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ABSTRACT
Let fi{n, k}denote the mazimum number of & -subsets of an n-set satisfying the
condition in the title. It is proved that

i ri—1+1+d)= { " r_ d}/(k :d) for n sufficiently large

whenever d =0,1 or d = /287 with cquality holding iff there exists a Steiner
system S(Lrf{f— 1)+ 1, n —d). The determination of f(r2r) led us toa new
generalization of BIBD (Definition 2.4). Exponential lower and upper bounds
are obtained for the case if we do not put size restrictions on the members of the
family.

1. Preliminaries

Let X be an n-element set. For an integer k, 0= k = n we denote by (¥) the
collection of all the k-subsets of X, while 2% denotes the power set of X. A
family of subsets of X is just a subset of 2%, It is called k-uniform if it is a subset
of (). A Steiner system ¥ = §(1, k,n) is an ¥ C(7) such that for every TE (")
there is exactly one B £ % with T CB. Obviously, | # | = ()/(}) holds. A # ()
is called a (1, k, n)-packing if | P N P’ | < t holds for every pair P, P' € @. V. Radl
[10] proved that

(1) max{|P | : P isa(t k, n)packing}= (] -D“}](i:)/(k)

I

holds for all fixed k, t+ whenever n — =,
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Let [a] (|b]) denote the smallest (greatest) integer (not) exceeding a (b),
respectivelv. We will use the Stirling formula, i.e., n!—{nfe)" 2,

2. Uniform r-cover-free [amilies

We call the family of sets F r-cover-free if Fo £ FyU --- UF, holds for all
Fo, Fiy:iv; Fed (F#F if i7}) Let us denote by fi(n k) the maximum
cardinality of an r-cover-free family % C(0), | X | = n. Let usset t = [k/r]. Then

Prorosrmion 2.1, (WEY = £ k)= (NG

To prove the lower bound we show that there exists a (4 k, n)}-packing of this
size. A (Lr(t—1)+1, n)packing & is r-cover-free because |PN P |=1—1
holds for all P, P'e 2. Generally

ExampLe 2.2. Let X=YUD, |Di=d |Y|=n—-d and # a
(r,r(t —1}+ 1, n —d)-packing over Y. Define F={DUP:PE P

This example and (1) gives the lower bound in the following theorem.

THeorem 2.3, Letk=r{t — 1)+ 14 d where 0=d < r. Then for n = nu(k)

@ a-emn(" )/ () =rmms (") /(%Y

holds in the following cases:
(a) d =01,
(b) d < /21,
(c) =2 and d < [2r/3].
Moreover, equality holds in (2} iff a Steiner-system S(t, k — d, n —d ) exists,

This theorem determines asymptotically f(n, k) for several values of r and k.
The first uncovered case is r=3, k=~6. The obvious conjecture that the
maximum F has the structure given by Example 2.2 is not true (cf. Theorem
2.6). A subset A CFE F is called an own subset of F if A€ F' holds for all
F#F' e %

Let us suppose X ={1,2,...,n} and define max F = max{i:i € F}.

DeFiNiTON 2.4. A family FC(), ¢, r=2, is called a near t-packing if
|FNF'|=1 holds for all distinet F, F'€ F, moreover, |FN F'|=1t implies
max F& F' (in words: the r-subsets of F containing max F are own subsets),

Prorosrmion 2.5. If F C()) is a near t-packing then F is r-cover-free.
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ProoF. Suppose FCF, 14U F, F € % Since |FN F, | = ¢, the sets FN F,
form a partition into t-subsets of F. Choose F, containing max F, Then F M F, is
a t-subset of F containing max F and F N F, € F. However, F N F, was supposed
to be an own subset of F, a contradiction, O

Tueorem 2.6,  There exists a near 2-packing F C(%) with (n'f{(4r—=2))—
a{n”) edges,

This theorem and Proposition 2.1 give that f,(n.27)= (1 + (10 /(4r - 2). It
is casy to see that

Prorosiion 2.7, For fixed k and r.

:imf,[n_k)/( :‘)= Iin:_.iupf,{r:.k}/( ") = ek

exisis whenever n— =,

By Proposition 2.1 and (2) we have

|/(k:d]gc,{k}§1/(’:__[l).

In Chapter 5 we get the shightly better

atk)=(k—dni( k1)

but we have no general conjecture for the value of (k) not covered by
Theorems 2.3 and 2.6.

3. r-Cover-free families withoul size restriction

Denote by f(n) the maximum cardinality of an r-cover-free family F C2%,
| X|=n

TreorEM 3.1 (1+1/4r7)" < fi(n)< e "M

Remark. In the case r=1 the constraints reduce to Fy, € F, ie., the
well-known Sperner-property, Hence (see [11])

Jmym ([n::EJ )

Suppose now that n is not too large compared to r
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Exampie 3.2. Let g be the greatest prime power with ¢ =V Let ¥ =
GF(q) = GF(q) be the underlying set and consider the graphs of the polyvnomials
of degree at most d over the finite field GF(q). Set

Foa={l(x. g(x)): x EGF(g)}: g(x) = av+ ax +++ -+ ax’, a, € GF(q))}.

Then |FNF'|=d holds for F,F'€ ¥, thus it is a |(g —1)/d]-cover-free
family.

This yields the lower bound for 2r' < n in the following:

THEOREM 3.3. For r=¢e\'n we have

{I _0{1]}'\{;’.’;““;” éﬁ{"]é n|.!|'.-.'|I
For n < ('3) we have the following easy

ProrosiTion 3.4, If n < ("3°) then f,(n)= n.

4. Proofl of Proposition 2.1

If # is a maximal (¢, k, n)-packing then for every G € () there isan FE F
such that |G N F|=1 holds. Hence we have

(£)= 2 |{oe(X):10nrzd|=io1(}) (2 20).
()G =(0) (=),

this yields the lower bound.

For the proof of the upper bound let us define the family N(F) the non own
parts of F with respect to F, i.e.,

Using

N(F)={TCF:|T|=1,3F #F, Fe¥ TCF}.

Lemma 4.1, If F is an r-cover-free family, FEF and T\, Ts,..., T, E N(F)
then |UT | <k

Prooe. Trivial, choose FA F € F with T, CF, and note FZF, U -« UF.
[

Lemma 4.2, [NMFY =Y.
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Proor  In view of Lemma 4.1 A(F) fulfills the following conditions:
(i) MFYC(), n=|F|and (1) A\U---UAZF for Ay,..., A EN(F).
Thus by Lemma 1 (Frank] [8]), | # | = (") holds. O

Now Lemma 4.2 implies that each F € & has at least
) =153 =)
t ' i—1
awn subsets. Consequently,
k=1 ) (n)
|§[( Y g

holds, yvielding the desired upper bound,

5. Proof of Theorem 2.3

Let #,={FE¥;35CF |5|=t—1, such that § CF' € ¥ implies F' = F},
i.e, &, denotes the family of members of % having an own subsel of size smaller
than t Clearly, we have

n
3) 1Fi=(,").

LemMma 5.1, If FEF-F, and T, Ts..., Tin ENFE) then |UT|<
(d+ ).

Proor. Suppose for contradiction that [UTl=(d+1)t and let @ =
(s Faisins Tii1, 83, 82, .., 5._4} be a partition of F such that | §; |=¢—1. Then
for each PE P there exists a Fo, €%, Fo#F with PCF Hence FC
U{F. : P & ?}, a contradiction. 0

LEMMA 5.2, For FE ¥ — %, we have

@) vy =d(h ),
G) wel=(5)-(%79)  resara
(6) IﬁtF}Ié(g)—(“;d) ift=2, k=zid+2.

Moreover, equality holds in (5) or (6) iff |\ U{TE): TENEF) =k —d.
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ProoF. Let us define m(k, t.d)=max{|N|: N C(), & does not contain
d +1 pairwise disjoint members} where k > td, k, 1, d are positive integers.
Erdos, Ko and Rado |6] proved that

m{k,:,n:(f:f) for k =21
and
k-1)

mik s d)=d(

was shown by Frankl (ef. [7] or [9]). For k > ku(t, d) Erdis [3] proved that

_[EN_ ( k—d
ks (£)-(44)
Later ki{t,d)<2t'd was established by Bollobds, Daykin and Erdos [2]. For
=2,

d

mik.2 d)= (2

)+d{k—d}

was proved by Erdds and Gallai [5] (for k = (54/2)+ 2}, The uniqueness of the
optimal families was proved both in [2] and [5]. These results and Lemma 3.1
imply (4)3-(6). |

From now on we suppose that one of the cases (a), (b), or (¢) holds, i.e., (3) or
(6) is fulfilled. We apply the following theorem of Bollobas [1].

LEMMA 5.3, Let Ay,..., A, and By,..., B, be finite sets and suppose that
A;NB =& and A, N B #& holds for all i # j. Then

{-‘r) z+
] (IAllljjrlH.I)

[

1.

Moreover, if |A;|=a, |B;|=b holds for all i then equality holds in (7) only if
[UA |=|1UB |=a+b

Divide # — %, into two parts: FI ={FEF-F: | N(F)|< (- F=
F—F,— F. Then for each F € F: we have a d-subset D(F)CF. such that
|(F— D(F))N F'| =t implies F=F",

MNow let T, Ty, .., T, be the family of all minimal own subsets of size at most
t of the members of F ie., T, C(FN F'Yyand F, F' € F imply F = F, and for all
x ET; there exists F'#£ F, F'€ % such that (T, — {x})CF N F'. Define
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¥w[.x- T, i'T‘,CFE{qu-"ﬁll.

X -T. - D(F) if TLCFEF..

Clearly X N T, =& Wechimthat X N T,#S holdsforall i#f H X, =X -T,
then this follows from the mimimality of T, e, T,€T. Suppose X.=
X=-T.—D(F) U T is a r-subset of T, UD(F), then ecither T=T or
TN D{F)#& holds. Since T, is an own subset of some F'€ ¥ and F € F., we
infer T, (T U D(F)), i.e,, Ty N X% 2.

Now Lemma 5.3 yields

L

1= = 1%l | &, |+ )I:F.L
,Z L |Xl+' ) [n|] (n] (ﬂ—d) =

r.:‘:.':,";' 1T =1 t f

Straightforward calculation shows that if n > 2di(;). then the coefficient of | 7 |
is the smallest, hence we have

i+ #1410 =1%1 ("7 4) /(5 79).

I

as desired. Morcover, equality can hold only if #, = #F, = &, Finally, to get the
extremal family we apply the second part of Lemma 5.3, which yields that each
D(F) is the same.

6. Proof of Theorem 1.6
We are going to use probabilistic methods.

Lemua 6.1, Let Y be an m-element set. m =2r. Then there exist (2r—1)
uniform families ..., ®, such that POP' =@ for PP'EF, |#|=
(m{2r=1)=12°Vm, |[PNP|=2 forall PEP, P'E P and s >m™/[r.

Proor. Let Ay, Ay, .., Ay be pairwise disjoint (2r — | }-element subsets of Y,
u=|m/(2r—1)]. Consider 35 permutations chosen independently at random of
Y, mi, ®a,-. .. 7 where s = [m""[r’]. Define the family ®, as {m(A):1=5j=
u}. To obtain the families # we will delete the “bad” members of &R,

For B £(;) we have that

=]
2I(*T) o

Prob(B is covered by some members of &)= ( )3' <7
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Hence we get

i Loy Z 4
E(# BE (:)which are covered by @ and B, Eswell){(m) (:Eﬁ) <8

3 Zm
Finally we get
(%) E(#R € U®R, : there exists R'eUR, [RNR'|=3)
3s Br .
=(3 ]-z-m-::snﬁr V).

Now, call a permutation m *“bad” if & contains at least 12¢*'m members R
with the property |[R N R'| =3 for some R'€ U ., ®. Then by (8) we have

E(# bad ®,) = 2s.

Thus there exists a choice of the random permutations ... ., 73, Such that at
most 25 out of #,,..., #., are bad. Suppose by symmetry ®,,.... R, are not
bad. Each & contains less than 12"V m members R such that [R N R'|=3 for
some R'€ U, &, Let @ be the family obtained from 3, after deleting these
E_Then &,..., P, satisfy all the requirements, Ll

Now the construction of the desired F C(3)), where X ={1,2,..., n} is the
following. Let X =Y, U Y U - U Y, U Y, where

Y\ = =|Yu|=m=[n"], a=|n"r]l, Y0¥, =0

for a1l 0 = i < j = a. Take a copy of the families defined by Lemma 6.1 for each
Y, we get @1, PL,..., P. Finally, set F={PU{jl:PEP, 1=i<j/m}. We
have 1

EETEE 1}(%— 12#»@); (;) 5~ O(n™)

7. Proof of Proposition 2.7

Let k and r be fixed. Let g(n k) be the maximum size of an r-cover-free
family % such that for all FE®, TCF, |T|=t—1we havean F'#F, F'e ¥
with (FNF)DT.

Such a family F is called r-cover-free without small own subsets. Deleting
successively the members of ¥ having own (t — 1)-subsets we can always obtain a
% C #, % is without small own subsets. Obviously,

1#-gis(,2,)
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hence we have

o= (") ) =an k=L k)

Hence it is sufficient to prove that for all £ >0 and n there exists an Nu(n, £)
such that

© sk [/ (V)= (e /(7)) -

holds whenever N = Ni.

Let # C(i), | X | = n be an r-cover-free family without own parts of cardinal-
ity at most (r — 1) such that | F | = g(n, k). By Radl's theorem (i.e. by (1)) for
N = Ny(n, ) there exists a (, n, N }packing & over the N-element set Y, with

oi=a-a(})/(2)

Replace each P € % by a copy of # We obtain an r-cover-free family on N
points, yielding (9).
8. Prool of Theorem 3.1

The upper bound of 3.1 comes from Proposition 2.1 using the obvious
filn)=E.f.(n k) and the Stirling formula.

The lower bound was obtained from Proposition 2.1, also, with k = n/d4r. We
can get somewhat better lower bounds carrying out the proof given in [4] for the
case r=2,

9. Proof of Theorem 3.3 and Proposition 3.4

Let & C2* be an r-cover-free family and define

F, ={F € ¥ : F has own subset of size most r}.

Clearly, | # |= ().
Lemma 9.1. If FE(F - F) and F\,F,,...,F € F then

|F—~UF}‘:=-:[r—f]. 0
j=i
This lemma implies that:

{10} .Fl-,----pE-r!E[f;—'g:} then

U E|z=(@+1)r+2)2.

IsSr+1
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For r=¢Vnand 1 = [2/¢7] the right-hand side of {10) is greater than n, Thus
[:F—F |=r s,

n .
| F -s[ ; )+Evn;~'n""“‘ forr=2.
' [2/&7]
The case t =1 follows from Proposition 3.4,

To prove Proposition 3.4 we apply induction on #. The statement is trivial,
e.g., for n = r. Suppose F C2%, | X |=n, F is r-cover-free. If some FE F hasa
I-element own subset, say {x], then the statement follows by induction, applied
to F—{F}, X —{x}. If # =0, and | F| > r, then (10) implies

r+2
|X|=uz:( il

a contradiction. Thus | ¥ |=r< n holds.

10. Final remarks

The paper is a continuation of the earlier work of the authors [4] where they
dealt with the case r =2, e, Ay A, U A, The above topic is full of problems
which are related to designs and error-correcting codes.

OpEN PROBLEM.  Suppose # C2%, | X |=n, F is r-cover-free, | F |=n. Fora
given r denote by n(r) the minimum of such n. Then by Proposition 3.4 we have

(r-i-l

7 )é niry<r’+o(r).

(The upper bound comes from the example of an affine plane of order at least
r+ 1.) One can prove n(r)> (1 + o(1))ir’. We conjecture that lim n(r)/r’ = 1, or
even stronger n(r)=(r+1). (We can prove this for r=3.)

Added in proof. Theorem 3.1 was proved independently by Hwang and Sés
[12]. They apply the estimations of f {n) for group testing.
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