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ARITHMETICAL PROPERTIES OF PERMUTATIONS
OF INTEGERS

P . ERDŐS, member of the Academy, R . FREUD and N . HEGYVARI (Budapest)

For the finite case let a1 , a 2 , . . ., an be a permutation of the integers 1, 2, . . ., n
and for the infinite case let a 1 , a2 , . . ., ai , . . . be a permutation of all positive integers .

Some problems and results concerning such permutations and related questions
can be found in [2] (see in particular p. 94). In [3] the density of the sums ai+ai +1
is estimated from several points of view .

In the present paper we shall investigate the least common multiple and the
greatest common divisor of two subsequent elements . First we deal with the least
common multiple. For the identical permutation we have [ai , ai+1]=i(i+l) . We
show that for suitable other permutations this value becomes considerably smaller .

First we consider the finite case

(1)

(2)

(3)

THEOREM 1 . We have

min max [ai, ai+1] = (1+o(1))	
í1 2

1sisn_1

	

4log n

where the minimum is to be taken for all permutations a 1 , a2 , . . ., a n .

One might think that the main reason for not being able to get a smaller value
lies in the presence of the large primes (see also the proof) . Theorem 2 shows that this
is only partly true .

THEOREM 2 . Omit arbitrarily g(n)=o(n) numbers from 1, 2, . . ., n and form a
permutation of the remaining ones .

Then .for any fix E>0, and n large enough we have

min max [aj, ai+1] >- n2-E
Iti--n-g(n)-1

On the other hand, .for any e(n)-->O we have with a suitable g(n)=o(n)

min

	

max

	

[a . . ai+1] < n2-8(n)
IsiSn- g(n)- 1

log {min I-i maxn) 1 [ai, ai+1]An equivalent form of Theorem 2 is :	 must
log n

tend to 2 for any g(n)=o(n), but it can do this from below arbitrarily slowly for
suitable g(n)=o(n) .

In the infinite case we obtain a much smaller upper bound :
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THEOREM 3 . We can construct an infinite permutation satisfying

(4)

	

[ai, ai+i] < ie cyiog ilog log i
for all i .

In the opposite direction we can prove only a very poor result :

THEOREM 4 . For any permutation

(5)

	

lim`sup [a i , ai+i] ,_
1-l0g2 -

3,26 .

Very probably this lim sup must be infinite, and one can expect an even sharper
rate of growth .

Concerning the greatest common divisor only the infinite case is interesting .

THEOREM 5 . We can construct an infinite permutation satisfying

1
(6)

	

(ai, ai+i)

	

2 i
for all i.

On the other hand, for any permutation

(7)
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lim inf (ai, ai+i) ,
i

	

i
61
90

The right value is probably 2 , but we could not yet prove this .

Proofs

PROOF OF THEOREM 1 . First we show that any permutation must contain an
ai for which

n 2
[ai, ai+i] - (1 +0(1)) 4logn

Consider the primes between 2 and n, the number of these is about 21
n n '

Hence

at least one of them has a left neighbour '(1 I o(1

	

n
)) 21 n ' and thus the least

common multiple here is -- (1 +0(1))	'Z	n
2 log n 2

Now we construct a permutation satisfying

n2(8)

	

[ai, ai+i]

	

{1+0(1)}	41ogn
for all inn-1 .

The idea is to take the multiples of a prime p as a block, and to separate the
blocks by "small" numbers . Then the l .c.m. will not be too large at the border of the
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blocks. And inside a block

(9)

	

[ai, a,+,] -- n°

P
which is good if p is not too small. Finally we have to arrange the numbers having
only small prime factors .

Let us see the details . For the primes p up to n let kp be the minimal exponent
for which qp = p kp 4logn (i .e . q p =p if p-4logn) .

We now define the set S of the "small" separator numbers : take Ij (n) - ffi} n )
numbers from 1 to some L just leaving out the values qp and 2q p . Obviously L=

-(1+°(1))
1z

log n
We start the permutation by writing down alternately the primes between n and

2 in decreasing order and the first elements of S in increasing order . (Here a block

consists of p alone.) To show (8) we observe that when we arrive to p- en, then

we have used up H(n)-11(cn)-(1-c) nlog n small numbers, i .e . the l .c.m. of p

and its neighbour is

(10)

	

c(1-c) to

	

- 4logn4 g n

For the primes between 2 and jin we slightly improve the construction . We take

the largest prime, insert all its multiples (up to n) after it, leaving its double to the end .
Now we choose the next even number of S as separator, start the next block with the
double of the next prime, put in all the multiples and terminate it by the prime itself .
Then we insert the next odd number of S as separator and repeat the alogirthm . (9)

and (10) show that (8) is satisfied . We note that for p _ - we do not have to be so

careful about the parity of the separator number, and for p-

	

	`~
4 vlog

	

we do not
n

really need separators at all .
Next we proceed similarly with the qp values between }fin and 4 log n, but here

of course we take only those multiples of qp which have not yet been used up (either
in the blocks, or as separators) . qp and 2qp lie at the two ends of a block (they were
excluded from S to be now at disposal), hence we can either omit the separators, or
put in arbitrarily large numbers as separators . We shall insert as separators the num-
bers still left, i .e . which have all their prime power factors less than 4 log n (and
which were not in S) . There are at most

2n*(41ogn) -n 1- 1—

171

Such numbers, where ]j*(x) denotes the number of prime-powers up to x
since there are 11(V)>n1 /'

- E blocks for 41ogn-gp -{fin, we can consume as
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separators all the numbers left . We have obviously

2gp n -_ 2n 312 at the border of the blocks

[ai, ai+1] -- n2

	

n2
Fqp -- 41og n

PROOF of THEOREM 2. To prove (2) we observe the well-known fact that
there are en numbers up to n which have a prime factor greater than III

I c=(1 +0 (1)) log -
1 -
	1

e/2
	 ), hence we must keep nearly all of them . When we jump from

a multiple of a large prime to a multiple of another large prime, then we either jump
directly, but then the l .c.m. is at least (nl-`i2)2, or we insert a small number as sepa-

rator, but then we need at least (1 +0(1)~	log

/

y1
separators, and so we obtain a l .c.m .

greater than n1-£/2 n
log n

To prove (3) we keep only those numbers whose largest prime factor lies tet-
ween n 1(n ) and n`( ") It is well known that we omitted just o(n) numbers (see e .g .
[1]) . We start the permutation by the largest prime left and its multiples, then we put
the next prime followed by its multiples, etc . Here

n

	

E(")-~ n~

	

for two multiples of the same p
[ai, ai+I] = p

n • nI-`( " ), when jumping to a next prime .

PROOF OF THEOREM 3 . First we note that it is enough to construct a per-
mutation a I , a2 , . . ., of a subsequence of the natural numbers which satisfies (4), since
we can insert the remaining elements afterwards arbitrarily rarely into this permu-
tation .

We shall use the (probably well-known and nearly trivial) statement of the fol-
lowing lemma :

LEMMA . Let H be a finite set, I H I =h and t -h. Then we can order the subsets
having exact,, t elements so that A n H, +, Í = t--1 holds for all i .

PROOF OF THE LEMMA . We prove by induction on h . The initial step is obvious .
Now assume that the assertion is true for h-1 and for all t . Consider now h and
any t . We fix an element xo , take first all subsets containing xo and then take the other
ones. Both parts can be ordered suitably by the induction hypothesis for h -1, t --1,
and for h-1, t, resp. We have no difficulty either at joining the two parts, since if a
"good" order exists, then a simple bijection of H can transform it into another "good"
order with a prescribed first (or last) subset .

The construction of the permutation runs by an iterative process . Assume that
for some n and k=n"9 " we have a,, a2 , . . ., a k ready and no one of them has a prime

factor greater than 2 . We take now all primes between 2 and n, and form all the

products consisting of v such (distinct) primes where v=log n+4 log log n . By the
lemma we can arrange these products so that any two subsequent terms should dif-

inside .
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fer only in one prime factor . This arrangement will be the next segment of the permu-
tation from a c}2 . For a transition element ak+i we can take e .g. any prime between

2 and n . For i--k+l clearly

[ai, i+l] - nv+i - ke2ylogkloglogk = ie 2ylogiloglogi

We have formed about
n

173

(11)

	

r =

	

2logn
log n+4 log log n

new terms of the permutation thus we arrived at least to ar .
The algorithm will work if

(12)

	

r > (2n) log2n

holds. Estimating the binomial coefficient in (11) as a power of the smallest factor in
the numerator and the greatest factor in the denominator we obtain

log n+4 log logn

n

	

to n-41o to n_ 21og n

	

g

	

g g

	

logn+4loglogn

r-

	

log n+ 4 log log n

	

j (lo llg3 n)
and (12) follows by an easy calculation .

PROOF OF THEOREM 4. First we give a very simple proof of weaker form of

(5) with
Z

instead of 1-l0g 2 '
i .e . that no permutation can satisfy

(13)

		

[a i , ai+i] < l2 -s) i with a fix e for i -- io .

We use the inequality

(14)

which is equivalent to

(15)

+
1

	

1

	

1
[ai, ai+i]

	

3 í ai

	

a,+i

_

	

ai		a, +,
3

	

(ai, ai+i) + (a,, ai+i)
and hence it is obvious, since the minimal value of the two terms on the right-hand
side of (15) is 1 and 2 .

Assuming (13) we obtain

	1	1		(2

	

)

	

1 - (2

	

) g
+E'

	

-'

	

+E' to n-K.
it, [ai, ai+i]

	

=io [ai, ai+i]

	

3

	

=,,i

	

3

On the other hand, using (14) we have
1

	

1

	

n 1

	

1)

	

2 n 1

	

2
i=, [ai, ai-*i]

	

3 i=, ai + ai+i

	

3

	

i

	

3 logn+K

which is a contradiction if n is large enough .
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(19)

	

(b,, b2)
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Now we turn to the proof of (5) . Assume indirectly that for some permutation,
s>0 and io we have

(16)

	

[ai , a i+i ] < i

	

1
1 -lo

	

s
if i -- io .

This clearly implies also

ai

	

i l-log2+s
for i

	

io

hence a l , a2i . . ., a„ are all smaller than
i

(17)

	

N = n I -log2-E

if n is large enough. From now on we shall consider only the a,-s with i-n .
Let us call the primes greater than VN and smaller then N "large primes" . If a ;

and a;+, have different large prime factors, then [ai , ai+1]--N in contradiction to
(16). Hence we must insert "separators" between ai-s containing different large prime
factors (the separators cannot have large prime factors, of course) . If a i is the greatest
separator element and ai+, has a large prime factor then [ai , a i+1]-a,VN. Hence
we again arrive at a contradiction by showing that there are at least fN separators,
or equivalently, there are at least VN large primes which occur as factors of ai-s .

We know that there are (1 +o(1))N log 2 numbers up to N having a large prime
factor and we have (I -log 2+e)N ai - s [see (17)], hence at least EN a i - s have a large
prime factor . All of these ai - s cannot be multiples of less than V large primes :
indeed, the number of multiples up to N of VN large primes is

1

	

s
+-

fN

	

N l+0 0(1))Nlo
2 2

< rN.
,,these P" l P

	

VW, p - N

	

E/2 P - (

	

( ))

	

g

	

1/2

PROOF OF THEOREM 5. The permutation 1, 2, 6, 3, 12, 4, 20, 5, 35, 7, . . .
clearly satisfies (6), i .e ., if we have already constructed a, and k is the smallest number
which was not yet used, then a,n+, should be a common multiple of a 2 „ and k (e .g .
the smallest one still available) anf put a2, +2=k .

To prove (7) we observe first the following facts :
Let b l , b 2 , . . . be arbitrary different natural numbers not greater than n. Then :

(b, b2) i ,

or (b 2 , bs) = 3 ,
n

(20)

	

Imin (b i , bi+ ,) = 4 .
(18) is obvious . To show (19) assume indirectly that e .g .

3
<d=(b,, b 2)-(b2 , b 3) .

Then either b,=d and b2 =2d or b,=2d and b2 =d, but in both cases b 3 must be

n
3



1

	

61
c c 90'

as asserted .
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at least 3d which is a contradiction . We can show (20) by similar methods . Put

d = min (bi, bi+I) _ (bk, bk+1) •1si~4

Arguing again indirectly we have {bk, bk+I} {d, 2d, 3d}, and taking step by step the
neighbouring numbers, and having in mind that the greatest common divisor must
be at least d, we obtain that

r
{bl , . . ., bj s {d, 2d, 3d, 3 2 d

which is a contradiction .

Now we are ready to prove (7) . Assume that (ai , ai+l ) >1 i if i is large eno-
c

ugh. Then {a,, a 2i . . ., acj {1, 2, . . ., n} if n is large enough. On the other hand,
taking ac,,,,, . . ., a, n_ i , a,,,, at mos tevery second number can be less than or equal to
n, since

1 i

	

1 en

	

n
c

	

c • 2

	

2

which is impossible by (18) if both ai and ai+l are less than or equal to n .
Similarly, using (19) we obtain that at most the two third part of acn13 , . . ., acn 12

is not greater than n, and finally using (20) we conclude that at most the 4/5 part of
acn14, . . ., acn 13 is smaller than n . Hence

REMARKS. L We can improve (7) somewhat, if we use further inequalities of the
type (18), (19) and (20) . But this does not seem to give a serious reduction, and also

the discover of the

	

inequalities is not too easy. E.g. min b • b •

	

ndiscovery

	

proper

	

15ís12 ( ~, ,+1) ` 5,
and here 12 cannot be replaced by 11, as shown by the numbers

81j, 162j, 108j, 54j, 216j, 72j, 144j, 48j, 96j, 192j, 128j, 64j

(n = 216j, d = 48j = 9 n) .

2 . We mention the following related problem, where we can determine the extre-
mum exactly

THEOREM 6 .

(21)

	

lim inf
min {a i , j a i + , -ai j}

	

3

is true for any permutation, and we can construct a permutation where equality holds .
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PROOF OF THEOREM 6 . The following permutation shows the possibility of
equality :

1, 2, 3, 6, 4, 8, 5, 10, . . .,

i .e . we always take the smallest number still available followed by its double .
To prove (21) we assume indirectly that there is a permutation satisfying

(22)

ai >
(
3
4
+r i and Jai},-ail >

(3T
+E/ i. for i _- i o with a fix E>0 .

Then all the numbers up to (4 + E / N must occur among a,,..., aN , if Nis large enough .

This also means that at least (
4

+ e / N numbers smaller than (4 + e N must appear
111

	

N
among aN12+1, . . ., aN . Thus we obtain an i~ 2 , for which both a i and a i+ , are

smaller than (4 +E)N. Say ai} ,>-ai , then

(4+EJN ai+1= ai+(ai+,-ai)>2(4+Eli>2(4 +E_2

which is a contradiction

	

J

.
We note that the proof gives slightly more, since we did not make really use of

the e in (22) .
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