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ARITHMETICAL PROPERTIES OF PERMUTATIONS
OF INTEGERS

P. ERDOS, member of the Academy, R. FREUD and N. HEGYVARI (Budapest)

For the finite case let q,, as, ..., @, be a permutation of the integers 1,2, ..., n
and for the infinite case let ¢, a,, ..., a;, ... be a permutation of all positive integers.

Some problems and results concerning such permutations and related questions
can be found in [2] (see in particular p. 94). In [3] the density of the sums a;+4d;,,
is estimated from several points of view.

In the present paper we shall investigate the least common multiple and the
greatest common divisor of two subsequent elements. First we deal with the least
common multiple. For the identical permutation we have [a;, a; . ,]=i(i+1). We
show that for suitable other permutations this value becomes considerably smaller.

First we consider the finite case

THEOREM 1. We have

. n?
(1) min _max [a;, @;4,] _(1+O(I))W
where the minimum is to be taken for all permutations a,, a,, ..., a,.

One might think that the main reason for not being able to get a smaller value
lies in the presence of the large primes (see also the proof). Theorem 2 shows that this
is only partly true.

THEOREM 2. Omit arbitrarily g(n)=o(n) numbers from 1,2, ..., n and form a
permutation of the remaining ones.
Then for any fix €¢=0, and n large enough we have

. Dz
2) min _ max [a;, a;1] >n

On the other hand, for any e(n)—~0 we have with a suitable g(n)=o(n)
(3) minm_qn X 1[a A;vq] < nE=2™,

log{min _ max  [a;, a1} _—

logn

An equivalent form of Theorem 2 is:

tend to 2 for any g(n)=o(n), but it can do this from below arbitrarily slowly for
suitable g(n)=o(n).
In the infinite case we obtain a much smaller upper bound:
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THEOREM 3. We can construct an infinite permutation satisfying
@ [2;> 14.] < iecYiostlostos!
Sor all i.

In the opposite direction we can prove only a very poor result:

THEOREM 4. For any permutation

[ a14a] 1

=Ttogz T

(5) lim sup

Very probably this lim sup must be infinite, and one can expect an even sharper
rate of growth.
Concerning the greatest common divisor only the infinite case is interesting.

THEOREM 5. We can construct an infinite permutation satisfying

1,
(6) (a;, ai1) ""'?I
Sor all i.
On the other hand, for any permutation
(a;, a;41) 61
(7 llmjmff =90"

The right value is probably -%-, but we could not yet prove this.

Proofs

ProOOF OF THEOREM 1. First we show that any permutation must contain an
a; for which

[a:‘: al'+1] = (1 +0(1)) 4'0gﬂ-'

; 2 n . n
Consider the primes between > and n, the number of these is about m. Hence

at least one of them has a left neighbour = (1 +0(1))-210%]—, and thus the least

common multiple here is = (1+o0(l)) w— 21 o —’-21

Now we construct a permutation satisfying
?12
(®) [a;, 1] = {1 +0(1)}W
for all i=n—1.
The idea is to take the multiples of a prime p as a block, and to separate the
blocks by “small” numbers. Then the l.c.m. will not be too large at the border of the
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blocks. And inside a block

) la;, @il é?

which is good if p is not too small. Finally we have to arrange the numbers having
only small prime factors.

Let us see the details. For the primes p up to n let k, be the minimal exponent
for which g, = p*» = 4logn (ie. g,=p if p=4logn).

We now define the set S of the “small” separator numbers: take [[ (n) — H(ﬁ)
numbers from 1 to some L just leaving out the values ¢, and 2g,. Obviously L=

n

=(1+o0(1)) T
We start the permutation by writing down alternately the primes between »# and

% in decreasing order and the first elements of S in increasing order. (Here a block

consists of p alone.) To show (8) we observe that when we arrive to p~cn, then
we have used up [](n)— [] (cn)~(1 —c)

and its neighbour is

% small numbers, i.e. the L.e.m. of p
log n

o

(10) e(l—c) = 4logn.

n
logn

For the primes between % and Vn we slightly improve the construction. We take

the largest prime, insert all its multiples (up to n) after it, leaving its double to the end.
Now we choose the next even number of S as separator, start the next block with the
double of the next prime, put in all the multiples and terminate it by the prime itself.
Then we insert the next odd number of § as separator and repeat the alogirthm. (9)

and (10) show that (8) is satisfied. We note that for pq% we do not have to be so

careful about the parity of the separator number, and for p< we do not

4Ylogn
really need separators at all.

Next we proceed similarly with the g, values between Vn and 4 log n, but here
of course we take only those multiples of ¢, which have not yet been used up (either
in the blocks, or as separators). g, and 2g, lie at the two ends of a block (they were
excluded from S to be now at disposal), hence we can either omit the separators, or
put in arbitrarily large numbers as separators. We shall insert as separators the num-
bers still left, i.e. which have all their prime power factors less than 4 log n (and
which were not in §). There are at most

s
QM*(alogn) , ploglogn

Such numbers, where [[*(x) denotes the number of prime-powers up to x
since there are ﬂ(}f;)u-nlf’ﬂ‘“ blocks for 4 log nEq,,EVrJT, WE can consume as
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separators all the numbers left. We have obviously
2q,n = 2n®* at the border of the blocks
i, Qi ] = 1 n* 2
[l. |+1] ._-’1“:::_ n inSidE.
q,  4logn
Proor oF THEOREM 2. To prove (2) we observe the well-known fact that
there are cn numbers up to n which have a prime factor greater than n'—%?
[ l+o(l))]0g /2] hence we must keep nearly all of them. When we jump from

a multiple of a large prime to a multiple of another large prime, then we either junip
directly, but then the l.c.m. is at least (r1~*%)?, or we insert a small number as sepa-

rator, but then we need at least (1+40(1))

n :
T separators, and so we obtain a l.c.n.
og n

n
logn -~

To prove (3) we keep only those numbers whose largest prime factor lies tei-
ween #*™ and n'—*™, It is well known that we omitted just o(n) numbers (see c.z.
[1]). We start the permutation by the largest prime left and its multiples, then we put
the next prime followed by its multiples, etc. Here

greater than n'~#?

LR #n_ for two multiples of the same p
[al' > iy 1] = P

n-n'=#"_ when jumping to a next prime.

Proor oF THeoreMm 3. First we note that it is enough to construct a per-
mutation a,, @,, ..., ol a subsequence of the natural numbers which satisfies (4), since
we can insert the remaining elements afterwards arbitrarily rarely into this permu-
tation.

We shall use the (probably well-known and nearly trivial) statement of the fol-
lowing lemma:

Lemma. Let H be a finite set, =h and t=h. Then we can order the subseis
having exactly t elements so that |H;(\H;,,|=t—1 holds for all i.

PrROOF OF THE LEMMA. We prove by induction on A. The initial step is obvious.
Now assume that the assertion is true for #—1 and for all 1. Consider now /1 and
any . We fix an element x,, take first all subsets containing x, and then take the other
ones. Both parts can be ordered suitably by the induction hypothesis for A—1, r—1,
and for i—1, t, resp. We have no difficulty either at joining the two parts, since if a
*good” order exists, then a simple bijection of / can transform it into another “good™
order with a prescribed first (or last) subset.

The construction of the permutation runs by an iterative process. Assume that
for some n and k=n'"¢" we have a,, ds, ..., a, ready and no one of them has a prime

factor greater than jZI— We take now all primes between -% and n, and form all the
products consisting of v such (distinct) primes where v=log n+4 loglog n. By the

lemma we can arrange these products so that any two subsequent terms should dif-
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fer only in one prime factor. This arrangement will be the next segment of the permu-
tation from g, ,,. For a transition element g, ,, we can take e.g. any prime between

L and n. For i=k+1 clearly

2
T nttl ke2}’mloglogk = fe2r‘ﬁg_ilcglogi-
We have formed about
n
(11) r= 2logn
logn+4loglogn

new terms of the permutation thus we arrived at least to a,.
The algorithm will work if
(12) r = (2n)los™n
holds. Estimating the binomial coefficient in (11) as a power of the smallest factor in
the numerator and the greatest factor in the denominator we obtain
logn +4loglogn

—logn—4loglogn

2logn
logn+4loglogn

r=

I

n )legn+dloglogn
[](}gsﬁ]
and (12) follows by an easy calculation.

ProoOF OF THEOREM 4. First we give a very simple proof of weaker form of

i 3 1 ; ; ;
(5) with 5 instead of T los 2" 1.e. that no permutation can satisfy
— g‘-’

(13) la;, a; 1] = [%—a]f with a fix & for i=i.
We use the inequality

1 11 1
(14 —_—= -—{—+ }
‘) . . [a;, ai44] 3la;  ayy
which is equivalent to

a; di1
(@i aiq) (45 Givq)
and hence it is obvious, since the minimal value of the two terms on the right-hand
side of (15) is 1 and 2.
Assuming (13) we obtain
ul 1

<1 4, ai44] i

(15) 3

[IA

Iy
M=

] [%-I-E’] |'=Z"' ]

—_
o [P |

On the other hand, using (14) we have

Il
-

31 1 { L1, 3 } 2
i=1 [ajq ai‘l“l] = 3 i‘:l. a; aj+1 ) 3!‘:1
which is a contradiction if » is large enough.
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Now we turn to the proof of (5). Assume indirectly that for some permutation,
e=0 and i, we have

, 1 .

(16) [ai, a;41] < " T—Tos2+s = .
This clearly implies also

a-{f—]— for i=j

! 1—log2+e -
hence a,, a,, ..., a, are all smaller than

1

ug N="l—~log2—£

if n is large enough. From now on we shall consider only the a;-s with i=n.

Let us call the primes greater than VN and smaller then N “large primes”. If a;
and a;,, have different large prime factors, then [g;, a;.;]=N in contradiction to
(16). Hence we must insert “separators’ between «;-s containing different large prime
factors (the separators cannot have large prime factors, of course). If a; is the greatest
separator element and ;. has a large prime factor then [4;, a;,,]=a;}J'N. Hence
we again arrive at a contradiction by showing that there are at least ' N separators,
or equivalently, there are at least J'N large primes which occur as factors of a;-s.

We know that there are (I+o0(1))Nlog 2 numbers up to N having a large prime
factor and we have (1 —log 2+¢&)N a;-s [see (17)], hence at least eN a;-s have a large
prime factor. All of these a;-s cannot be multiples of less than VN large primes:
indeed, the number of multiples up to N of J'N large primes is

1 ¢
.._+_

s [ﬁl & _ F [ﬁl = (14 o)V log 2> < &N.
,these p» = P YN<p=NUz+se/2 P 1/2

Proor oF THEOREM 5. The permutation 1, 2, 6, 3, 12, 4, 20, 5, 35, 7, ...
clearly satisfies (6), i.e., if we have already constructed a,, and k is the smallest number
which was not yet used, then a,,,, should be a common multiple of a,, and & (e.g.
the smallest one still available) anf put a,,. ,=k.

To prove (7) we observe first the following facts:

Let by, by, ... be arbitrary different natural numbers not greater than n. Then:

(18) (i) = 5,

(19) (b1, by) = or (b, by) =

= A
3 3’

. n

(20) B (bis bivy) = s

(18) is obvious. To show (19) assume indirectly that e.g. % <=d=(by, b)) = (b;, b,).
Then either b;=d and b,=2d or b,=2d and b,=d, but in both cases b; must be
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at least 3d which is a contradiction. We can show (20) by similar methods. Put

d = llgniig‘i (b,', b,‘+1) = (bk! bk+1)'

Arguing again indirectly we have {b;, b, ,,} {d. 2d, 3d}, and taking step by step the
neighbouring numbers, and having in mind that the greatest common divisor must
be at least d, we obtain that

{by;-sbs} S {d 2d, 3d, g d}
which is a contradiction.
Now we are ready to prove (7). Assume that (a;, a‘“)}%i if i is large eno-

ugh. Then {a,, a,, ...,a,}=2{1,2, ...,n} if n is large enough. On the other hand,
taking dgn0, ...y @ep—y, Aen» at Mos tevery second number can be less than or equal to
n, since

cn

S
2 2

1 1
a;, a >—i=—
(@i @i 41) 2 r

which is impossible by (18) if both @, and @, are less than or equal to n.
Similarly, using (19) we obtain that at most the two third part of @z, ..y Genpe
is not greater than n, and finally using (20) we conclude that at most the 4/5 part of
Qepjgs -5 ey 18 smaller than n. Hence

- TRkl s

cn] l_}.ﬂ r.'n] 2 [ﬂ cn] 4 cn

2 2 3

ie ifﬁ—l as asserted
- = =5p° a 1

n= [C?l'“‘

REMARKS. 1. We can improve (7) somewhat, if we use further inequalities of the
type (18), (19) and (20). But this does not seem to give a serious reduction, and also

the discovery of the proper inequalities is not too easy. E.g. ;._E?i;‘}g (b;. b;ﬂ)é%,
and here 12 cannot be replaced by 11, as shown by the numbers
81j, 162j, 108j, 54j, 216/, 72j, 144}, 48j, 96j, 192}, 128j, 64f
[n =216j,d = 48] = %n].
2. We mention the following related problem, where we can determine the extre-

mum exactly:

THEOREM 6.
@1 fim ing 20 0la—ad} 3

i 4

is true for any permutation, and we can construct a permutation where equality holds.
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Proor ofF THEOREM 6. The following permutation shows the possibility of
equality:
1, 2, 3,6, 4,8, 5 10,...,

1.e. we always take the smallest number still available followed by its double.
To prove (21) we assume indirectly that there is a permutation satisfying

(22)
3 . 3 , A .
a, = [-I+s]a and |a;41—a;] = [E—}-c]: for i=1i, with a fix e=0.

3 s
Then all the numbers up to [I + e] N must occur amonga,, ..., dy, 1f Nislarge enough.

This also means that at least [%

\ . N :
among @ys 41, ---» dy. Thus we obtain an i==, for which both a; and a;,, are

smaller than [%—}—S]N. Say a;,,>a;, then

+a] N numbers smaller than [% + e]N must appear

3 3 3
[E+£]N>af“=a;+(af+l a)-»Z[ +£]1>2[ ]g—
which is a contradicticn.
We note that the proof gives slightly more, since we did not make really use of
the ¢ in (22

Acknowledgement. The authors express their gratitude to Prof. M. Simonovits
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