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How many edges can be in a graph which is forced to be contained in every graph on n verti-
ces and e edges? 1n this paper we obtain bounds which are in many cases asymptotically best possible .

I. Introduction

A well-known theorem of Turán [10,11] asserts that every graph on n vertices
and e edges must contain a complete subgraph on m vertices if

e~2(m 1)(n-rL)+(2)

where r satisfies r-n (mod m-1) and
In this paper we consider a related extremal problem . A graph which is forced

to be contained in every graph on n vertices and e edges is called an (n, e)-unavoidable
graph, or in short, an unavoidable graph . Let f(n, e) denote the largest integer m with
the property that there exists an (n, e)-unavoidable graph on ni edges . In this paper
we prove the following :

(~ )

	

fl n, e) = I if e - Il2
n .

(ü)

	

f(n,e)=2 if [fn] - e_n .

f(n,e) _(n)L-+ -O(ne3'3) if n _ e _ n'13 .

(O(X) denotes a quantity within a constant ratio of X .)

(tv
. )

	

cr ~e log n

	

f( e)
	 Ce log n

log ((2 )1e) < ra

	

< log (( 2 )1e)
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for some constants c, and c 2 where cn4/3<e--(2)-ni+ and c is between 0 and 1 .
In particular, we have the following :

n 4/3
(v)

	

f(n, e) > (I +o(1)) }12e if e >> n4/3 (I .e .,	
e

- o(l)) .

(vi)

f(n, e) - (1 -o(1)) 112e-log n1log(( 2 )1eJ +O(V e) if

	

« e = o(n`') .

The unavoidable graphs we use for proving (i), (ü) and (iii) are forests which
are disjoint unions of stars . In proving (iv), (v) and (vi), we use unavoidable graphs
which are disjoint unions of bipartite subgraphs .

It. Preliminaries

We first prove several auxiliary facts :

Lemma 1 . If H is a graph on p vertices and q edges with the property that H is con-
tained in every graph on n points and e edges, then we have

q

	

log n~	

log [( 2 )1e, p
•

Proof. There are at most nP ways to map V(H) into {I, 2, . . ., n). Therefore there
are at most

graphs on n vertices and e edges which contain H. Since there are

on n vertices and e edges each of which contains H, we have

r2P (2
11
)-q

	

(2)
e -q

	

e

This implies that nP

	

(2 ) r l e`r and p log n/log I ( 2 )1eJ > q. I

The next lemma is an immediate consequence of Lemma 1 .

Lemma 2 . If His a graph on p vertices and q edges with the property that His contained

in every graph on n points and n'_ p edges, then we have q< p .
8

((
n
2)J graphs
e
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The following two lemmas can be found in [9] .

Lemma 3 . Suppose G is a bipartite graph on e edges such that V(G) =V,,U V 2 where
IV-, I= n1, IV, I= n and E(G) C V1 X V2 . Then G contains a complete bipartite subgraph

K~ with vertex set U,U U2 , IU,I=a, IU21=b, U;C Vi , i=1, 2, if m (eb )tea
(Mb) .

1

Lemma 4 . G contains a subgraph isomorphic to

	

n(2sln~=t( I . I

Lemma 5 . Suppose a graph G has n vertices and e edges, with
JJJ
n ¢ l 3«e. Suppose t

satisfies n1ye<<t<<e/n . Then G contains at least s- (I+o(1))y2elt -vertex-disjoint
copies of stars S, .

Proof. Suppose s is the maximum number of S, embedded in G . Suppose a is an
arbitrary positive value and s,(1-e)y2elt . Let X i denote the set of vertices in G

that the i-th copy of S, is mapped onto . Let Z denote V(G)- U Xi . There is at
i=i

most one vertex in Xi , for each i, adjacent to 2t vertices (or more) of Z because of
the maximality of s . Therefore the number of edges between X i and Z is at most
n+2t 2 . The number of edges in the induced subgraph of G on Z is at most to/2 .

There are at most (s(t21)) edges in the induced subgraph on U Xi .
i-~

We then have
to

	

s 2 (t+1)2

	

(s+1)2(t+1)2
e = s(11+2f2)+2+

	

2	 -	2	+ee

since s--(l -e)y2e/t<< and t<<- . This implies st>(l -e)y2e which contradicts
11

	

n
s~(1-E)y2e/t.

111. On f(n, e) for e < n"

The value of f(n, e), for e<n, can be easily found by the following obser-
vations

Observation 1 . fln, e) =1 if e -- 1 .

Observation 2 . For e [z , the largest common subgraph of S e (a star with e

leaves) and eP2 (e independent edges) is a single edge .

Observation 3 . If e > [-Y ] , a graph on n points and e edges contains P3 .

Observation 4 . For 1n-fl
e--<n, the largest common subgraph of Se and

(a path on e edges) contains two edges .
Therefore we have

Theorem 1 . f(n, e)=1 if e~[2~ and f(n, e)=2 if k
n
d-e<n .

The unavoidable graphs in both
,
cases are paths .

Pel-1
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Theorem 2, Let s denote a small positive value . Suppose e<an'/ 3 . Then any graph on
n vertices' and e edges contains a disjoint union F of stars, St , S2_ 2 , . . ., 52 _ 21 , . . . where

2et=[(1-a)n
Proof . Let Ft,k denote the forest consisting of St, St_2 , . . ., St_ 2k, We will prove by
induction on k that Ft, k can be embedded in any graph G with n vertices and e edges .
It is easily seen that Ft ,, is contained in G . Suppose F,,,-, can be embedded in G . Let
V(St-2J), 1. --j--k-1, denote the set of vertices in G onto which St_2 ; of F,, k _,_ is
embedded. Let Udenote the union of V(St_ 2;) for 1-j--k-1 and U'=V(G)-U.
If there are two vertices in V (St_2j) each of which is adjacent to more than 2t vertices
in U', then F,, k can be embedded in G . We may assurne there is at most one vertex
in V (S t _2;) being adjacent to --2t vertices in U' . The number of edges in the induced
subgraph of G on Uis at most k2 (t-k+1)2/2, since GUI-IV(F,, k-1)1-(t-k+l)k .

The number of edges incident to vertices in U is at most

k2 (t-k+ 1)2 + kn+2tk(t- k+ 1) .

Thus the number of edges in the induced subgraph G' of G on U' is at least

e-Z k 2 (t-k+1) 2 -kn-2tk(t-k+l) - (I-e)e-kn,

since Z k2 (t-k+1) 2 +2tk(t-k+l)_ee . Therefore there exists a vertex in G'

having degree at least 2((1-e)e-kn)ln~t-2k. This implies that Ft , k is contained
in G .

e 2

	

e3
Theorem 3 . If e=n4 í3 , we have f(n, e) _ (-

n
) } O ~- 	.nto'3

Proof. Suppose H is an (n, e)-unavoidable graph. For a subset S of vertices in H,
we define N(S) to be the number of edges of H incident to vertices in S .
Claim 1 . For all S with ISe-3, we have N(S) - ~2e-2j+6) .

n.

	

i-t n
Proof of Claim 1 . Suppose the contrary . Let k denote the smallest integer so that

N(S)F (2e-2j+6)
isi n

for all S with BSI=i<k<e-3 and there exists a set
n

S'CV(H) with IS'i=k and N(S')~JZ(2e-2j+6) .
n.

We now consider a graph G satisfying the following conditions .
(a)

	

G has n vertices and e edges .
(J3)

	

V(G) can be partitioned into two parts V, and V2 where Vi has k-1 vertices

for k_ T-3.

(y)

	

Every vertex in V, is adjacent to every vertex in V2 .
(S)

	

The induced subgraph on V2 has maximum degree at most
2e
- 2k+3 .

n
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The existence of such G can easily be seen by noting that

2(e-(k-1)(n-k+l)) < 2e_ 2k+3,
n-k+l

	

n

for n large and k<e-3.
n

Since H is an unavoidable graph, H can be embedded in G. Let V, denote the
set of vertices in H which are embedded in V, . Define X= V,nS', X'=Vi -S'
and Y=S'-V, . Also we define N(Y, V,) to be the number of edges in H which
are incident to vertices in Y and not incident to vertices in V, . Let G' be the induced
subgraph of Hon X' U Y. G' has at most 2(k-x) vertices. From Lemma 1 we know
that G' has at most 3(k-x) edges since e,n4 /3

We then have

N(S') -- N(X)+IE(G')I+N(Y, V,)

2e

		

2e
-2j+6)+3(k-x)+(k-x)(--2k+3

J -X

	

11

jtx
(ten-2 .+6)+(k-x)(2ne -2k+6) .

fan the other hand, we have N(S') > (2e -2j+6) . This implies
j ~ k n

(k-x)(2e -2k+6) >
x<_(2e

-2j+6
n

	

jk

	

),
n

which is impossible since x--k-l .

Claim 2. IE(H)I-
(e)2

+7(
e

n

	

n
Proof of Claim 2 . We now consider the graph G satisfying the following properties :
(a)

	

G has n vertices and at least e edges .

(/3)

	

V(G) can be partitioned into two parts V, and V2 where V, has [n ] +1

vertices .
(y)

	

Every vertex in V, is adjacent to every vertex in V2 .
(6)

	

No edge is contained in the induced graph of G on V, or V2 .

Ghas
([e 1+ 1.) (n-I n l-1)' e+n-[(n)+112 e edges .

Note that all edges in G are incident to vertices in V, . Since H is an unavoidable
graph, H can be embedded in G. Thus I E(H) I --N(Y) where Y is the set of vertices

in V, that H is mapped onto . Thus IYI`=(e)+2=s+2 . From Claim 1 we have
n

IE(H)I ` Z 2n -2j+6 - n(e)2 +7 e)
j-,+2

3
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We note that Claims 1 and 2 imply
2

f(n,e)

	

(n) +O (n)'

On the other hand, the graph F as mentioned in Theorem 2 is an unavoidable
egraph and F contains at least (e)2+ 0(1110/

e'3 ) edges. We then conclude that

.Í(n, e)
( n )2+ O ( n0 /3 )

F. R . K . CHUNG and P . ERBBS

and Theorem 3 is proved .

We want to show the following :

Theorem 4 . For n4 J3«e=o(n 2) we have

f(n, e) _ (1 +0(1)) y e	
log n	

log ((2 ) le)

®®

We note that Theorem 3 is an improved version of a result in [8] which says

that for e<n 4/ 3 the disjoint union of Le copies of stars SLe
l„ j is an unavoidable

graph. In Theorem 3 we obtain the best asymptotical value for f(n, e), e<<n4/ 3.

IV. On f(n, e), for n4/3 < e = o(n ')

+ O

We remark that the first term is relevant only if e :~-n2-00) where o(l) denotes a
quantity which approaches 0 as n tends to infinity .
Proof. Since the complete graph on [112e I vertices has at least e edges, the unavoid-
able graph H has at most [112e I (nontrivial) vertices . From Lemma 1, we have

~E(H)J = [l~2el	logo
log (( 2 )1e)

Now we want to establish a lower bound of f(n, e) by finding suitable unavoid-

able graphs . From Lemma 5 we know that Theorem 4 is true if k= log n/log ((Z) / e)

is bounded. We only have to consider the situation that k is large .
Suppose e is an arbitrary positive value . Let x denote the maximum number

with the property that G contains x disjoint copies of Ks ,, where s=(1 -8)k, t=
=kn 2/e . Let V denote the set of vertices in G onto which the i" copy of Kg ,, is

X

embedded. Let U denote V(G) - U Vi . Because of the maxima lity of x, the induced

subgraph of G on U does not contain K s ,, . If x-V2e/(s+t), then, by s=o(t), we
have

f(n, e) -- xst -- (1 + o (1)) ~2e s -- (1 +o (1)) log n/log l ( n )1e) .
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Therefore, the induced subgraph of G on U has at most e'<Ee edges for any e>0,
since, by Lemma 4, we have

n
(2es n ) < t ( s ) and

e ' ~ ( n n-(1+Elk < Ee
2

for any E>O and e-01" (n)
For each i, the bipartite graph Bi on Vi and U does not contain two disjoint

copies of K, , , . Let eL denote the number of edges between B; and U. If B,• does not
(2 e1

/m)-
(2 t)

	

I
contain Ks,2ti then by Lemma 3 we have to s

	

2t s

	

where rn= U =n-

-x(s+t)>n-} 2e . This implies that e l<10kn . Suppose B; contains one copy
of K,,2t , then by deleting the s vertices in Vi the remaining graph does not contain
K,, 2t and has no more than IOkn edges. Thus, BZ contains at most I lkn edges. There-

x

	

e 3/2
fore, the number of edges between U V, and U is at most 2 111cn<Ee, since

i-1

	

n k
x-- ~2e/t .

x
The induced subgraph on U V; must contain at least (1 -2e)e edges . Thus

-1

	

`

U Vi contains at least (C2-3E)~e vertices. We then have

x

	

(~-3e)l~-e

	

(112-3e)e 3 /2

kn2/e

	

kn2

Thus, we have proved that

f(n, e) > xst -- (C2 -6e) Ve • k

for any s-0 and n sufficiently large . i

V. On f(n, e) for ( 2n )-e= o (n2)

When e is close to (17),

	

(n)2 i .e. 2 -e=o(n2), our results on f(n, e) are somewhat
less precise .

Theorem 5. Let c and c' denote values satisfying 0 < c, c', 1 . If cn2 < e < (n2 -n1+c'

then we have
log n

	

log n
c1

log

	6
(( 2

11 )1e) < f(n, e) < c2 log
((

2 )1e)

for some constants c1 and c2 .

173
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Proof. The upper bound follows from Lemma 1 . Let G denote a graph on n vertices
and e edges. Suppose e=dn 2, c<d< 1/2 . It can be easily checked from Lemma 4
that any G' (-.G of e/2 edges contains a complete bipartite graph on two sets of
d' log n vertices where d'= 1/2 log (l /c). Now, consider a maximal number of x
disjoint copies of K,,,, t=(d'/2) log n, which can be embedded in G . By removing
do/2 vertices, there are at least e/2 edges left, therefore we have xd' log n-dn/2 .
Thus dnl(2d' log n) copies of K,,, form an unavoidable graph which has (dd'n log n)/8
edges, and we establish (iv) for e=dn 2 , where c -- d-- 1/2 .

Suppose e= (2)-e' and o(n2)=e'>n1+` We have

( n )logn	 logn

	

_ (I +o(1))
2

e
	 - k

log (( 2 )
1e )

Then G contains K,,, with s=c'k/2 since

F. R . K . CHUNG and P. ERDÖS

n (2e/ii )
l	 s

	

e'

	

é s

s's)

	

nlogn

	

(2)

é	é
e , ( " ) logn.

n log n
	 exp

- ( n)

	

2e'
2

é
nl+c'/ 2 log n >

1 .

It is easy to see that G contains n/lOs copies of K,,, since deleting n/5 vertices in G
there are still at least e/2 edges left . This proves that f(n, e)L-crkn for some constant
cl and the proof of Theorem 5 is completed .

Corollary . Suppose e=(
n

2
)
- ni+` Then

e, n 2 log n - f(n, e) -- c2 n2- °3 log n .

Now by combining Theorems 4 and 5 together with the fact that [8] any graph

on n vertices and e edges, where a>n4
/3 , contains the forest consisting of ~ J

3 e
disjoint copies of stars S L , 1 „1 , we conclude the following :
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Theorem 6. If' c is a value between 0 and 1, and n4 /3<e<(2)-nr+c,

ci
~e log n < f .(n, e) < ez Ve log n

log ((
2
)1e)

	

log ((

	 n
2
)1e)

for some constants c, and c z .

VI. Concluding remarks

The unavoidable graph problems are in fact the complementary problem of
the universal graphs . For a given calss H of graphs, a graph G is said to be H-universal
if G contains every graph in H as a subgraph. Univegsal graphs are investigated in
[2-71 . Now suppose G is an (n, e)-unavoidable graph . Then the complement G'

of G must contain all graphs on ( 2 ) - e edges. Furthermore, the complement of a

maximum (n, e)-unavoidable graph must be a minimum universal graph on n vertices

which contains all graphs on n vertices and
(
2
n)
- e edges. Thus we have

then

175

(Vii)

	

J '(n, e) _ (2 ) ° ln,

(
2
n) -e)

where g(n, e') denotes the minimum number of edges in a graph on n vertices which
contains all graphs on n vertices and e' edges . It is proved in [1] that

11 2

	

112 log log n
c' logz n =

g(n, C20 = c 3	
log n

for some constant c. , cz and c3 . Therefore we have

(n) - nzloglogn

	

l
( n)

	

(n) _	 nz
2

c3	
tog n

	 < f n' 2 -czn

	

2

	

Cl togz n

For large e'>n, g(n, e') approaches
(n)
2 rapidly. For example, g(n, n log n)

is at least en z for some constant c (see [1]) . Therefore, the relation (vii) does not give

interesting bounds for f(n, e) for e < (2) - cn log n .

For (2n) >e>(l-a)(n), e small, the value of f(n, e) is still not determined . It
would also be of interest to tighten the bound in the case of n413<e<nz-E
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In another direction, one can ask the same questions for r-uniform hyper-
graphs. Here, the answers are harder to obtain and are known with less precision .
This topic will be treated in a later paper .

Acknowledgement. The authors wish to acknowledge the helpful comments of R . L .
Graham in preparing this paper.
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