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1. Let G(n,m) denote an undirected simple graph with n vertices and m 

edges. A graph is chordal (triangulated, rigid circuit) if every cycle 

of length > 3 has a chord: namely, an edge joining two nonconsecutive 

vertices on the cycle. The class of chordal graphs includes trees, 

k-trees, block graphs, interval graphs and complete graphs. Moreover, 

chordal graphs are known to be perfect [l] and they possess a number of 

desirable algorithmic characteristics. Chordal graphs also arise in 

several application areas: solution of sparse systems of linear 

equations [123, evolutionary trees [2], facility location [3], and 

scheduling Ill]. Chordal graphs are studied by many, e.g. [5], C63, 

c91, [lOI. If a graph is not chordal, it is quite appropriate to ask 

the following questions: 

(1) What is the maximum order of a chordal subgraph? 

(2) what is the maximum size of a chordal subgraph? 

In answer to (1) recently Dearing, Shier, and Warner [4] have developed 

a polynomial time algorithm to generate a maximal chordal subgraph. It 

may be pointed out that their algorithm does not generate a chordal 

subgraph of maximum order. In an earlier paper [8], ErdCrs and Laskar 

have determined asymptotically the minimum number of edges to be deleted 
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from a graph such that the resulting graph is a chordal subgraph of 

maximum order. 

This paper is a first attempt to answer to (2). Let f(n,t) denote 

the smallest positive integer, for which every G(n,f(n,t)) contains a 

chordal subgraph of size at least t. We show here that, f(n,n) 

= [;*I + 1. Further, we prove that any C(n,[t*] + 1 ) contains a chordal 

subgraph of size n(l+e), if n > no(S) where E > 0 is a fixed positive 

number. At present we cannot determine the exact value of e. In fact, 

in such a graph we show the existence of a tringle xyz, with deg x + deg 

y + deg z > n(l+n) for small n > 0, so that the triangle xyz, together 

with the incident edges of x,y,z give such a chordal subgraph. In this 

ccnnection, it may be pointed out that Edwards [7] has shown that any 

2 
graph G(n,m) with m 2 5 contains a triangle xyz, where deg x + deg y 

+ deg z ) 2n, and hence C(n,m) contains a chordal subgraph Of at least 

size 2n-3. 

2. Let f(n,t) denote the smallest integer for which every G(n,f(n,t)) 

contains a chordal subgraph of at least t edges. Let N(v) denote the 

neighbors of v and N[vI = N(v) u[vI. 

First we prove the following: 

2 
Theorem 1. P(n,n) = [; ] + 1. 

Proof. Suppose G is a graph with n vertices and [t2] + 1 edges. It 

suffices to show that such a graph C always has a chordal subgraph with 

n edges, and that there exists a graph with n vertices and [;*I edges 

whose all chordal subgraphs are of size < n-l. 

Let G be a graph with n vertices and (t2] + 1 edges. First note 
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that G must have a vertex x with deg x > 2. 

vertex and deg v = $ + t, t > 0. Now there 

such that, deg y > ; - t. If not, then 

Let v be a maximum degree 

must exist a vertex y E N(v) 

2 
2 IE/ = 2{[2 ] + I] = E deg x + f: deg x 

xoN[v] XENCV] 

5 ; + t + (5 + t)(3 - t) + (5 - t - l)$ + t) 

= 2q2- t’). 

i.e. /El (22 - t2, a contradiction. 

Let y E N(v) such that deg y > ; - t. Now y must be adjacent to at 

least one other vertex u in N(v): otherwise, G has at least 

1 N(y) 1 +) N(V) 12 4 - t - 1 + 5 + t = n + 1 vertices, a contradiction. 

Thus we have a Kg = {v,y,ul. The edges incident to v,y,u together with 

K3 form a chordal subgraph of G with n edges. 

2 
To show the existence of a graph G with n vertices and [; ] edges, 

all of whose chordal subgraphs have ( n-l edges, we note that the Tut9n 
2 

graph [13] is complete bipartite K 
[iI I t;1 

with n vertices and [t ] edges 

and has no triangles. A spanning tree of this graph is a chordal 

subgraph with maximum number n-l of edges. cl 

Our next theorem proves a stronger result. 

Theorem 2. Any graph G(n,[zL] + 1) contains a chordal subgraph of at 

least n(l+e) edges if n > no(e) where E > 0 is a fixed positive number. 

Proof. As in theorem 1, let v be a maximum degree vertex with deg v = 

$+ t, t > 0. Let y E N(v) with deg y > f - t. 
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Suppose t > nn, for some n > 0 and N(v) = {y,,y2,...,yn }, and 
7+t 

2 deg y, 2 deg y2 2 . . . 2 deg yE + t. If deg y, 5 s - t + n n, then 

2 

“+t 
2 

Ii deg yi < ($ + t ) ($ - t + n*n) 
i=l 

n * 2 2n2 =- -t +n 
4 T 

< t2 (‘.’ t > ml 

Hence, 

l+t 
2 

21E1 = Z deg yi + I deg x 
i=l xcN(v) 

n 2 2 =- -t 
2 

Thus, 

2 2 

I I 
E <; -5, a contradiction. 

Hence, deg y, < 2 - t + n2n. Then y, must be adjacent to n2n verti%es 

yi in N(v). Pick any such vertex, say yr. Then the triangle v,y,,yr 

forms a chordal subgraph with at least deg v + deg y, + deg y,-3 edges, 

i-e. at least $+t+;-t+n2n+1+2- 3 = n(l+q*) edges, and we 

have our desired chordal subgraph. 

Thus, to complete the proof we have to show that t > nn for some 

ri > 0. As before, we consider the triangle v,y,yr, where v is a maximum 

degree vertex with deg v = [$I + t and y,y,~ N(v) and deg y > $ - t + 1. 

If deg yr > nn, we have a chordal subgraph consisting of the triangle 

vyy,, together with the edges incident with v, y, and yr, having at 
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least $ + t + 5 - t + 1 + nn = n(l+n) - 1 edges. So assume that 

deg Yr < TW. Delete yr from G, the resulting graph has n-l vertices 

2 
and at least 2 + 1 - nn > (n-1)2 

4 - edges. 4 Hence, we can repeat the 

argument. Suppose we can continue this process for 2 times. The 

m2 resulting graph G, has then m = n-k vertices and > 4 edges. Consider 

the triangle v’y’yi in G, as of the construction, where v’ is a maximum 

degree vertex with deg v’ = $ + t’ and deg y’ > ; - tr . If deg yi > 

a + nn. then we have 

deg v’ + deg y’ + deg yi > nn + II + $ + t’ +;-t’ = n + i-n, 

and we have our desired chordal subgraph. 

If deg yi < nn f L, choose II to be very small, say, II = Jj+ (it is 

large compared to n). Counting the edges of G (note that there are b 

vertices of G whose degrees are <b + nn), we have 

Now if t < nn, 

a contradiction, 

Thus t > nn, and we complete our proof. o 
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