocks of length p + I as long and < p + 1 as short.
Clearly if all blocks are long the design is a projective plane . Thus we
assume that some short blocks exist .
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LEMMA 2 . If v = p2 + p + 1, b < p 2 + 2p + l, and there exists a block A
all of whose points have degree p + 1, then b = v .

Proof. All blocks on a point of degree p + 1 have size p + 1 . Thus A and
the (p + 1) p blocks which meet A provide a set of p2 + p + 1 blocks of size
p + 1 . These cover (p' + p + 1)(p+ ') _ O pairs, so there can be no other
blocks .

LEMMA 3 . r i > p + I for all i.

Proof: Since v = p' + p + 1, a point of degree p or less would lie on
some line of length p + 2 or more .

LEMMA 4. Some point of degree p+ 1 exists.

Proof : Suppose that r i > p + 2 for all i . Note first that a block, A, , of
length p + 1 exists since otherwise

h

	

rhp
>

	

l i =

	

ri>(p+2)v=(p+2)(p2+p+1)
i=1

	

i= 1

implying b > p' + 3p + 2, a contradiction .
Since min r i > p + 2, the number of lines intersecting A, of length p + 1 is

at least (p + 1)(p + I ) . But any point not contained in A, , is contained in a
line not intersecting A, . So we get at least p'/(p + 1) = p - 1 + (1/(p + 1 ) )
lines which do not intersect A, . By this, b>, (p2 + 2p+ 1) + p .

LEMMA 5 . Every two lines of length p+ 1 meet.

Proof. Let ~A,J _ IA 2 1 = p+ 1, A, nA 2 =0 . Then together A, and A 2
both meet (P+ 1)2=p2 + 2p + 1 blocks. Now any point contained in A, or
A, is of degree > p + 2 . Therefore for x c- A, there is a line B(x) containing
x and I B(x) I < p + 1, any point contained in B(x) has degree > p + 2 .
Hence we have at least IB(x)l - 1 lines intersecting B(x) but not inter-
secting A, .

If IB(x)I > p/2 for some xcA, then b> p2 +2p . If IB(x)l < p/2 for every
x e A, , then x is of degree > p + 3 if x c A , . In this case we have, by
counting the lines meeting A, , b > (p + 1)(p + 2) > p2 + 3p .

Algebraic Proof of Theorem 2 . To prove Theorem 2, let N be the v x b
incidence matrix of the design and U its row space . It is well known that
NT(NNT ) ' N is the matrix of the orthogonal projection from R' (with the
standard inner product) onto U, provided that N has rank v, or equivalen-
tly, (NN'') -' exists .

In our case, NN' = A + J, where A = diag(r, - 1 : x c- S) and r, denotes
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the degree of the point x ; and it is easily checked that (A + J) - ' _
A '+QA-'JA-', where a=1/(l+a_s) and a s =~ _ES(1/(r,-1)) . The
b x b matrix

Q=I-NT(NNT ) ' N=I-N TA - 'N+aNTA 'JA - 'N

is evidently the matrix of the orthogonal projection from R h onto U'- , a
subspace of dimension h - v . In particular, Q has rank b - v .

For a subset T of the set S of points, let

a T = Y- 1
1 r ,. - 1

The rows and columns of Q are indexed by the blocks A, 8, . . ., of the
design, and with the above notation,

Q = I - ((a.ar,R» + 65WCA7B)) ,

Let F be the set of r,,, blocks on a fixed point x o and consider the r,, by
r,, principal submatrix Q, of Q whose rows and columns are indexed by
the members of F . For distinct A, B e F, 1,,B = (1/(r .,, - 1)).Writing /3,q for
1 -a,, + (1 /(r - 1)), we have

1
Q,=diag(fl, :AcF)- r	1 J+GOA7B))n.Ber-

So far, this holds for any design .
With our hypothesis, Lemmas 1 and 3 show that all blocks have size

< p + 1 and all points have degree > p + 1 . Then

/3, =1- ~	 1 >I-

	

1 >0
~cA r,

	

1

	

ea p
# rp

	

.r # ,p

and /i,, = 0 if and only if I A I = p + 1 and all points of A - {xo} have degree
p + 1 . Suppose, for contradiction, that [3A > 0 for all A c F . Then
diag(p,,) + a((a,AaB)), being the sum of a positive definite and positive
semidefinite matrix, is positive definite and hence has rank r, Subtracting
the rank 1 matrix (1/(r, á - 1)) J can reduce the rank by at most one, so

r,,,- 1 < rank Q o < rank Q = b - v < p - 1,

which gives a contradiction r,o <, p to Lemma 3 .
To summarize, there exists a block A on x o such that all points of

A - { x„ } have degree p + 1 . We now take xo to be any point of degree
p + 1 and Lemma 2 completes the proof.
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Algebraic Proof of Theorem 3 . Let Y= {x c S : r x = p + 1 1, Z= {x c S :
r > p + 1 } . By Lemma 2, there are no blocks A - Y. But let us call A good
when A is long and all but one of its points is in Y. Because of Lemma 2 we
may assume that each block on a point y, e Y contains at least one point of
Z, so IZI>p+1 .

The argument involving Q„ in the previous theorem shows in this case,
that each point of Z is contained in at least one good block . Any two long
blocks intersect . Let G be a set of blocks consisting of one good block con-
taining z for each z c Z and consider the principal submatrix Q, of Q
whose rows and columns are indexed by the members of G . For distinct
A, B e G, cc, , B = 1 /p (since A, B intersect in a point of Y) . Also, for A E G
containing zeZ, aA=(1/(r_-1))+(p/p)<(1/p)+1 . Then

Q, =diag 1+ 1- a' / - pJ+UW)CI •aB))A.BeG,

being the sum of a positive definite, a positive semidefinite, and a rank 1
matrix, is seen to have rank > IGI - 1 = IZI - 1 . So

ZI - 1 < rank Q, < rank Q = b - v = p .

We have now proved that I ZI = p + 1 .
Recall that all blocks containing a point of Y are long . Consider two

good blocks A, A' containing z, z' e Z. There are p Z blocks other than A
containing points of A- iz}, all of which are long . There are p blocks
(including A) on z containing a point of A'- {z-'} and these too must be
long. Thus there are at least p` + p long blocks. These cover (p' + p)(° z ' )
pairs, leaving only ( ' +') pairs uncovered . The remaining p + 1 blocks are
short and cover these (~' ; ') pairs. But all short blocks are contained in Z,
and IZI =p+ 1 . Evidently, the short blocks form a (possibly degenerate)
projective plane on Z .

Finally, the long blocks together with ZZ form a projective plane of order
p on x, which proves Theorem 3 .

Now we present combinatorial proofs of Theorems 2-4 . Note that it suf-
fices to prove Theorem 4 only since (using the de Bruijn-Erdős Theorem)
the breaking up of a line in a projective plane immediately results in
b > p' + 2p + 1 . Equality holds only if the line is broken into a projective
plane or near pencil .

We show first that the number of lines of length p + 1 is at least p2+ 1
and then show that this implies that exactly one line was broken up .

Let g = (number of lines length p + 1) and let the longest line not of
length p + 1 be Á, of length ap, 0 < a < 1 . Thus every line has length p + 1



or <ap. By counting triples (x ;, x,, A h ) with x; e A,, xj c A h , x ; x,- ; we
have

(h- q)ap(ap-1)+qp(p+I)>v(v-1) .

Using u = p` + p + 1 and h < p 2 + (2 + c) p we have

1 -2a'-ca'\

	

(1 +ac) p+ 1
9~~ +p

	

1-a2 / +p(1-a2)+I+a

So q > p' + I for a < 1/(2 + c) . We now take care of larger a .
Let x be a point of degree p + 1 . Then x A. Since A is short there exists

a line of length p + 1 through x missing A . Denote this line by A and the
lines through x meeting Á by A,, A z	A x ,, .
Consider now A, and A . Together both meet (p + I - 1)( p + l - 1) +

degree( .r) =P2 + p + 1 lines .
Through each point y c Á\A, there is at least one line meeting A and

missing A, (i .e ., at least one of the p+ 1 lines from y to A must miss A,,
since Á through y meets A, and misses A) . Thus there are at least ap- 1
lines meeting A and missing A, . Similarly if A* is a line meeting A and
missing A, there are at least IA*1 - 1 lines meeting A, and missing A.

Adding these up, we have

Hence ~A*j <(I +c-a) p+ i .
Thus any line meeting A but missing A, has length < (1 + e - a) p + l .

This same argument holds for any A,, i < i < ap. Now suppose A' is any
block meeting A . If A' misses some A„ i < i < ap then I A'j <
(1 + e - a) p + 1 by above. If A' meets every A, , A z , .. ., Ann in addition to A
then I A' j > ap + i . So I A' I = p + 1 by maximality of Á.
We have shown that every block meeting A has length p + 1 or
(1 + c - )t) p + 1 . Let u be any point on A and

N„ = No. of lines of length p + 1 through u other than A.

Then
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h>(p'-+p+1)+(ap-1)+(1A*1-1) .

/ No. of lines through u of

	

p' - pN„

	

- p - N,
~length <(I +c-a) p+ 1

	

(1 +c-a) p+ i - 1 (1 +c-a)

So

degree(u) -1 >N +p-N,,
(1 +C -0()*
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Summing over u e A then gives

b-1

	

(degree(u)-1)>(q-1)CI-	
1

	

/+

P(P+1)
-A

	

1 +c-a

	

1 +c-a'

since q - I = J„, ,, N,, . Solving for q gives

q

	

1 -(2+c)(1 +e-a)

	

1
> p 2 + p

	

+
a-c

	

a-c

Thus q> p`+ I for l +c-a< 1/(2+c), i .e ., a> (c'+3c+ I)/( (- +2) .
Previously q > p 2 + 1 for a < J1/(2 + c) . We choose c so that these ranges
overlap, i .e .,

c 2 +3c+1
2
	<~/1/(2+c) .
c+

Equivalently 0 > c 4 + 6c á + 11 ,,2 + Sc - 1 . To within six decimal places we
can take c = 0.147899 .

We now complete the proof by showing that q > p' + 1 implies one line
was broken up . Let A , , . . ., A 1,2 , ,- be the lines of length p + 1, t > 1 . Here we
use the following theorem of Vanstone [9] : Let ~S1 =P' +P + 1, B =
{ 8,, . . ., B,,, ) , m > p2 be a family of subsets of S, J B i = p + 1 for i = 1, 2, . . ., m .
If I B; n B,l = 1, 1 < i < j < m then B is embeddable into a finite projective
plane of order p .

We apply this theorem to the system iA,	Ape + ,} . Let B,	B P2+p+,
be the finite projective plane into which we embed our system, and B„
1 < i < p - t + 1 the lines not belonging to our system . Then the pair
covered by the lines B„ i < p - t + I must be covered by our lines A i ,
j>P 2 +t.

Observe that to every line B i , i < p - t + 1 there is an x,, x, E B, and
x ~ B i , .j < p - t + 1, i 1 . This is obvious because p - t < p + I and
I B, n B i d = 1 for i j. Now for every A i , j > p 2 + t which contains x, we
have A, c B; since for y ~ B;(x,-, y) is covered by a line A _ v < p 2 + t . Since
all the pairs (x i , y), y E B, must be covered by such a line A i , and
I A,I < p + 1, we have at least two lines which are contained in B,- . The short
lines meeting some B; induce a sub 2-design on the p + 1 points of B i . So
by the de Bruijn-Erdős theorem the number of short lines which meet a B ;
is at least p + 1 . Fixing B, we have at least p + 1 short lines meeting B, .
The remaining p - t lines Bi each contain at least two short lines. Thus

b> p~+t+(p+ l)+2(p-t)> p2 +2p+ 1

and equality holds iff p = t, i .e ., exactly one line of a projective plane of
order p was broken up .
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If t = 1, we have b . p2 +3p- 1 . Now we suppose 2,<p+ 1 - t < p - 1 .
In this case every B„ 1 < i < p + 1 - t contains at least t + 1 points not con-
tained in any other B;, i j, 1 < j < p + 1 - t . Thus the short lines contain-
ing these points lie entirely within the given B, .
Let B,= C; v D„ 1 < i < p + 1 - t where

C;={x,:x,c B,, x ;

	

U
l

	

1 -11

I,,.<n+t -t

D, = B,AC, .

Case a . For an i, 1 < i < p + 1 - t, the pairs of C; are covered by one
short line A,, . Then for any x; c C; we need at least one line to cover each
of the pairs (x,, y ), y c B,AA (# 0) . For different x,'s we have different
lines . This gives at least I C;l ~> t + 1 different short lines within B, .

Case b . The pairs of C, are covered by more than one line . In this case
the de Bruijn-Erdős theorem gives at least IC,l >~ t+ 1 different short lines
within B, .

The lines we considered are different for different i's . This gives, that the
number of short lines is at least (p + 1 - t)(t + 1) . Hence b > p' + t +
(p + 1 - t)(t + I ) ~> p' + 3p - 1 for 2 < t S p - 1 . This completes the proof .

Before closing with several open problems we remark that a forthcoming
paper by Erdős, Mullin, Sós, and Stinson [3] contains related results .

PROBLEM 1 . Theorem 4 is not best possible. We conjecture that
Theorem 4 holds with

h~> p2 +3p+0(1) .

Remark . Let SJ =v, A= {A,	A,} a 2-design . Assume 1 < lA,l
v - 2. We can prove that the number of A,'s not containing x for every x c- S
is greater than u- v . We have equality for finite geometries . This might
be connected with the following conjecture of Dowling-Wilson .

PROBLEM 2 . Let x e S, and x ~ A ; . Assume that there are t lines through
x not meeting A, . Then b >. v + t .

This is equivalent to the assertion that the number of lines not contain-
ing x is never less than the number of points not on A, .

PROBLEM 3 . Assume again A= {A,, . . ., A zi } is a 2-design, 1 < IA,l <
v - 2 and that the 2-design is not a finite geometry, further that b is minimal
satisfying this condition . Furthermore assume there is no finite geometry of
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order u and u, > u is the least integer > v for which there is a finite
geometry. Is it true, that we obtain our 2-design by omitting elements from
the finite geometry of size v, (perhaps we can completely omit some lines if
v,-r> ", u)?

PROBLEM 4 . Let h be the minimal number of blocks of a design on u
elements satisfying A i l <v-2 . Is it true that

- h-u
lim

	

= 00?
A -Y

PROBLEM 5 . Let { A, } be a design on u = p2 + p + 1 elements for which
IA, I=~A,J=p+1, A,r)A 2 =0. We proved in Lemma 6 that h> p' +z p .
Determine the smallest possible value of h or give a better estimation .
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