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1% Let G(n,m) denote an undirected simple graph with n vertices and m
edges., A graph is chordal (triangulated, rigid circuit) if every cycle
of length > 3 has a chord: namely, an edge joining two nonconsecutive
vertices on the cycle., The class of chordal graphs includes trees,
k-trees, block graphs, interval graphs and complete graphs. Moreover,
chordal graphs are known to be perfect [1] and they possess a number of
desirable algorithmic characteristics. Chordal graphs also arise in
several application areas: solution of sparse systems of linear
equations [12], evolutionary trees [2], facility location [3], and
scheduling [11]. Chordal graphs are studied by many, e.g. [5], [6],
[9], [10]. 1If a graph is not chordal, it is quite appropriate to ask
the following questions:

(1) What is the maximum order of a chordal subgraph?

(2) What is the maximum size of a chordal subgraph?
In answer to (1) recently Dearing, Shier, and Warner [4] have developed
a polynomial time algorithm to generate a maximal chordal subgraph. It
may be pointed out that their algorithm does not generate a chordal
subgraph of maximum order. 1In an earlier paper [8], Erdds and Laskar

have determined asymptotically the minimum number of edges to be deleted
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from a graph such that the resulting graph is a chordal subgraph of

maximum order.

This paper is a first attempt to answer to (2). Let f(n,t) denote
the smallest positive integer, for which every G(n,f(n,t)] contains a

chordal subgraph of size at least t. We show here that, f(n,n)

- [%2] + 1. Further, we prove that any G[n,[%a] + 1) contains a chordal
subgraph of size n(1+e), if n > ng(e) where € > 0 is a fixed positive
number., At present we cannot determine the exact value of . In fact,
in such a graph we show the existence of a tringle xyz, with deg x + deg
y + deg z > n(1+n) for small n > 0, so that the triangle xyz, together
with the incident edges of x,y,z give such a chordal subgraph. In this

connection, it may be pointed out that Edwards [7] has shown that any

graph G(n,m) with m > %— contains a triangle xyz, where deg x + deg y
+ deg z > 2n, and hence G{(n,m) contains a chordal subgraph of at least

size 2n-3.

2. Let f(n,t) denote the smallest integer for which every G[n,f(n[t)]
contains a chordal subgraph of at least t edges. Let N(v) dencte the
neighbors of v and N[v] = N(v) U {v]}.

First we prove the following:

2
Theorem 1. f{n,n) = [% ]+,

—— 2
Proof. Suppose G is a graph with n vertices and [% ] + 1 edges. It

suffices to show that such a graph G always has a chordal subgraph with

n edges, and that there exists a graph with n vertices and [% ] edges

whose all chordal subgraphs are of size < n-1.

2
Let G be a graph with n vertices and [% ] + 1 edges. First note
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that G must have a vertex x with deg x > g. Let v be a maximum degree

vertex and deg v = = + t, t > 0. Now there must exist a vertex y e N(v)

s nis

such that, deg y > t. If not, then

2
2{[% ] +1} = £ deg x + I deg x
xeN[v] xeN[v]

2 |E|
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—
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e, [E] <] - t2, a contradiction.

Let y € N(v) such that deg y > % - t. Now y must be adjacent to at

least one other vertex u in N(v); otherwise, G has at least

IN(Y) |+J N(v) |2 -t =1+ % +t=n+1 vertices, a contradiction.

Thus we have a K3 = {v,y,u}l. The edges incident to v,y,u together with

htl=t

K3 form a chordal subgraph of G with n edges.

2
To show the existence of a graph G with n vertices and [% ] edges,
all of whose chordal subgraphs have { n-1 edges, we note that the Turan

2
graph [13] is complete bipartite K with n vertices and [% ] edges

ny (n
21,12
and has no triangles. A spanning tree of this graph is a chordal

subgraph with maximum number n-1 of edges. o

Qur next theorem proves a stronger result.

2
Theorem 2. Any graph G[n,[g ] + 1) contains a chordal subgraph of at

least n{1+e) edges if n > ngle) where € > 0 is a fixed positive number.

Proof. As in theorem 1, let v be a maximum degree vertex with deg v =

% +t,t>0. Let y € N(v) with deg y > % -t.
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Suppose t > nn, for some n > 0 and N(v) = {y1,y2,....yn }, and

3 HE
deg Y, > deg ¥y 2 ese 2 deg ¥ . If deg ¥y < g -t + nzn, then
% +t
%+t n n 2
Tdegy. <(5+¢t)(5-1%t+ nn)
1=1 1= =g 2
-nz-tz-i- 222
T nE
2
&0 Pt ng)
Hence,
n
§+t
2|E|= I deg y; + I degx
i=1 xeN(v)
2 2
n n 2
<i "'E t
-zz-tE
2
Thus,
2 2

| EI < % - % , a contradiction.

Hence, deg Yy < % = £ + n2n. Then y1 must be adjacent to nen vertices

y; in N(v). Pick any such vertex, say ¥.. Then the triangle Vi¥yeY,

forms a chordal subgraph with at least deg v + deg y1 + deg yr-3 edges,

i.e. at least % +t o+ % -t + nzn +1 +2-3a= n(l+n2) edges, and we
have our desired chordal subgraph.

Thus, to complete the proof we have to show that t > nn for some
n > 0. As before, we consider the triangle v,y,y,, Where v is a maximum
degree vertex with deg v = [g] +t and y,y e N(v) and deg y > % -t o+ 1,

If deg y > nn, we have a chordal subgraph consisting of the triangle

VY¥Yp, together with the edges incident with v, y, and y,, having at
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least g +f + -g =t + 1+ m=n(l+n) = 1 edges. So assume that
deg yp < nn. Delete y, from G, the resulting graph has n-1 vertices

2

andatleast% + 1= >

2
iﬂ—%l— edges. Hence, we can repeat the

argument. Suppose we can continue this process for & times. The
mE
resulting graph G1 has then m = n-% vertices and > T edges. Consider
ror o ]
the triangle v y ¥ii in G1 as of the construction, where v is a maximum

m—

L 1 L
degree vertex with deg v = = + t and deg y > 2

1 1
> t . If deg Yr >

2 + nn, then we have

1 T L} m T m L
deg v + deg y + deg Y. > m+ L+ =& t + & t =n+ m,

and we have our desired chordal subgraph.
1

If deg Y < nn + &, choose & to be very small, say, & = %ﬁ (it is

large compared to n). Counting the edges of G (note that there are o

10

vertices of G whose degrees are g nn), we have

10
e[ < 3 I+ £)(n - B5) + BB v )]

ST e

Now if t £ mn,

2
[[%'fﬂn}(n-% +?—0?—0+m]]<%.

| =

(5] <
a contradiction.

Thus t > nn, and we complete our proof. O
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