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ON UNAVOIDABLE GRAPHS
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How many edges can be in & graph which is forced to be contained in every graph on a verti-
cos and ¢ edpes T In this paper we obtain bounds which are in many cases asymptolically best possible.

L. Introduction

A well-known theorem of Turdn [10,11] asserts that every praph on n vertices
and ¢ edges muost contain a complete subgraph on m vertices il

{m—2) i
£ z(m—n{”"_r"”[z]

where r satisties r=a (mod m—1) and l=r=m—1.

In this paper we consider a related extremal problem. A graph which is forced
to be contained in every graph on # vertices and e edges is called an (n, €)-unavoidable
graph, or in short, an unavoidable graph. Let f{n, ¢) denote the largest integer m with
the property that there exists an (n, ¢)-unavoidable graph on m edges. In this paper
we prove the following:

i) fine)=1 if e= liz'nl
i) fn=2 it |2 <e=n
(iii) Sl e) = [%]10[—"—%-] if n=e=a'
(@(X) denotes u quantity within a constant ratio of X.)
i) 4 Velogn e Velogn

oa () g ()/¢)
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I . .
for some constants ¢ and ¢y where {.'.I"I'I"Ig-il:’-'-‘:[z]—ﬂl-l-c and ¢ is between 0 and 1.

In particular, we have the following:
LI

(v) fin,e)=(1+e(l))V2e il e=n't ['t.e.. E;;_ = ﬂ“}].
{vi)
Jn, €)= (140(1)) }2e log H'ﬂﬂgl[; }fe] - G{}"'E:I if s =on?.

The unavoidable graphs we use for proving (i}, (i) and (iii) are forests which
dre disjoint unions of stars. In proving (iv), (v) and {vi}, w¢ vse unavoidable graphs
which are disjoint unions of bipartite subgraphs.

I11. Preliminaries

We first prove several auxiliary facts:

Lemma 1. [f H i5 a graph on p vertices and g edges with the property that H is con-
rained in every graph on n poines and e edges, then we have

log n

i

Proof. There are at most n” ways to map F(H) into {1, 2, ..., n}. Therefore there
are at most
3)
well2) 9
e—q

n
graphs on o vertices and e edges which contain /. Since there are l[l]] graphs
e

on # vertices and ¢ edges each of which contains H. we have

wfl2)] - (§]]

LA

F]
This implies that n? = [:] fet and plog nflog

(-n

The next lemma is an immediate consequence of Lemma L.
Lemma 2. If H is agraph en p veriices and g edges with the property that H is contained

i every graph on n points and n*~° edges, then we have rfcﬁﬂ, B
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The following two lemmas can be found in [9].

Lemma 3. Suppose G is a bipartite graph on e edges such that VIG)= VUV, where
|Ve|=m, |Fol=n and E(GYS V% Vy. Then @ containg a complete bipartite subgraph

K..» withvertex set Uy Uy, |Uy]=d. |Us|=b, U,S ¥,,i=1,2,if m ["-if’] =a (“;:] i

Lemma 4. G containg @ subgraph fsomerphic 1o K, if u[z‘;fmJ-'—:I[r;], i

Lemma S. Suppose a graph G has n vertices and ¢ edges, with n*®==e. Suppose 1
satisfies n I,I' Ve==i<=efn, Then G contains at least .\'17{1 4ol 2e/t vertex-disjoint
copies of stars S,.

Proof. Suppose 5 is the maximum number of S, embedded in G. Suppose ¢ is an
arbitrary positive value and s=(1—&)¥2e/t. Let X, denote the set of vertices in G

that the ith copy of 5, is mapped onto, Let Z denote F(G)— || X|. There is at

i
most one vertex in A, for each i, adjacent to 2t vertices (or more) of £ because of
the maximality of 5. Therefore the number of edges between X, and Z 15 at most
n+2t% The number of edges in the induced subgraph of & on £ 15 at most n/2.

There are at most ('TU;'”) edges in the induced subgraph on L) X,
He=l
We then have

2 - : ] M
ezstn+2:“]+%"+ 5 {r;—l; = s+ 1};!+1] e

since s=(1—g)}2e/t «x% and ra%. This implies st=(1—) p‘“'fé which contradicts
s=(1—e)¥2e/t. 1

III. On .ﬂ“‘, &) for ¢ = p'®

The value ol fin, ¢), for ¢=n, can be ¢asily found by the following obser-
vakions:

Observation 1. fin, edz=1 il e=1.

Observation 2. For 5"_[-;—] the largest common suberaph ol 8, (a star with e
leaves) and eP, (¢ independent edges) is a single edge.

Observation 3. If ¢= I%J . & graph on » points and ¢ edges contains Py,

Observation 4. For l’—;l-cﬂ-:n, the largest commen subgraph of S, and P,y

{a path on ¢ edges) contains two edges.
Therefore we have

2 | h L 1 .fi i,
Theorem 1. flm, e}=1 if eglil and fin, e)=2 if IEJ eI

The unavoidable graphs in both cases are paths.
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Theorem 2. Let & denote a small positive value, Suppose ¢ =en®®, Then any graplt on
n vertives and e edges containg a disjoint union F of stars, 8,, 8, _a, ... S, _g, .- where

=[0—02)

Proof. Let F, denote the forest consisting of S, S,_a. ..., S_a. We will prove by
induction on & that £, , can be embedded in any graph G with n vertices and ¢ edges.
It is easily seen that F, ; is contained in G. Suppose F, ,_, can be embedded in &, Let
F(S5,—) 1=j=k—1, denote the set of vertices in & onto which §,_s; of F, ,, is
embedded. Let U denote the union of P(S5,_./) for 1=j=k—1 and U'=W(G)-U.
If there are two vertices in VS, ;) each of which is adjacent to more than 2f vertices
in U, then F, ; can be embedded in G. We may assume there is at most one vertex
in V(5,_g;) bemg adjacent to =2¢ vertices in U, The number of edges in the induced
subgraph of G on Uis at most k*(f—k+1)%2, since |[U|=F(F, _)=0—k+ 1)k
The number of edges incident to vertices in Lf is af most

é— A=k 1P 20k (1 — k4 1),
Thus the number of edges in the mduced subgraph G of G on U is at least
e —% (s =k + 1P —kn =2tk (t—k4+ 1D = {1 —s)e —kn,

since %-k“[.'—k+l Y2k (r—k+1)=ge. Therefore there exists a verlex in o
having degree at least 2((1 —&)e—kn)fn=r—2k. This implies that £, , is contained
in G. ||

Theorem 3. If e=na*™, we have f(n, e}:[%]’q-(} i]

e

Proof. Suppose H is an (n. elunavoidable graph. For a subset § of vertices in M,
we define N(S5) to be the number of edges of H incident to vertices in S.

Claim I. For all § with |S|=J'-=:%—3. we have N(S}%Jg: [2%—?3’+ﬁ].

Proof of Claim [. Suppose the contrary. Let & denote the smallest integer so that
N(5)= f%‘[%—?j-l-ﬁ] for all § with [§|=i-<k=—-3 and there exists a set

S'CV(H) with |§'=k and N(8)= Z[z?e—zﬁ—ﬁ].
=
We now consider a graph G satisi’yhg the following conditions.
() G has n vertices and e edges.
()  V(G) can be partitioned into two parts ¥, and ¥, where V, has k—1 vertices
for kﬂ:%—l
(y)  Ewvery vertex in FV; is adjacent to every vertex in V.

(¢}  The induced subgraph on F, has maximum degree at most %--2&4-3.
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The existence of such @ can easily be seen by noting that

de—(k=1)n—k+1) 2 .
Py ) SRk

for m large and kq%—&.

Since H is an unavoidable graph, H can be embedded in G. Let ¥, denote the
set of vertices in H which are embedded in V,. Define ¥=VNs§’, X' =F—58"
and ¥Y=35'-¥,. Also we define N(¥, V) to be the number of edges in H which
are incident to vertices in ¥ and not incident to vertices in ;. Let &’ be the induced
subgraph of # on X' ¥, G hasat most 2(k—x) vertices. From Lemma 1 we know
that G” has at most 3(k—x) edges since e=n*".

We then have

NS = NX)+|EG+NY, )

I

2 [2%“25+6]+3(k—x}+{k—x}[2'—f— 2k+3]

J=x

2 [2—:~—3f+-6]+{k --xu{z—:-—zk-:-ﬁ]‘

J=x

II,

On the other hand, we have N{S8')= 3 [El—f—lj-lﬂ ﬁ]. This implies

i=k
ko) 3 (T3]
{k—x}(z—2k+6 };c‘%ﬁa T—Zj-i—ﬁ ~
which is impossible since x=k—1. J

e

Claim 2. |£(H]55[;] +?{§].

Praof af Claim 2. We now consider the graph G satisfying the following properties:
{x) G has n vertices and at least ¢ edges.

() V() can be partitioned into two parts ¥, and Vg where V, has [%] +1

vertices.
(¥} Every vertex in ¥, is adjacent to every vertex in V.
(#) Mo edge is contained in the induced graph of G on ¥V, or Fi.

G has [I%|+ l] [n —[%] —1] = edn— [[{';]Jr 1]I =e edges.

Note that all edges in & are incident to vertices in ¥, . Since H is an unavoidable
graph, H can be embedded in G. Thus |E(H)|=N(Y) where Y is the set of vertices
in ¥, that H is mapped onto. Thus |Y|§|.%I +2=5+2. From Claim 1 we have

ani= 2 (-ave)=(5) +1(3)
|E(H) = X [n %+6)=|-] +7(|—) 1

FETE
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We note that Claims 1 and 2 imply

Sl e) = [%]Eﬁnﬂ[lil] ’

On the other hand, the graph F as mentioned in Theorem 2 is an unavoidable
graph and F contains at least [ } +Cl[ f:an edges. We then conclude that

fin, -‘-'}——[;-] +O[?i_—,i-] and Theorem 3 is proved. J§

We note that Theorem 3 is an improved version of a result in [B] which says
that for e=n"* the disjoint union of lﬁ] copies of stars 8., is an unavoidable

graph. In Theorem 3 we obtain the best asymptotical value For f{n, ¢), e-=n"%

IV. On f(n, e), for n*® = ¢ = o(n®)

We want to show the following:

Theorem 4. For n't==c=p(n®) we have

fin, &) = (1+o(1)) Vi L a(Ve).

(1))

We remark that the first term is relevant only if e=n"""" where a(1) denotes a
quantity which approaches 0 as n tends to infinity.

Proof. Since the complete graph on [)2e ] vertices has at least ¢ edges, the unavoid-
able graph A has at most[}2e] {nontrivial) vertices. From Lemma 1, we have

\EH)] = Ip,r-z-l fogn
log [[ ] I,I"*z]
Now we want to establish a lower bound of f{n, ¢} by finding suitable unavoid-
able graphs. From Lemma 5 we know that Theorem 4 is true if k=log r:f'iﬂg[(;] / e]

is bounded. We only have to consider the sitoation that £ is large.

Suppose ¢ is an arbitrary positive value. Let x denote the maximum number
with the property that G contains x disjoint copies of K, , where s=(1—glk, i=
=kn*le. Let V| denote the set of vertices in & onto which the /"™ copy of K, is

embedded. Let U denote V(G)— l:l V.. Because of the maximality of x, the induced
=1

subgraph of G on U does not contain K, . If x=}2e/(s+1), then, by s=eo{1}, we
have

Jin, e) = xs1 = (140(1)) Vies = (1 +9H]}tngnﬂug[(2]f&].
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Therefore, the induced subgraph of & on U has at most ¢’ <ge edges for any =0,
since, by Lemma 4, we have

AN = d2) e
¢ 53 )a-osan g

for any £=0 and 4'-'::’"'[;]‘

For each i, the bipartite graph 8 on ¥; and U does not contain two disjoint
copies of K, ,. Let ¢; denote the number of edges between B and U, I B; does not

contain K, y, then by Lemma 3 we have m[ze:;m_]-:h[?]. where m=|U|=n—

~x(s+1)=n—)2e. This implics that e,<10kn. Suppose B, contains one copy
of K, 5, then by deleting the s vertices in ¥, the remaining graph does not contain
K, o and has no more than 10kn edges. Thus B, contains at rrml 1 1kn edges. There-

fore, the number of edges hctwunUV andﬂmatnmﬁl—;;-— llkn=ge, since

=1
x=)2e/t.
The induced subgraph on t:jl ¥, must contain at least (1 —28)¢ edges. Thus
1=

= -
L ¥, contains at least (F2—3s)¥e vertices. We then have

=l
J uf: e _ (Y2-3g)e
kntfe kn* :

Thus, we have proved that

fin, €) = xst = (Y2—6e) Ve k
for any >0 and n sufficiently large. J

V. On fin, e) for (;]—r = o(n*)

When e is close to [g], i.e. [;] —e=p(n*), our results on fin, ¢) are somewhat
less precise.
Theorem 5. Let ¢ and ¢ denote values satisfying O=c,c"=1. If m’-ﬁt-:[;]—n”".
then we have 9
Yelogn Velogn

(2 B (D)

Sfor seme constants ¢ and ¢,

&
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Proof. The upper bound follows from Lemma 1. Let  denote a graph on n vertices
and e edges. Suppose e=dn®, ¢=d=1/2. It can be easily checked {rom Lemma 4
that any G"=G of e/2 edges contains a complete bipartite graph on two sets of
d’ log n vertices where d'=1/21log(1/c). Now, consider a maximal number of x
disjoint copies of K, ,, t=(d’/2) log n, which can be embedded in G. By removing
dn/2 vertices, there are at least &2 edges left, therefore we have xd” logn=dn/2.
Thus dn/(2d" log ) copies of K, , form an unavoidable graph which has (dd’n log n)/8
edges, and we establish (iv) for e=dn®, where c=d=1/2,

Suppose #=[;]—e’ and e(#¥=¢"=n'*". We have

3)
[ logn
_logn [.1+u{l".|}—-—-2 =k

n &
'“g([z]f“"]
Then G contains K, , with s=¢'k/2 since
[l’rll'n]
n ] T
3 ¢ e
= 1—
.,-[”] nlogn [n]
“Las 2

c’[ﬂ]lnn
e Do ) 8
:nlﬂgn P [n] 2¢
2

J &
= a2 g s

It is easy to see that G contains n/10s copies of K, , since deleting n/5 vertices in G
there are still at least e/2 edges left, This proves that f{(n, €) =&, kn for some constant
¢y and the proof of Theorem 5 is completed. |

Corollary. Suppase c={g] —pi*e. Then

cynt~flog n= fin, e) = eyn* % log n.

Now by combining Theorems 4 and 5 together with the fact that [8] any graph

; 4 ] - "
on n vertices and e edges, where e=n"% contains the forest consisting of l3 & l
fe

disjoint copies of stars S5, we conclude the following:
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i H
Theorem 6. Jf ¢ is a valve between 0 and 1, and n"3~=:e~=:[2]—n""'-', then

{f(n1 E'} - e’,m

g ()]

] Velogn
oe((3)/¢)

Sor some constants ¢ and ¢;.

VL Concluding remarks

The unavoidable graph problems are in fact the complementary problem of
the universal graphs. For a given ¢alss H of graphs, a graph G is said to be H-universal
il & contains every graph in H as a subgraph. Univegsal graphs-are investigated in
[2—7]. Now suppose & is an (m, &)}-unavoidable graph. Then the complement &*

of & must contain all graphs on [; ]—e edpges. Furthermore, the complement of a
maximum (#, e)-unavoidable graph must be a minimum universal graph on n vertices

which contains all graphs on n vertices and [;]—e edpes. Thus we have

(vii) f{n.e}:[;]—g[n,[;]—e]

where g(a, ¢) denotes the minimum number of edges in a graph on n vertices which
contains all graphs on n vertices and ¢ edges. It is proved in [1] that

n? n* log log n
Ci——— =gln, cn) = ¢y ————2—
"login &, ) = ¢ logn

for some constant ¢,, ¢y and ¢;. Thercfore we have
n n*loglogn n " n*
[."-!]_c:L logn =S B T iy R L _EILIngnn :

For large ¢'=n, g(n, ¢") approaches [;] rapidly. For example, g{n, n log n)
is at least en® for some constant ¢ (see [1]). Therefore, the relation (vii) does not give
interesting bounds for f{n, ¢) for :'-:[;]—m log a.

For [;]?cr-{l —-s}[g]. ¢ small, the value of f{n, €) is still not determined. It
would also be of interest to tighten the bound in the case of p*?<e<=n?-",
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In another direction, one can ask the same questions for r-uniform hyper-

graphs. Here, the answers are harder to obtain and are known with less precision,
This topic will be treated in a later paper.
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