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1. Introduction.

By a k-graph we mean a pair G = (V,E) consisting of a finite set
V of vertices and a collection E of distinct k-element subsets of V
called the edges of G. Our object here is to show that each such
k-graph with sufficiently many vertices and sufficiently many edges
must contain a subgraph H (that is, a "sub-k-graph" H), also having
many edges, and having the property that each pair of edges of H lies
together in a common subgraph of G which is a type of k-graph "cycle".
In particular for graphs (k=2) we show that each pair of edges of the
subgraph H lies together in a cycle of length 4 or one of length 6 in
H in the usual graph-theoretic sense, with any two edges of H which
share a common vertex being in a cycle of length 4.

Our definition of a "k-cycle" for k > 2 involves the notion of a
"separating edge" which was used by Lovdsz [6] in the formulation of

his definition of a "k-forest".

2. The Main Results.

We shall use Gk(n,ﬂ) to denote a k-graph having n vertices and %
edges, and Kk(m,m,---,m) to denote the complete k-partite k-graph
having m vertices in each color class. Our first result, from which
the rest will be derived, is that each k-graph with sufficiently many
edges contains a large number of distinct subgraphs each of which is
a Kk(2,2,---,2). The argument used is based on familiar techniques such

as those employed in [3].

Theorem 1. For each positive constant ¢ and sufficiently large n there

exists a positive constant c¢' such that each Gk(n,cnk) contains c'nZk
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distinct copies of KK(2,2,+++,2).

Proof. We proceed by induction on k, considering first a graph G =
2
Gz(n,cn Vi
By standard results (cf. [1]) we have that G contains a bipartite
graph Bzwith vertices {xl,x2,°--,xm} and {yl,yz,'°',ym}, m = Lanj,
and ¢.n” of the edges xi,yj, 1 <1i, j £m for some positive constant

1

€y Let d(xi) denote the degree of ®y in B and d(yj'yl) the number of

vertices Xy such that each of the edges x,y, and xiylare in B. Let

i3
p = Z d(yj,yg) and let q denote the number of copies of KZ(Z,Z)
j#L
1<i,%<m m
in B. Then we have that p = [ (dfxij) and that q = : (d(yj,yi))
2 2
i=1 itk
19, 8=m

Since p is least if the d(xi} are all equal and q is least when the

2cln

d[yi,yg) are all the same, we have that p = m( ) and that

2 (;)(P£(2))_ Thus the result follows for k=2 when n is sufficiently

large.
Now assume that the result is true for (k-1)-graphs (k >3) and

consider a k-graph Gk(n,cnk). Again we may assume that our k-graph

k
contains a k-partite sub-k-graph B having vertex set V =u xi,
i=1
i - i i -e e i = k l 2 LN
X = {xl.xz, ,xm}, m Ln/kj, and ¢ n” of the edges (le,sz, ,xjk)
for some positive constant - 1’ £ =1,2,%+ N = ( )k l, denote

those sets consisting of two vertices from each of the xt » 2 <1<k,
and let d(Az) denote the number of vertices x; in X1 for which
3 ,---,xk ) is an edge of B for each choice of xz 3 s,
Ik 127755
and x? from AE' Similarly let d(x}} denote the number of the sets A
j
for which (xl,x2 ,x? "°,xg ) is an edge of B for each collection
PR P Iy
2 .3 4
X. i Xn 4tveuX chosen from A,. For some constant ¢, there are at
3o i, Iy L

least com vertices in xl each contained in cznk-1 edges of B. For such

(x ,x

17357 4
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a vertex x; the (k-1)-graph whose edges are all of the (k-1)-sets Pi
1
k-1

for which {x; }u P, is an edge of B has at least c,n edges, and by
1
: 2k-2 .
the inductive hypothesis, contains at least Cqn copies of
KF-I(Z,Z,"',Z) for some positive constant Cq- For such a vertex we
A1 2k-2 ¥ B
have d(x, ) > c.,n . Since Z d(a;) = E d(x.), it follows that
=3 o R = i
1 =1 j=1
5 2%-1
I d(ay) > t, where t = c,n , for some positive constant c,. Thus
=1
¥ am,) t/N
we have Z ( 21 ) > N( 2 ), from which the result follows for large n.
=1

As a consequence of this theorem we have that for each positive
constant c there exists a positive constant c¢' such that for sufficiently
large n each Gk(n,cnk) contains an edge which is contained in at least
¢'n distinct copies of KB(Z,Z,"',2). (This fact for k = 2 could also
be obtained as a nice application of the powerful graph-theoretic result
of Szemerédi given in [8]). It is easily checked that a subgraph H
of Gz(n,cnz) which consists of c'n2 copies of C4 = K?(Z,Z) all having
a common edge Xy has the property that each pair of edges of H are
contained in a cycle of length 4 or one of length 6 in H. Any two
edges of H which share a common vertex will be in a cycle of length 4,
except possibly for some pairs where both edges contain the same vertex
of the edge xy while neither contains both x and y. If we let Hl be the
subgraph consisting of those edges of H which do not meet xy, then for
some positive constant c",Hl contains c"n’ distinet copies of C4 all
sharing a common edge x'y'. Let H, be the graph formed by adding to
these c"nz copies of C4 in H; the remaining edges of each c, in H which
includes both the edge xy and some edge in Hl' It now follows that any

two edges of H, which share a vertex lie in a cycle of length 4 in H2 and

2
so this subgraph has the properties described in the following result:

Corollary 1. For each positive constant ¢ there exists a positive con-
stant ¢' such that for sufficiently large n each Gz(n,cnz) contains a
subgraph H with c'n2 edges which has the property that each pair of edges
of H are contained in a cycle of H of length 4 or 6 and each pair of

edges which share a common vertex are in a cycle of length 4.
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Before considering an analogue of this corollary for k>2 we must formu-
late an appropriate counterpart for the notion of a "ecycle" in a graph.
Our approach involves the following notion due to Lovdsz [6], An
edge E of a k-graph G = (V,E) is a separating edge of G if there exists
a partition of V into k classes such that E meets each class of this
partition, but every other edge of G meets at most k-1 of these classes.
(For k=2 a separating edge is simply a "cutedge" in the usual graph-
theoretic sense). Lovdsz called a k-graph each of whose edges is a
separating edge a k-forest and showed in [6] that a k-forest with n
vertices has at most (ﬁ:i) edges. In [9] Winkler showed that the (k-1)-
dimensional simplices of a simplicial complex which triangulates a (k-1)-
dimensional closed manifold, thought of as the edges of a k-graph, in-
clude no separating edges. Lovdsz obtained a more general result in [ 7]
by considering a matroid of rank k defined on the vertices of such a sim-
plicial complex. In [5] Lindstrom extended Lovdsz' theorem by allowing,
in place of a (k-1)-manifold, a cycle of an arbitrary chain-complex,
and also obtained new proofs of the earlier results of Lovdsz and
Winkler. It follows from these results (or by a slight modification
of the proof of Winkler's theorem in [9]) that a graph G which is such
that each set of k-1 vertices is contained in an even number of edges

has no separating edges. A k-graph G is called strongly connected

provided that for each pair of edges E and F of G there exists a finite
sequence of edges of G, E= El'EZ'...'Ez = F such that IEi n Ei+l[ =

k-1 for 1 < i € #-1. We shall use the term k-cycle to denote a k-graph
with at least one edge, which has no separating edges and which is mini-
mal with respect to this property. If an edge E of a k-graph G has a
subset of k-1 vertices which is not a subset of any other edge of G, then
it is easy to see that E is a separating edge of G. It follows that

any strongly comnected k-graph which is such that each set of k-1 ver-
tices is contained in 0 or exactly 2 edges must be a k-cycle in our sense.
(Note that these conditions applied to the highest dimensional simplices
of a simplicial complex define a pseudomanifold in the sense of

Brouwer and Lefschetz [4]. A k-cycle of this type would also be a



circuit in the associated k-simplicial matroid over GF(2), but the
relationship between our k-cycles in general and the matroid circuits

is not clear). We may now formulate the following result:

Corollary 2. For each positive constant c there exists a positive con-
stant ¢’ such that for sufficiently large n each Gk(n,cnk) contains a
sub~k-graph H with the property that each pair of edges of H are con-

tained in a common k-cycle of H.

Proof. As for k = 2 the proof consists of showing that a subgraph
consisting of c'nk copies of Kk(Z,Z,"’,Z) all sharing a common

edge has the desired property. To see that this is so consider two
edges E and F in such a subgraph and let the vertices of the k-edge
common to all of the xk(z,z.-r-.z) in this k-graph be X 0% ,***, and
X, - If E and F are contained in the same copy of Kk(2,2,°",2), then
this k-partite k-graph is the required k-cycle. Suppose then that E
and F are in distinct K(2,2,%++,2)'s, say, Y and Z, and that the

vertices of Y and Z, other than the x, are yl,'°-,yk and 200" 7

respectively, where for some r, 1 j'rfi K, y1 = zi for 1 = r+l,ri2,°**,k
and ¥y i 2, z, ¢ Y for 1 <i < r. Let X denote the k-graph obtained
from Yu Z by deleting all k-tuples containing X aKgs" "ty and X

Note that X contains both E and F. Let A denote a set of k-1 vertices
which are contained in some edge of X. For exactly one value of j,

1 < j <k, A does not contain xj,yj, or zj' If A contains any y; or

zy with 1 € i < r, then A is contained in precisely two edges of X, one
containing xj and the other y:I or zj (or y, = 2z, if j >r). If A con-

3 i

tains no or z, with 1 < 1 < r, then we must have j < r, since
Yy 1=

otherwise A cont:ins X5Xps" "t and X - In this case A is again in
two edges of X, one with yj and the other with zj. Thus in each case
A is contained in exactly two edges of X.
To see that X is also strongly connected first note that each edge
of X contains at least one Yy for 1 <i < r or at least one L
1 <1 < r, but not both. An edge E containing some Yy TR Nl
is joined to the edge with vertices yl’.'.'yk by a sequence of edges
where each successive edge is obtained from its predecessor by re-

placing one vertex by a vertex among Yys¥prttta¥g- Similarly an edge



containing a Z:s l<1i<r, is joined to the edge with vertices
ZysZys *0t and Z Now (yl.yz,---,yk) and (zl,zz,---,zk) can each
be joined by a sequence of edges to an edge containing XyrXqyttt, and
X Finally, since the edges (yl,xz,x3,°-°,xr,yr+1,---,yk) and
(zl.xz,x3,°",xr,zr+1,*'°,zk) share k-1 vertices, we have that X is
strongly connected. By the remarks above, X must be a k-cycle which

concludes the proof.

It was show by Brown, Erdos, and Sés in [2] that each 3-graph

3 5/2
G (n,cn

which is a triangulated 2-sphere. An analysis of the proof of

), for n sufficiently large, contains a simplicial complex

Corollary 2 shows that for k = 3 each pair of edges in the sub-k-graph
of Gz(n.an) constructed are contained together in a triangulated 2-

sphere in that subgraph.

Further Results and Problems .

It is not difficult to show that each Gz(n.cnf(n}) contains a sub-
graph with c'(f(u)}2 edges each two of which lie on some common cycle.
The existence of, graphs with large girth and fixed minimum degree (see
[1], Chpt. 3) shows, however, that a Gz(n,cnf(n)) may contain no
subgraph in which each pair of edges lie on a short common cycle.

What conditions would insure the existence of a large subgraph in which
each set of m edges, no three incident with the same vertex, all lie on
a common cycle?

Many questions remain to be answered concerning k-forests and the
graphs we have called k-cycles. In particular we have no characteriza-
tion of these k-cycles. As indicated, each k-graph in which every set
of k-1 vertices is contained in any even number of edges (and hence each
circuit of a k-simplicial matroid over GF(2)) must contain a k-cycle.
There exists a 3-cycle, however, (with 6 vertices and 13 edges) which
contains no nonempty sub-3-graph in which each set of 2 vertices is con-
tained in an even number of edges. (If each k-cycle did contain such
a subgraph, the notions of "k-cycle" and "matroid circuit" would coin-
cide).

A k-forest on n vertices has at most {::i) edges (cf. [5] or [6]).



There exist exactly two 3-forests on 5 vertices with 6 edges, one having
as edges all 3-subsets of {1,2,3,4,5} which contain 1 and the other
having (123), (124), (125), (145), (234), and (235) as edges. The proper-
ties of those k-forests with the maximum possible number of edges have
yet to be investigated. It is not known whether every collection of
separating edges in a strongly comnected k-graph with n vertices can be
extended to a k-forest with (E:i) edges, or whether, in a k-graph with
many edges, the fraction of edges which are separating edges must be
small.

It follows from Lindstrom's result [5] that the k-forests contained
in a k-graph are independent sets in the k-simplicial matroid deter-
mined by H. Examples given in [5] show, however, that the collection of
all k-forests in H need not be equal to the collection of independent
sets for some matroid.

The 7-point projective plane, or any larger Steiner triple system,

viewed as a 3-graph, shows that a 3-forest may not be 2-colorable.
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