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To illustrate the use of the Pigeonhole Principle, Brualdi [1,pp
16,22] considers the fcllowing problem, A chessmaster who has 11
weeks to prepare for a tournament decides to play at least one game
every day, but in order not to tire himself he decides nol to play more
than 12 games during any one week. Show that, for any k with
1=k<21, there corresponds a succession of days during which the
chessmaster will have played exactly k games.

If we let g; be the number of pames played during the first i days,
(and take ay=0) then the above problem translates into the following:
CMP: If 1=k=21 and 0=a;<a;<a;<...<ay; such that
a; 7=<a;+12 Vi(0=i=<70), then 3i,j(0=<i<j=<77) such that a;=a;+k.

An alternate interpretation could be obtained by replacing
(0=i=70) with (i=0,7,14,...,70) but the generalization we will make
seems to be much more chaotic with this interpretation.

It turns out that the implication in CMP holds for all k with
1=k=77 but does not hold for any k>77 (just take a;=i, ¥i). This
moved one of the authors to raise the following general question.
GCMP: Let k,n,b and ¢ be positive integers with b=n,c and lat
A={a;}].y be a sequence of integers. Consider the followig conditions
onA:

(1} U=ﬂﬂ{ﬂ1{ﬂ2":...{ﬂﬂ,

(2) a;.p=a;+c, Yi(0si=n—5b) and

(3) 3i,j (0si<j=n) such that aj=a;+k.

For what values of k,n,b and c does (1) A (2) = (3)?
The case n=b, k=2b—c—1 is an Olympiad problem (see [3])
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which has been analyzed for other values of k by Hutchinson and Trow
[2]; also see [4] for an answer to a question they raised. We have
shown that (1) A (2) A (n=5b) = (3) precisely for those k with
k|b/k]|=c—b.

We have already noted that the implication does not hold for k>n
50 hereafter we will assume that k=n. The just-stated results suggest
that c=2b is somehow limiting. The following examples confirm that
impression since (1) A (2) hold in them, but (3) fails to hold.

EXAMPLE 1: For ¢>2b and k even, define A by taking

2i if |2ik] is even
%= |2i+1 otherwise

EXAMPLE 2: For ¢=2b and k odd; indeed for k/d odd where d is any
divisor of (k,B), the g.c.d. of k and b, define A by taking

8y, =2md+r (0=rsd—1, O0=smd+r=n).

We observe that for i<j in Example 1, a;,—a; is one of the
numbers 20(-0), 2(j—i)—-1 or 2(j—i)+1, and $0
8;.p=a;+(2b+1)=a;+c. On the other hand one easily sees that (3)
fails to hold since k is even.

In Example 2 we note that a,,.,+k=2md+r+hd (with h
odd)=(2m+h)d+r which is not in A since 2m+h is odd.
Moreover, noting that a,=2t—r, where r, denote the remainder when ¢
is divided by d, we see that a,__,—a,=2(t+b)—r, where r, denotes the
remainder when 1t s  divided by 4, we see that
a,.p—a=2(t+b)—r py—(2—r)=r—r,.,+2b=2b since d divides b.
Thus g, p=apt 2b£GI.+C.

The following result is useful in attempting a proof by contradic-
tion.

LEMMA 1: If (1) and the negation of (3) hold, then
8 p=a;+2k, Yi(0=i=n—k).

PROOF: From the negation of (3), we see that for each i, the
numbers a;,4.4;47,...,4a, include at most one each from each of the
k—1 sets {a; 41,8+ k+1},
{a;+2,a;+k+2}, . . . {a;+k—1,a;+2k—1}. Likewise none of them
equals a;+k and so the lemma follows by (1) and the Pigeonhole Prin-
ciple.

The following two results, due to the first author, confirms most
of the conjectures put forward by the other three authors at the Silver
Jubilee conference. As in Lemma 1, the Pigeonhole Principle is a vital
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ingredient.

LEMMA 2: If c=2b-1,1=<k=n mnd r is the number such that
a,<k=a,,,, then r+b=n=> (3) holds.

PROOF: Since ay=0<k and a;=k by (1), such an r exists. But then
the 2b+1 numbers agt+k,a +k, . . . ,ayt+k,a, .0, 5,0, all lie in
the set {k,k+1, . . . ,k+c} by (2), and hence (by the Pigeonole Princi-
ple) two of them are equal since c+1=25.

COROLLARY., If c=n+1, then (3) holds.

PROOF. If r+b>n, then we have

aySa,~(n—k) by (1)
=a,_,+c—(n—k) by (2)
<a,+c—(n—k) since r>n—b
<a,+c—(c—1-k) since c=n+1
=a +k+1
Thus a; <2k since a,<k. The corollary follows from the two lemmas.

We note in passing that this establishes the claim that the CMP is
true for all k with 1=k=77.

The situation for n<<e—1 is confusing at best. For example, for
n=k=¢—2=2b-13, there are always examples satisfying (1) and (2)
but not (3); in the particular case b=5,c=9,n=k=7,

0,3,5,6,8,9,11,14

is such a sequence. In fact, computer generated information suggested
that the Corollary was sharp on some intervals of values of k; for
example, we conjectured that for c—1=2b-2, there are k-sequences
satisfying (1) and (2) but not (3) for each k with c—|b/2]|sk<c—1.
We note that this is indeed correct and is consequence of (f) in the
Theorem to follow since c— |b/2|=2b—1— /2] =35/2.

Some semblance of order was restored when we discovered a gen-
eralization of the Corollary that gave sharp results. It is (f) in the
Theorem to follow. However, in using the computer we shifted
emphasis slightly and we need a difinition to explain the shift.

DEFINITION: We call an n-sequence acceptable if it satisfies (1) and
(2). Moreover, for c¢=b, we define the integer N(b,c,k) by
N(b,c,k)=min{n| (3) holds for all acceptable n-sequences }. Thus, for
each n=N(b,c,k), (3) holds for every acceptable n-sequence, while,
for each n<N(b,c,k), there exist an acceptable n-sequence for which
(3) fails. Of course we always have N(b,c,k)=b (otherwise (2) holds
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vacously and acceptable N-sequences are easily constructed for which
(3) fails) and N(b,c,k)=k (otherwise a;=i gives an acceptable N-
sequence for which (3) fails). In fact, wc can characterize when equal-
ity holds in these two statements as well as when N(b,c,k)=0=. We
now summarize these and other results on N(b,c,k). As most of these
results are due to two of the authors who feel they are on the verge of
even better results we will not include proofs here. However, we
should note that (f), which generalizes the Corollary, admits a proof
similar to that of the Corollary.

THEOREM: We have the following (recall that c=5).

(a) If c>2b, then N(b,c,k)=2 for all k.

(b) If ¢=2b and 2™|k==>2"|b, then N(b,c,k)=< for all k.

(c) 1If ¢=2b and there is a positive integer m such that 2™ | k but 2™/b,

then N(b,c,k)sb+k—(b k).

(d) If c<2b, then N(b,c,k)=b+k—(b,k).

(e) If c<2b and k=b, then N(b,c,k)=b if and only if k|b/k]|>c—b.

() If c¢<2b, then N(b,c,k)=k if and only if either k=b or
k=max(b,2(c—b)).

(g) If e<2b, then N(b,c,c—b)=max(b,2(c—b)).

(h) For each positive integer m N(mb,me,mk)=mN(b,c k).

The computer generated information was very helpful in guessing
what was to be proved in several of the above. Values of N(b,c,k)
were generated in the case of ¢=2b for all k, b=<100 and in the case
c=2b—i, 1=i=10 for & and b with 1=b=50,1=k=2b. Based on that
information we propose the following conjectures and questions.

CONIECTURES AND QUESTIONS:

(i) Equality holds in (c) above. We do know that equality often does
not hold in (d).
(ii) We suggest the following generalization of the Corollary (and of
(f) in the case of c=2b—1).
N(b,2b—1,k)=mk if b=mk,
2b+2m—4 2b+2m—6

N(b,2b—1,k)=mk for m=2 if l'—'i'n—'-_—'f—Jﬂk{[—a-m_s 1,

N(b,2b—1,k)>mk otherwise.

(iii) Equality holds in (h).

(iv) Between (e) and (f) of the Theorem, we have quite a bit of infor-
mation. Some of it is illustrated in the two figures below which
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correspond to the cases 2{c—b)=<b and 2(c—b)>b. Note that
c—b<b since we are assuming we have ¢<2b. The endpoint case
k=c¢—b is covered by (g).

c=h 2le-bl b
} f F
L TE 1 e -
c=b b 2{e-b)
i { {
------- —_—-
{ H=b i N>k IE M=k

(v) If e<2b, then N(b+k,c+2k,k)=N(b,c, k) +k.

(vi) In case (b) of the Theorem, the only known infinite acceptable
sequences which fail (3) have a periodic stucture. Are there any
which are non-periodic 7

In order that the reader can get some feel for these results and
conjectures the table to follow gives the computer generated informa-
tion for the case b=18,c=35. Each entry is of the form k:N(b.c.k).

1:18  2:18 318 420 5:20 618 7:21  8:24  9:18  10:
11:23  12:24 13:26 14:28 15:30 16:32 17:34 18:18 19:24 20

21:27 22:29 23:28 24:30 25:32 26:34 27:34 28:34 29:34 30:3
31:34  32:34 33:34 34:34 35:35 36:36 37:37 38:38 39:39 ﬂ"_

and k:k for k=2(c—5b)=34.
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