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1 . Introduction .

By a k-graph we mean a pair G = (V,E) consisting of a finite set

V of vertices and a collection E of distinct k-element subsets of V

called the edges of G . Our object here is to show that each such

k-graph with sufficiently many vertices and sufficiently many edges
must contain a subgraph H (that is, a "sub-k-graph" H), also having

many edges, and having the property that each pair of edges of H lies

together in a common subgraph of G which is a type of k-graph "cycle" .

In particular for graphs (k=2) we show that each pair of edges of the

subgraph H lies together in a cycle of length 4 or one of length 6 in

H in the usual graph-theoretic sense, with any two edges of H which

share a common vertex being in a cycle of length 4 .

Our definition of a "k-cycle" for k > 2 involves the notion of a

"separating edge" which was used by Lovász [6] in the formulation of

his definition of a "k-forest" .

2 . The Main Results .

We shall use Gk (n,Q) to denote a k-graph having n vertices and k

edges, and Kk(m,m' . . .,m) to denote the complete k-partite k-graph

having m vertices in each color class . Our first result, from which

the rest will be derived, is that each k-graph with sufficiently many

edges contains a large number of distinct subgraphs each of which is

a Kk(2,2, .--,2) . The argument used is based on familiar techniques such

as those employed in C37 .

Theorem 1 . For each positive constant c and sufficiently large n there

exists a positive constant c' such that each Gk (n,cnk) contains c'n2k
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distinct copies of Kk(2,2, • • • , 2) .

Proof . We proceed by induction on k, considering first a graph G =

G2 (n,cn 2 ) .

P

By standard results (cf . [1)) we have that G contains a bipartite

graph B with vertices {x l ,x2 ,

	

,xm} and {yl'y2'
•

•ym}, m = `n/2§

and c ln2 of the edges xi,y
J
,, 1 <_ i, j 5 m, for some positive constant

cl . Let d(xi ) denote the degree of x i in B and d(y,,yi) the number of
J

vertices x i such that each of the edges x iyj and x iyA are in B . Let

L d(yj ,y,) and let q denote the number of copies of K2 (2,2)
j#Q

15j,2<_m

	

m
in B . Then we have that p =

C
L (d(xi) ) and that q =

	

(d(yj 2yt)) 'i-1

	

jot
15 j , Z!~m

Since p is least if the d(x i ) are all equal and q is least when the

d(yi ,yZ ) are all the same, we have that p ? m( 221n ) and that

m P/(2)
q

	

(2)( 2

	

) . Thus the result follows for k=2 when n is sufficiently
large .

Now assume that the result is true for (k-1)-graphs (k >3) and

consider a k-graph k

	

kG (n,cn ) . Again we may assume that our k-graph
k

contains a k-partite sub-k-graph B having vertex set V = u X l ,
i=1

i

	

i i

	

i

	

k

	

1 2

	

kX = {xl,x2, • • • , xm}, m = In/ kJ, and c ln of the edges

	

1J
(x . ,x,

2
• • , x . )

J

	

J k

for some positive constant c

	

Let A , Q = 1,2, • • • ,N

	

2 k-1 ,
1

	

Q

	

= ()

	

denote

those sets consisting of two vertices from each of the X 1 , 2 < i < k,

and let d(AQ ) denote the number of vertices xl in Xl for which
J

1 2

	

3

	

k

	

2

	

3(xj ,x
j2

,x
j3

, • • • , xj ) is an edge of B for each choice of xj ,xj , • • • ,
k

	

2

	

3

and x~ from AR . Similarly let d(x~) denote the number of the sets A
k

for which (xJl,x
J?2,x J

3
3

, • • • , x
J
k ) is an edge of B for each collection
k

x2 ,x3 , • • • ,xk

	

chosen from A. . For some constant c 2 there are at
J2 J 3

	

Jk

least c2m vertices in X1 each contained in c 2nk-l edges of B . For such
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a vertex x~ the (k-1)-graph whose edges are all of the (k-1)-sets P i

for which fx~ } u Pi is an edge of B has at least c 2nk-1 edges, and by
1

the inductive hypothesis, contains at least can 2k-2 copies of

Kk-1(2,2, • • • , 2) for some positive constant c 3 . For such a vertex we
NC

	

m
have

	

jd(x ) > c n2k-2 . Since L d(A) _ Y d(xl), it follows that
N

	

1

	

3

	

£=1 2

	

j=1

I d(Ad > t, where t = c4n 2k-1 , for some positive constant c4 . Thus
L=1

	

Nc
we have L ( d(2~) ) > N(t/N), from which the result follows for large n .

£=1

As a consequence of this theorem we have that for each positive

constant c there exists a positive constant c' such that for sufficiently

large n each Gk(n,cnk) contains an edge which is contained in at least

c'nk distinct copies of Kk(2,2, • • • , 2) . (This fact for k = 2 could also

be obtained as a nice application of the powerful graph-theoretic result

of Szemerédi given in [81) . It is easily checked that a subgraph H

of G 2 (n,cn 2 ) which consists of c'n 2 copies of C 4 = K2(2,2) all having

a common edge xy has the property that each pair of edges of H are

contained in a cycle of length 4 or one of length 6 in H . Any two

edges of H which share a common vertex will be in a cycle of length 4,

except possibly for some pairs where both edges contain the same vertex

of the edge xy while neither contains both x and y . If we let H1 be the

subgraph consisting of those edges of H which do not meet xy, then for

some positive constant c",H 1 contains c"n 2 distinct copies of C4 all

sharing a common edge x'y' . Let H2 be the graph formed by adding to

these c"n 2 copies of C4 in H1 the remaining edges of each C 4 in H which

includes both the edge xy and some edge in H l . It now follows that any

two edges of H 2 which share a vertex lie in a cycle of length 4 in H 2 and

so this subgraph has the properties described in the following result :

Corollary 1 . For each positive constant c there exists a positive con-

stant c' such that for sufficiently large n each G 2 (n,cn 2 ) contains a

subgraph H with c'n 2 edges which has the property that each pair of edges

of H are contained in a cycle of H of length 4 or 6 and each pair of

edges which share a common vertex are in a cycle of length 4 .
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Before considering an analogue of this corollary for k>2 we must formu-

late an appropriate counterpart for the notion of a "cycle" in a graph .

Our approach involves the following notion due to Lovász 161 . An

edge E of a k-graph G = (V,E) is a separating edge of G if there exists

a partition of V into k classes such that E meets each class of this

partition, but every other edge of G meets at most k-1 of these classes .

(For k=2 a separating edge is simply a "cutedge" in the usual graph-

theoretic sense) . Lovász called a k-graph each of whose edges is a

separating edge a k-forest and showed in 161 that a k-forest with n

vertices has at most (k1) edges . In 191 Winkler showed that the (k-

1)-dimensional simplices of a símplicial complex which triangulates a (k-1)-

dimensional closed manifold, thought of as the edges of a k-graph, in-

clude no separating edges . Lovász obtained a more general result in 177
by considering a matroid of rank k defined on the vertices of such a sím-

plicial complex . In 157 Lindström extended Lovász' theorem by allowing,

in place of a (k-1)-manifold, a cycle of an arbitrary chain-complex,

and also obtained new proofs of the earlier results of Lovász and

Winkler . It follows from these results (or by a slight modification

of the proof of Winkler's theorem in 191) that a graph G which is such

that each set of k-1 vertices is contained in an even number of edges

has no separating edges . A k-graph G is called strongly connected

provided that for each pair of edges E and F of G there exists a finite

sequence of edges of G, E = El,E2, • • • ,EZ = F such that JEi n Ei+1 1
k-1 for 1 <_ i s Q-1 . We shall use the term k-cycle to denote a k-graph

with at least one edge, which has no separating edges and which is mini-

mal with respect to this property . If an edge E of a k-graph G has a

subset of k-1 vertices which is not a subset of any other edge of G, then

it is easy to see that E is a separating edge of G . It follows that

any strongly connected k-graph which is such that each set of k-1 ver-

tices is contained in 0 or exactly 2 edges must be a k-cycle in our sense .

(Note that these conditions applied to the highest dimensional simplices

of a simplicial complex define a pseudomanifold in the sense of

Brouwer and Lefschetz 141 . A k-cycle of this type would also be a
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circuit in the associated k-simplícial matroid over GF(2), but the

relationship between our k-cycles in general and the matroid circuits

is not clear) . We may now formulate the following result :

Corollary2 . For each positive constant c there exists a positive con-

stant c' such that for sufficiently large n each Gk(n,cnk ) contains a

sub-k-graph H with the property that each pair of edges of H are con-

tained in a common k-cycle of H .

Proof . As for k = 2 the proof consists of showing that a subgraph

consisting of c'nk copies of Kk(2,2,,**,2) all sharing a common

edge has the desired property . To see that this is so consider two

edges E and F in such a subgraph and let the vertices of the k-edge

common to all of the Kk(2,2,-* ,2) in this k-graph be x ,x2'**" and

xk . If E and F are contained in the same copy of Kk(2,2, • • • , 2), then

this k-partite k-graph is the required k-cycle . Suppose then that E

and F are in distinct Kk(2,2, • • • , 2)'s, say, Y and Z, and that the

vertices of Y and Z, other than the x i are y1 , • • • , yk and z l , • • • , zk ,

respectively, where for some r, I < r < k, y i = zi for i = r+l,r+2, • • • , k

and y i J Z, zí ij Y for 1 < i < r. Let X denote the k-graph obtained

from Y u Z by deleting all k-tuples containing xl,x22"**' and x r'
Note that X contains both E and F . Let A denote a set of k-1 vertices

which are contained in some edge of X .

	

For exactly one value of j,

1 < j < k, A does not contain x
J
.,y

J
., or z j* If A contains any y i or

-
zi with 1 < i < r, then A is contained in precisely two edges of X, one

containing x . and the other yj or z, (or y j = zj if j > r) . If A con-

tains no y i or z í with 1 < i < r, then we must have j !5 r, since

otherwise A contains x l ,x2' - , and xr . In this case A is again in

two edges of X, one with y j and the other with zj . Thus in each case

A is contained in exactly two edges of X .

To see that X is also strongly connected first note that each edge

of X contains at least one y i for 1 < i < r or at least one z i ,

1 < i < r, but not both . An edge E containing some y ., 1 < i < r,

is joined to the edge with vertices y1' . . . ' yk by a sequence of edges

where each successive edge is obtained from its predecessor by re-

placing one vertex by a vertex among yl,y2 "*" yk . Similarly an edge
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containing a z i , 1 < i < r, is joined to the edge with vertices

zl,z2' • • • , and zk . Now (yl,y2, • • • ,yk) and (zl ,z 2 "'* ' z
k ) can each

be joined by a sequence of edges to an edge containing x 2' x3 , • • • , and

xr . Finally, since the edges (yl,x2'X3'- 'xr'yr+l' . . .'yk) and
(zl,x2'X3"'*' xr,z l , • • • , zk ) share k-1 vertices, we have that X is

strongly connected. By the remarks above, X must be a k-cycle which

concludes the proof .

It was show by Brown, Erdös, and Sós in [2] that each 3-graph

G 3 (n,cn5/2 ), for n sufficiently large, contains a simplicial complex

which is a triangulated 2-sphere . An analysis of the proof of

Corollary 2 shows that for k = 3 each pair of edges in the sub-k-graph

of G2(n,cn3 ) constructed are contained together in a triangulated 2-

sphere in that subgraph .

Further Results and Problems .

It is not difficult to show that each G 2 (n,cnf(n)) contains a sub-

graph with c'(f(n)) 2 edges each two of which lie on some common cycle .

The existence of,graphs with large girth and fixed minimum degree (see

[1], Chpt . 3) shows, however, that a G 2 (n,cnf(n)) may contain no

subgraph in which each pair of edges lie on a short common cycle .

What conditions would insure the existence of a large subgraph in which

each set of m edges, no three incident with the same vertex, all lie on

a common cycle?

Many questions remain to be answered concerning k-forests and the

graphs we have called k-cycles . In particular we have no characteriza-

tion of these k-cycles . As indicated, each k-graph in which every set

of k-1 vertices is contained in any even number of edges (and hence each

circuit of a k-simplicial matroid over GF(2)) must contain a k-cycle .

There exists a 3-cycle, however, (with 6 vertices and 13 edges) which

contains no nonempty sub-3-graph in which each set of 2 vertices is con-

tained in an even number of edges . (If each k-cycle did contain such

a subgraph, the notions of "k-cycle" and "matroid circuit" would coin-

cide) .

A k-forest on n vertices has at most (k i) edges (cf . [5] or [67) .
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There exist exactly two 3-forests on 5 vertices with 6 edges, one having

as edges all 3-subsets of {1,2,3,4,51 which contain 1 and the other

having (123), (124), (125), (145), (234), and (235) as edges . The proper-

ties of those k-forests with the maximum possible number of edges have

yet to be investigated . It is not known whether every collection of

separating edges in a strongly connected k-graph with n vertices can be

extended to a k-forest with (k-i) edges, or whether, in a k-graph with

many edges, the fraction of edges which are separating edges must be

small .

It follows from Lindström's result [51 that the k-forests contained

in a k-graph are independent sets in the k-simplicial matroid deter-

mined by H . Examples given in E51 show, however, that the collection of

all k-forests in H need not be equal to the collection of independent

sets for some matroid .

The 7-point projective plane, or any larger Steiner triple system,

viewed as a 3-graph, shows that a 3-forest may not be 2-colorable .
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