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We investigate: integer $equences A and B where (4 —A | (B - B} =0. We
solve a problem of P.Erdds and R, L. Graham and prove several results on the

behaviour of 4 (x) B{x}x dlx)x and Bix)yx.

Sidon’s problems are of central interest in combinatorial number theory
(see. e.g., [112, pp. 48-49: 3, Chap. I1]|). An infinite sequence 4 of positive
integers is called a Sidon sequence, if the differences a; —a; (i /) are all
distinct. It was proved by Erdds that for a Sidon sequence

A{x} =1, moreover lim inf ————— A5

lim inf
Vx smw o fxllog x

X =

< o {i)

must hold, where 4(x) denotes the number of elements of 4 up to x

It is quite natural to ask how much the situation changes if we cut 4 into
two parts, 4 and 4", and demand only that ne a; —a; should coincide with
any af’ —a. This question was proposed by Erdés and Graham in |2, and
it seemed likely that no considerable increase can be achieved in the density
of A. We shall show, however, that the situation changes dramatically, and
we can construct very dense sequences,

Let us see first the precise formulation
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100 ERDOS AND FREUD

A=la,<a,<--} and B=|h <b,<-} be sequences of integers
satisfving A(x) > ex'2, B(x) > ex'? for some & > 0. Is it true that

ﬁl'_ajzhi._br {]'

has infinitely many solutions?”

The negative answer is provided, e.g.. by the following 4 and B; we write
the numbers in binary scale, and select for 4 those which contain only even
powers of two, and for B those which contain only odd powers of two,

W= 1% ey 2 ty=00r L, n=4, L2yl
i )

M
DS e50i 309 ey = D 1= 0, 1,20
i \

B=
Then (1) is possible only in the trivial case, since it is equivalent to
a+b=a+b, {(2)

and every integer can be uniguely written as the sum of different powers of
two. On the other hand

lim inf min{A{x). B(x)} B lf’xﬁl—

X—on Vlll:

(cf. (i) since the “waorst” case oceurs just before a new digit turns up in B:

B{z:lf—l_”=2.:-l__ . -1 __ .

This settles the original question in the negative (for e =1/ V"f X

In the following we consider such sequences 4 and 8 where (1) (or (2))
has only trivial solutions. and investigate the behaviour of A{x) B{x)/x,
Alx)/vx and Bix)/\/x.

We introduce some notations:

SP = lim sup w
X == i x
1P=lim inl"w.
¥ B X
SN = lim sup mln{A‘{,ﬂ. B{x)) '

X '\,-'Kx
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IN = lim inf min{d{x}. B{x)) ,
X — o \f'lll"_r

3= 1 i mux{A{x_}l. Blx)!
X 0 v..-x

IX = lim inf EX 14 @), BE))

X VX

(S stands for lim sup, I for lim inf, P for product. N for min and X for max).
It is easy to check that in our previous example

+

5P=13/2, P=1,
SN=v3IN2, IN=1/\/2,
SX=1+/3, =1

Tueorem 1. The [argest possible valwe of SP s 2, moreover the
Sollowing more precise extimations hold:

1.1, To any function H(x) with limsup, .  H{x)= o,

we  ean
construct A and B so that

Alx) Bix) = 2x — Hix) i3)

{s valid for infinitely many (integer) values of x.
1.2, The previous resulr is best possible; for any A and 8. A(x) B(x)—
Iy —po (x = ao).

TuEoREM 2.

2.1. 3P+ 2SP< 7. in particular 1P < 14/9,

2.2, IP+38P <4, in particular SP=2 implies IP < 1.
Remark, We could not yet decide if 7P > | is possible at all.

THEOREM 3,

3.1, The largest possible value of SN is /2, thar of IX is oo,

3.2. IN > 1/\/Z — ¢ is attainable for any ¢ > 0.

33 Toagny e>0 we can construct an A and B with SP > 2 — ¢ and
IN> 0, 8Y < o but SP=2 Implies IN =0 and §X = oo.

Remark, 2.1 and 32_ imply that the largest possible value of IV lies
between 1/42 and /14/9, but we have no better estimations yet.
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THEOREM 4. [ IN >0, then neither A(x)/\/x nor Bix)/\/x can tend to
a limit,

We shall consider further generalizations in a next paper.

Proofs. We shall frequently wse the following generalization of the
example in the Introduction, We write the numbers by the belp of a
generalized number system, and put into A those numbers where the even
digits are zero; and into B those ones where the odd digits are zero,
Formally: let &, k..., k- be arbitrary integers greater than one, and

A=legtepkily + - beg kb ki 0ok, —Ls=0, 130

()
B= |{‘|k1 +f.'|k|k1k1 g e Iklklﬂ'klt I

Dét‘!i- | féky— 8= |,2....|.

Clearly (2) is possible only in the trivial case.

We mention that for any 4 and B of this tvpe we have [P = 1, since there
are exactly A(x) B{x) numbers of the form a, + b, with ;< x and b, < x,
and so before a new digit turns up in 4 or in B, A(x)Blx)=x+1 (for
X=kky k=1

The original example is the special case k, =k, =--- =2
Proof of Theorem |. We may assume @, =h, =0, and then a,+# b, for
iLf>1.

A(x) Blx) < 2x is obvious. since for a, < x, b <x, Oga, +b,<2x— 1,
and all the numbers a, + b, are distinet.

To prove 1.2, we assume indirectly that for some c. Ad{x) B(x) = 2x —¢
infinitely often. For any such x, there exists a sum a, + b, 2 2x — ¢, where
a;= X, b,<x Then a;=x— ¢ and b, = x — ¢ must hold as well, and so

|ﬂf—bl|§{:. (4}
But (2) is clearly equivalent to
a—b.=a,— b, (3)

i.e., all the differences a,— b, are distinct, and so {4) cannot be valid
infinitely often, which is a contradiction.
To show 1.1 we take the construction (+), and calculate 4(x) B(x) for

X=kyhy e by (ke — 1) ks oon ks, s
+ kg, s — 1k ke kg oo+l — 1)

Now all those numbers can be written in the form a, + b, with @, < x. b, < x,
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which have 25+ 1 digits and their first digit is 0 or |. Hence
Ax) Blx) =2k kg -+ ks,

On the other hand x < Kk ks -+ &g, + & by -+ kg, Thus if &y, is large
enough then A(x) B(x) is “nearly” 2x, and (3) can be casily guaranteed.

We mention that we can prové 1.1 also by an alternative version of
construction (+), which is an iterative process. We sketch it briefly as
follows. Assume that we have already constructed 4 and B uill x_, the largest
value of 4 and B is x, and x,— y,. respectively, and all numbers up to
2x,— ¥y, can be uniquely expressed as g +48;. ic. Alx,)B(x,)=
2x,— ¥y, + | =v. Now we translate 4 by v, 2v,.., (r,— )0 and B by r v,
Then the largest value of B is x,.,, that of 4 is x, ., — v, ;. where

Xy i1 =Pl 22, — P+ 1)+ Xy —2,)
and

Fos1= "?'xn == 2.-1'IJ| + I

and all numbers up to 2x,,, — ¥,., can be uniquely written in the form
a,+ b,. Since y, ,, does not depend on r,, we can easily guarantee (3).

Proaf of Theorem 3. 3.1. SP<2 shows that SN < /2. To prove the
possibility of equality we consider the (+) construction used in the proof of
Theerem 1. For the x there,

A(x)=2ky Ky Ky
and

B{x) =Ky ky 3 ks

(the jth digit from the right can take k, values with the exception of the
25 + 1st digit, which can be just 0 or 1},

With the sujtable choice of the ks we can clearly assure both 4 (x) = 8(x)
and the “very big” value of &k, (the latter is necessary for 4(x) B(x)~ 2x}.

To make FX large. we choose the k,; | values to be greater than the &y,
values, and so A(x) will “dominate™ B(x).

We can also determine the extremal order of magnitude of A(x). The
previous argument shows the possibility of A(x)/x tending to 0 arbitrarily
slowly. On the other hand it is obvious that lim,  _ A(x)x=0. if B is
infinite: using A{x) B{x) < 2x we obtain

Alx) 2

x B(x)’
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3.2, Let plg be a rational number, 1/\/2 —¢ < plg < 1/y/2. Put
ky=p. ki=q. k;=k,= -~ =2, Then for
=Ry ky oo g, — 1= pig s 22— 1,
AG)=kky o dgy g =p 2,
B(x)=kyky o kyy=g -2,
thus

min{d(x), B(x)] _ [p 4

I
Jx Ve

Similarly. for
x=kkykyy—I=2p-q- gt —1,
Alx)=kiky o ksppa=2p - 25
Bix) =k:k4 k:-. =q- =1
50
min[d(x), B(x)] g S|
NE; N~ W
Since these values of x are the “worst” ones from the point of view of IN, we
obtain the statement.

We can easily check that this is the best possible value for IN using the
{(#) construction. We know that for x =k k. --- &k, — 1, Alx) B{x}=x+ 1.
Further, between &, --- k, and & &k, - k,,, = 2k k, -+« k, either 4 or B has
no elements, say, A. Then denoting IV by ¢, we have on the one hand

A(x) =A(2x) = (e — £) /2x,

and on the other hand

i I
AR S g € oy VI

l.e.,
% >e\/2

ar
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33. Put k,=k;=k;=--=4k with a big k. Then similarly to the
previous calculations
SP = M Jr,.'n.i'zL and obviously §X - IN < §F,

k42 ! \ﬁc

e, SP>2—¢ IN>0, and §X < oo
Assume now SP =2, First we prove IN = 0. Assume indirectly. that for
some positive ¢,

Ax)>ex  and  B(x)>en/x (6)

always hold. Then also
=
Bix)< Ix/4(x) < % ﬂ and Alx)< 2x/B(x) < = Vi (T)

are valid, Let & be very small. We take an x, for which

A(2x) B(2x) > (4 —e)x

is true. This means that with the exception of at most &x numbers all
numbers in [0, 4x| can be written in the form a, + b, with q,< 2x and
b, < 2x. Clearly we can use only g, < x and b, < x for the numbers in [0, x|
and only a4, > x and b, > x for those in (3x, 4x].

Denote the elements of 4 and B in [0, x] and in (x. 2x| by 4,. 8,. 4, and
B,, respectively, Hence

AB,+A4,B,> (22— (8)
and also

A, B, > (1 —eg)x, AB >l —ex {9)

On the other hand consider now differences @, — &,. Since these must all be
distinct, there are at most 2x of them with

la,—b,| < x. (10)

If @, and &, are both in [0, x| or both in (x, 2x]. then (10} holds, thus

A|B|'|'A-!B!-E;2.T- "IIJ

Moreover, using (8), we obtain that there are at most £x other pairs of @ — ¢
and b — 5 which satisfy (10),
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Put d=¢*/16. Denote by A, B', A¥ and B* the elements of 4 and B in
|dx, x| and {x, (1 4 dlx]. respectively. We show that

A'B* + 4*R" > ¢x, (12}
which isa contradiction, since this means a too large number of further

differences satisfving (10}
Using (7) for dx we obtain

Aldx) < %\/’E = %g’?
and similarly
Bldx) < 5 /x.
Combining this with (6) we have

A'}%ﬁ and B')%u’;. (13}

On the other hand

AL+ BI(1 +d)x] > (L +d—¢)x {14)

since we know that nearly all numbers also in [0, (1 + d)x| can be written in
the form a,+ &, and here obviousty a.<(l +d}x and b <(l+dx
Further, combining (%) and (11) we obtain

A, By < (148 (18]
Using (14) and (15) we infer
(A, +AFNB, +B*)> (| +d—elx=(1l +&lx+ (d— 2e)x
>A,8+ (d — 2k,
Hence
A¥B,+ A, BY + A*B¥ > (d — 2¢)x. (16)

We show that

max(4*, B*%) > (l—%)d—fﬂzdﬁﬁ ; (17
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If this were nol true, then

cld’u’

A¥R* <
]
A‘B*+A*B,<2-£-£€L—‘-x=(l—di)d_t.

Le, A*B* + A, B* + A*B, < dx({l —u'), which is a tontradiction to (16)
for ¢ small enough.
Finally, (17) and (13} imply (12) and this ¢completes the proof of IN =0,
To show SX =05 we can use the previous proof. We saw that if
A(2x) B(2x) > (4 — g)x, then

Alx) B(x) > (1 — &)x, (18}

and not all of the following four inequalities can hold simultaneously, for a
fixed positive ¢, d =¢*/16 and for & small encugh:

Alx)>c v“;,
Bix)>c \,a"';.

Aidxa«:%v@,
2
Bldx) <— vdx.

If, e.g., the third inequality is violated, this means directly that A(dx)/\/dx
is large.

If, eg. the first inequality is false, them (18) implies that B{x) >
({1 — &)fe) /%, ie, Bx)/+/¥ is large.

Thus in any case SX = og.
Proof af Theorem 2. 2.1, We take an x for which
A(dx) B(4x) = 4x(SP — ). (19)
By assumption
A(2x) B(2x) = 2x(IP — &) (20)

and

A(3%) B{3x) = 3x(JP — &) (21)
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We denote the number of elments of 4 and B in the intervals ((i — | ), ix]
by A, and B,, respectively, i=1, 2,3, 4.

Consider the sums a;+ b, where @, < 3x and b, < 3x. The number of
these sums is 4(3x) B(3x), and at least 4(3x) B{3x} — 4x of them are greater
than dx, and for these ones both g and b, are greater than x, and not both
are less than 2x. This means that

ABy+ A By + A, By 2 A(3x) B(3x) —4x 2 3x(IP— &) — dx.  (22)

Repeating the argument for a; + &; > Bx, where a; < 4x, b, < 4x, we oblain

A B, +A4,B,+A,B, > A(4x) B(dx) — bx = 4x(SP— &) — 6x.  (23)

On the other hand there are at most 4x differences a, — b, where
o, — byl = 2%,
i.e., the sum of the left-hand sides of (20}, (22) and (23) is at most 4x. So
taking the sum of (20} (22) and (23) we obtain
dx 2 2x(IP —g)+ 3x(IP — &) — 4x + 4x(5P — &) — 6x,
and since &£ can be arbitrarily small, this completes the proof.
2.2, We now take an x for which

A(3x) B(3x) 2 Ix(SP —&) (24)

and using (20} and (24) we argue similarly as before,

Proaf of Theorem 4. Assume indirectly that lim, . A(x)/ /X =¢, >0,
and lim inf, _ _ B{x)/\/x =, > 0.

Take a large but fixed &, and a very large x. We denote the number of
elements of 4 and B in the intervals (i — 1)x, ix| by 4, and B,, respectively,
i=1,2...k and put §;=B{ix)=8,+ B, + -+ 8,

Since there are at most v differences where |a; — b,| < x, therefore

On the other hand we shall show that this is false,
If x is large enough, then

A= A(x) — A — 1) ~ ey Vix — e/l — Div~ e, /2201,
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4 - =
VR ATIEN Y
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which shows the contradiction if we take & large enough.
We can prove by similar methods that if lim inf B{x}fﬁ = 0, then for

X =

every & >0 there is a ¢ > 0 such that for infinitely many x

Alx(1 + e —Ax) < e /x. (25)
Perhaps (25) can be replaced by

AJA(x(1 +e))— A} + |Blx(1 4 ¢)) — B(x)] = o/ x). (26)

Al present we cannol prove (26),
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