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Some asymptotic formulas on generalized divisor functions, III
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P. Erpos and A. SARKOZY (Budapest)

1. Throughout this paper, we use the following notation:

Ciy Cayoony Xoy Xy, ... denote positive absolute constants. We denote
the number of elements of the finite set 8 by |S|. We write ¢° = exp(»).
We denote the least prime factor of » by p(n), while the greatest prime
factor of n is denoted by P(n). We write p*|jn if p|n but p*t' ra. w(n)
denotes the number of all the prime factors of » so that w(n) = 3 a and

P
we write o

o(n,x,y) = M oa.

s
p%n
T<p=Y

The divisor function is denoted by d(n):

d(n) = D'1.

dln

Let A e a finite or infinite sequence of positive integers a; < a, < ...
Then we write

NA(w)=21, fd(m)=2%, &A(n)=21

acd asd acsAd
=T a=x ajn

(in other words, d, (n) denotes the number of divisors amongst the a; s)
and
D, (o) = maxd,(x).
l=n=%
The aim of this series is to investigate the function D, (x). (See [1]
and [2]; see also Hall [4].) Clearly,

2 dy(n) = af () + O ().

1<n=g
Thus if f,(») is large then we have D, (#)/f,(x) > 1. In Part IT of this
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series (see [2]), we showed that f,(#)—>+ oo implies that
lim supD 4 (#)/f4(®) = + oo,
T4 00
in fact, we have
lim sup D, (2)exp (¢, (log £ (x)]}) = + .
T 00
We proved this by showing that if f,(2) is large (in faet, it is sufficient
to assume that N, () is large) then there exists an integer y such that
o <y < exp|(loga)?) and D,(y) is large. In this paper, our aim is to
prove that if we have more information about f,(x) then D (@)/f (x) must
be large for the same ®. In fact we prove that
THEOREM 1. For all o >0 and for z > X,(w),

(1) fa(2) > (loglogaz)2®
implies that
(2) Dy (2) > of 4(2).

(Note that by Theorem 1 in [1], the lower bound (loglog)2°in (1) can-
not be replaced by loglogz.)

Sections 2 and 3 are devoted to the proof of this theorem while in
Sections 4 and 5 we discuss some other related results.

2. In order to prove Theorem 1, we need some lemmas.

LEMMA 1. There ewists an absolute constani ¢, such that for all w >0
and y = 1 we have

(3) 2 %< .

U<n=Uuy
pn)>y

Proof. Lemma 1 can be proved easily by using Brun’s sieve. In
fact, (3) is trivial for « < 1 (since in this case, the left-hand side is equal
to 0), while for » > 1, (3) is a consequence of [7], p. 53, Theorem 4.10.

LEMMA 2, Let us write

(4) Q2) =2—(1+=z)log(l+2).
Then for 1<y, 2y<z<w 0<a<<1l we have

@) logz
5 = :
(5) Z 1 < e;vexp|Q( —a)log logy)

n=v
wlnng)<(l—a) J 1p
y<p=z

Proof. Let 1<w», 0<a<1, and let B be an arbitrary nonempty
set of prime numbers not exceeding ». Put B(v) = 3 1/p. K. K. Norton
pelE
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proved (see [53], Theorem (5.9); see also Hal4asz [3]) that

2 1 < ¢,vexp(Q(—a)E(v)).

pﬁl'lnvp Eﬁqa(l a)E(v)

By using this theorem with B = {p: y < p <z} (note that E = @ by
2y < z), and with respect to the well-known formula

(6) D'1/p = logloga+¢;+0(1),
p=x
we obtain (5).

LeMvA 3. For 1<y, 2y<z2<v, 0<ae<f <1 we have

(7) Z 1<65(ﬁ)a_l@( > )_ 2exp(Q(a log gz)

n<t ‘U’ﬁéﬁi Iy
oln,y.2)=(1+a) 2 1Up
y<p=s
(where Q () i3 defined by (4)).
Proof. Let 0 < a<< < 1, and let E be an arbitrary nonempty sef
of prime numbers not exceeding ». Put E(v) = 1/p K. K. Norton

proved (see [5], Theorem (5.12); see also Halasz [3]) that

2 1 < e;(B)a "o (B(v)) " exp (Q(a) E ().

?;as(l+ o) E(r)
P"IIn pel

By using this theorem with # = {p: y < p < 2} (again, E # @ by 2y < 2),
and with respect to (6), we obtain (7).

3. In this section, we complete the proof of Theorem 1. Define the
positive integer R by

(8) -1l < weTADB < wl-lfzf-?,
i.e.,
1 1
a5t 3log® = o R—1<—1—10g3 Ogng.
fa(@) log2 = fy(a)
Then for large x, we have
1 3logx
9 R < log +1 < 2loglogz.
& log2 " f4(@) e

For § = 0,1,..., R, let _
&y = I,

and for ¢ =1,2,..., R, put
A; = Aoz, 2).
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Then by (1) and (8), for large # we have

(10) S(Z ) Vi_;‘_

aed af—'A asd
a<IR a=x Tp=a<z
Sf@— > Esf,@ N i
e A e n
TRp=h=L :rc_‘r"itx]"lsagngx
= Fa(@)—(1+o()loge M > £, (o) T4{®) _ Jal®)

2 2

Obviously, there exists an integer j such that 1 <j < R and

1.1 % 1
2_ R £ (2 a.)
aeAj i=1 ‘aed;

hence with respect to (9) and (10),

1 1 fa(=) Fal@)
i Ta;(®) = ZE R B © 4logloga

asd o1

Let us fix an integer j (1 < j < R) satisfying (11), and write 4; in
the form

(12) Ay = Au4y
where A; consists of the integers a such that a € A; and there exists an
integer d satisfying

(13) (log)® < @ < &'/ 'ola@

and d|a, while A} consists of the integers a such that a € A; and dra

for all d satisfying (13). (For &V it lag 4 @ < (loge)®, we have 4; =0.)
We have to distinguish two cases.

Case 1. Assume first that

1 1
fi@) = D) —> 2 fa ().
ae;!}
Then by (11), we have

(14) @) = 2% " % fajl@)> MSﬁdg{i;m .

as_i;
For a € A}, write « in the form

a = d*(a)b(a),
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where d*(a) denotes the least integer d such that ¢ satisfies (13) and d|a.
Then for a € A we have b(a)<a <z = 2V and (loga)® < da*(a) so

that
1 1
m Si-Sedm- SAS
0 i a i @ (a)b(a) w1 b d*(a,)
ae_-ij aEAi aEl
b‘{a} b
Z T ot 2
b (100’.1:)3 © (logz)®
J i oJ
bl ~1/2 b‘m 5 bal =127 oed ?b
1
<gomr e, 5935
(logz)” \ ) ppr—12d = '
b"(a):-b
1 2
<————3( max Z 1)2logm = 2( max 2 1).
(logx) jispza-an =~ (logx) 1<b<zl— 112 =
B%(a)=b b%(a)=b

If x is large enough (in terms of ) then (14) and (15) yield that

loo'a:)ﬁ logz)?
max E 1> ( E e ]I}(]ogm fA (m) > wa (.‘I}) +1
s
aEA

1<b <= 120 prv

b*(a)= o

50 that there exists an integer b, for which

(16) 1< by < a1
and
(1) Y 1> of (@) +1
acAd’,
b‘(ﬂ-)hb‘}

Put s = [of (2)]--1. Then by (17), there exist distinct integers
Gy Gpy ..., &g sSuch that a; can be written in the form
a; = bad*(“«s) = b,d;
where
(18) ((log@)®* < )d; < @™o,
Let
u = byd,d, ... ds.

Then by (16) and (18), we have

(19) u=bydd,.. ad< pl—12d (wmiﬂwf,q(:c))s
& ml—uz-?'(m1;21+1wa(m))2mfA{x) =z,
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and obviously, a; = b,d;/u and a; = b,d; € A so that
(20) dy(u) =8 = [of (#)]+1 > of (2).

(19) and (20) yield (2) and this completes the proof of Theorem 1
in this case.
Casge 2. Assume now that
1 1 1
(21) fy@) = <ot =3 2o

a 2 = v a’
aeAj

Then (12) and (21) yield that

(22) 7@ = Z —>Z Z-

acA; j aedj

Ja(®)

>f4j(93}— f_tj{) f (@) > Sloglogs "

For w>=1, let

w

3 A : :
Then for 1< u <Tg~logf (), the function g(u) is increasing since

g’ (u) = g(u)log ﬁlig—‘)-cf‘iff-)- >0
e
and for large x, we have
g(1) = 3logf,(x) < mﬁ%ﬁ
and
Jal)

3
= — e -  JAVT]
9( 7 lngA(“?)) = (fa (@) > (logloga)®

Thus there exists a uniquely determined real number ¢ such that

(23) 1<t<— long(:c)

and

_(3logf (@) fal@)
e = [
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We need a lower bound for this number ¢. By (1), we have

(25) g(% logf4 (ﬂ?)) = (6”2)1“53'44“") = (fﬁ (m}](l,fz)loge

J4(@) Ja(w)

10 __
<(fa(@)" = (f4(@)"° ~ (logloga)?

(23), (24) and (25) imply that
(26) Hogf,(x) <1
(since g(u) is increasing for 1 < u <— long (2)).

Let us write
% = max {z"2 7%4@ (logw)}.

Let A} denote the set of the integers a such that a € 4]" and
w(a, 2, @) > 1.

Now we are going to give an upper estimate for

Xa- 2 5

ﬁEd REA

au;. w(a,zj,zlfzj )<t

If ae A and w(a,z, #"”’) <t then by the definition of A}, we have

—1y2i—1 —1fad
m1 12 =wj_1éa<mj=m‘ 1j2

and @ can be written in the form
a = upy ... pomo

where P(u) < (logz)’, 2, <P, < ... < Pp < :s”"j, m< ola, 2, g )<t and
p(v) > 2.
Thus by Lemma 1, we have

m St ST 3 A

uw d
P(u)g(‘lng::]e' o<ms<t Zj{pl{.‘.dpmﬁzlfz’. ”p;'f
i=

1
* 2, %
ply>z1/?
z,_ﬁupll Pp<zjez;_ 1“

aeA §

12f
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<ol 2 %)(H.i;"-,;—( )

P(u]-az(log..c)?'
= 2 Z ))
( =l el 1[35‘ a=1

= 62(
gj<p=zx

~o 11 ( 3,25}

ﬂé(log:c]s z <p=ellt u=1

It is well-known that

p<(log x)s a= u

1
H ——— < ¢logy
Y l_lfp
and
Z Z—- — loglogy + ¢, +0(1).
p=y a=l1

Thus with respect to (1), (23), (24) and (26), and by using the Stirling-
formula, we obtain from (27) that for » > X (w),

(1]
1 - 1 1 .
(28) 2; < eyolog ((loga)®) (1 =+ 2 e g (loglog:a”*j— loglogz; + cn)”")
asd o m=1 N
i)
agd

/ (1 172
S 1 loga it
= cwloglog:ﬂ (1+ 2‘, _(log g 1;2J+1a;f4(x) +Gll) )
[t 1
= cwloglogm(l—{— E — (log2af 4 () +eyy)™ )
m!
kel

=1

log of 4 (2) + exs)’
t!

e{log of 4 (@) + e5y) )‘

< ¢y tlogloge t

4 ch-”zlog}ogm( :
> log .

1 3logf (z)\}
S ﬁloglogw(—-ﬂb—f‘ﬂ) = — loglogx

16 logloga
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(22) and (28) yield that

@) fi@ = D=2 M-

aEA;- aEA; aEA;
at‘tA.J,
Ja(@) Jal®)  fal@)

8loglogz  16logloge  16logloga

Let 8 denote the set of the integers # such that » <% and » can
be written in the form

18
(30) n =ao% Where ae A;‘ and w(u, 2, wlﬁ") > Elogfd (2).

Tor fixed #n €8, let ¢(n) denote the number of representations of »n in
the form (30).
Then we have

(31) Doy =3 b L

£
n=x ae A}- a'uga;

w{u,zj,:a:” 2j') = ;—2 log f 4(x)

= 2 | Dt & 1).
asd; u=zrla w=xla

i
ofu,z;,a1 )< ;% log £ 4(=)

In order to estimate the last sum, we use Lemma 2 with z;, e , ¢ja and
1/400 in place of v, #, v and a, respectively. Then 1 < y and 2y < 2 hold
trivially by the definition of 2; (and by j < R), and also 2 < » holds by

vl € &r @

g = 7=
2 @ a

(since we have a € A} and thus a < ;). Thus Lemma 2 can be applied,
and we obtain with respect to (1) and the definition of 2; that for large »

of
1 ® 1 loga'?
32 Y 1<e,—e | — log —2
a2) = PR AN vy B logz;
wliorg 2399 1
g )éwuzj<}?£x1f2jp
@ log 24
< ¢;— exp | —3:10"log —-——g,.-:l——
a loga'¥ el (@)

a 1z
= ¢,— exp | —3-10"%log20f , (v)) < — —.
) a@ a1 l = fA( }] 3 a
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Furthermore, by (6) we have

399 11 399 logz'?
(33) = D - (log g _c_).
400 ;P 400 logz; 15

zj<i?€zl &

i

By (8), we have

(34) Ta®) < ogat™ < loga.
We obtain from (1) and (34) that
(35) logz; = logmax {(logz)®, o2 *14/4@y
1/2f
= max {310g10gm, ]ig—m;—}
20f (@)

1/27

yof 3loglogz  loga

loga® 7 20f (@)

= max {Ioga:

i 3loglog logm‘”f}
f4(®@)/6 7 20f ()

i 3(Ffal@)P°  logat™ }
Jalz) /6 : 20f 4(®)

< max {logm

< max =logm

_ 181loga"?
== (fd (x))lwzo k
(33) and (35) yield for large x that

399 O 1 399 loga?’
(36) = (100» —ig 5)
21 i ° o

il >
400 400 logz;
zjcpéxl 2
399 (fA (x))lg,’:n
= ——(log—~—————¢
00 ( 718 ") 19
hence
(37) ¥ 1< ) 1.
u=rla u<zla
. [ w50 32 -
(w22 1™ < 15 108f 4 (2) (25,27 )< “'ozjq,@lfz"p
(32) and (37) yield that
T 1z
1< ——.
2 52

ug:c.fa
w(u,zj.zlfg’)>;—:log!A(t)

18
> ——logf, (@)
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Thus we obtain from (29) and (31) that

(38) PO E([i]“—) 2 %a
n=r aEA;
gz i . mfA (m)
=g Ja; @) > 32loglogz

Now we are going to give an upper estimate for } ¢(n). Obviously,
n=x
for # <z we have ¢(n) < d (n) < D (x) hence

(39) Dlem) =D em)< X D (@) = 8D 4(a).
n=r nes nes
Thus in order to obtain an upper bound for > ¢(n), we have to estimate

n=r
IS].
If » € § then by (26), (30) and the definition of the set A;, we have

w(n,zj,a:‘“j) — w(au, 2, 3") = w(a, 2, ) + o (u, 2, @)
18 1 18 5b
>+ 5o logf (@) > - log f(2) + o logf,(a) = —logf, (@)

hence

(40) 181 < 2> k.
n=x
afn,z; ’31!2 jbv:—: logf 4(x)

In order to estimate this sum, we use Lemma 3 with z;, oV, @, 17/37
and 9/10 in place of ¥, 2, v, @ and B, respectively. (1 <y, 2y < 2z < v and
0<a< <1 hold trivially with respect to the definition of z;.) We
obtain with respect to (8) and the definition of z; that for # > X,(wv),

3 1

(41)

died
R=E
@ 12y 5% L
(m.2p.21%)> Y <pall?l P
i 17 log &'’
<c6:v( Z _) ep(Q( )lgugm )
37 logz;
£j<p<x”2j
}ogmUzj
< c.sscex:p( 1000 lo g]ogw”*”’“—ﬂ‘*’)
< cwwexp (|~ - logaf, (o) < aexp (- logf, (@) = a(f.(x) .
1000 100
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Furthermore, with respect to (6) and the definition of z; we have

b4 )‘1 1<54 2 &
37 Ld R )

2j<pealf?! 4 2 Tt 4(0) ol
o4 ( 1 2 1)
T BT P P
p<ali? pﬁxljzj_"lwfd(x)
54 1/2¢ 120+ Lof 4 ()
< 37 (loglogz"* —loglog +¢6)
54 5>
= ET—(IOQQUJJCA (@) +¢56) < 35 logf 4 ()
and thus
(42) 3 1< > 1.
P i 53 1
27 3 ;
w(ﬂ,sj,x1a2 ) > :)_—alogj_/l(z] w(n,zj,ml-z )= Ezj<p;xlf2j =
(40), (41) and (42) yield that
(43) 181 < @(f.0 ()77,
Finally, we obtain from (38), (39) and (43) that
af 4 (@) G
B ;m) <1814 (0) < @(£a(@) D4 ()
hence with respect to (1),
(fA (x)}gnna ‘fA (:B))WIOO
D _— = bt L
A(m) >fd (“‘B) 3210g10g1‘ f.{i‘. (m) 392 [fA (w))lllgo

= 1al0) 55 (L) > afs @

for # > X,;(w). Thus (2) holds also in Case 2 and this completes the proof
of Theorem 1.

4. By using the same method, we can show that Theorem 1 is true
also with (logloga)**® in place of (loglogz)?® 6n the right-hand side of
(1). In fact, in order to prove this, the only mon-trivial modifications
are that ¢ must be defined as ¢ = nlogf,(x) where n = y(e) (> 0) is
sufficiently small in terms of ¢, and in (30), the condition w(u,2;, ')

1 5
>-:£ logf,(#) must be replaced by wo(u,z;, 21y > Klogf,(x) where

K = K (¢) is sufficiently large in terms of ¢, Furthermore, then Lemmas 2
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and 3 must be replaced by lower and upper estimates for

> 1

=Y
on,yz)=L X 1fp
y<p<s

where I is arbitrary large but fixed. Such estimates could be deduced
by the methods used by K. K. Norton in [6]. (Norton’s estimates cannot
be used in the original form sinece the error terms in his lower and upper
estimates depend implicitly on the set £ of the prime numbers whose
multiples we investigate. Thus in our case, these results would yield
lower and mpper bounds depending implicitly on {p: y < p < 2z}, ie.,
on y and 2, instead of the explicit estimates needed by us.)

On the other hand, we guess that also the exponent 2+ ¢ could be
improved, and, perhaps, Theorem 1 is true also with (loglogz)'*® or
even ¢,,(w)loglogz on the right-hand side of (1). This is the reason of
that that we preferred to work out the slightly weaker estimate given
in Theorem 1 whose proof is much simpler.

5. One may expect that if we know that f,(y) is large for all y <
then Theorem 1 can be sharpened in the sense that the lower bound given
for f,(x) in (1) (for fixed @) can be replaced by a much smaller lower
bound for f,(y) (for all ¥). In fact, we show in this section that

THEOREM 2. For all o > 0, there exists a real number X, = X,(o)

lo
sueh that if ®» > X, and writing j = exp (ﬁo_g%)’ we have
(44) faly) > 22logloglogy,
then
(45) Dy(2) > wfs(2).

Furthermore, we show that Theorem 2 is best possible except the
value of the constant factor on the right of (44):

TororREM 3. There exist positive constants ¢, ¢4, X; and an infinile
sequence A such that

(46) fa(®) = e loglogloge  for all @ > X
and

D
(47) fin fof ) Uips

Z->too Jal2)
In order to prove Theorem 2, we need the following lemma:
LEvMA 4. If > 1, t =1 end A is an arbitrary sequence of positive
integers such that
(48) Dy(2) <t

7 — Acta Arithmetica XLI, 4
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then we have
'NA (wl.’u-l-])} < 1.
Proof of Lemma 4. Assume indirectly that
NA (wlf(t-l-.‘i]) > t,
i.e.,
N, (2"+9) > [1]41.

Then there exist integers a,,a,,...,ay,, such that a, €4, a, e A4,...
ceey Gy €A and

(49) B < By < e < gy < AN,

Put w = a4, ... ay ;. Then a;|u for 1<« <[t]+1 and thus

(50) g (u) = [t]1+1 > 4.
On the other hand, by (49) we have
(51) =0 ... 04, < ($lf(!+l))[f]+1 & (xl.-‘[‘+1))£+1 — .

(50) and (51) imply that
D (z) >1
in contradiction with (48) which completes the proof of Lemma 4.
Proof of Theorem 2. We have to distinguish two cases.
Case 1. Let
J4(z) > (loglogz)?.
Then for z > X, (w), (45) holds by Theorem 1.

Case 2. Let
(52) J4(@) < (logloga)™.
Assume indirectly that
(63) D, (x) < of 4(@).

Then by using Lemma 4 with ¢ = of,(#), we obtain that
(54) NA(mU“‘H)) e N_:( (;’DU(WIA(;E]-I‘I}) Qi — {de (w).

rut M = N, (2"(“7a®+)y and let a, <@, <...< a, denote the a’s
not esceeding #/(*/4@+1) Then by (52) and (54), we have

M
(55) Falgetaom) = 312 312 < log Mo,
i=1

i=1
< log wf 4 (@) + €50 < log w (loglog )2 + ¢,
< 21logloglogx.




Some asymplotic formulas on generalized divisor functions, III 409
On the ofther hand, by (51) we have

y logx loga
ot a@+) _ oxp[—18%  \s exp(— 1082
® P ( of 4 (@) +1) exp ( w(logmgm)zoﬂ)

- logz .
= exp( (loglogm)”) =¥
Thus (44) yields that

¥ (mlf{wa(le}) = f4(y) > 221ogloglogy

logz

> 21logloglogwx
in contradiction with (55) which completes the proof of Theorem 2.

Proof of Theorem 3. In the proof of Theorem 1 in [1], for # > X,
we constructed a sequence B(x) such that

(56) B (@) > €3,10glogz
and
(57) Dy (@) < 2loglogz.

Let us define the infinite sequence @; < #, < ... by the following
recursion: let

# =X, and @, = exp(exp(exp(v_,))).
For > 1, let
E(2) = {n: Vo < n < a}.
Finally, let
A= ;[j: B(x,.)U E(loglogay.).

We are going to show that this sequence A satisfies both (46) and (47).

First we prove (46). Assume that # > X,. Then there exists a
uniquely determined positive integer k¥ (> 2) such that »,_, < & < ;.
Then either

(28) Py < & < exp(®y_,) = logloga,
or
(59) exp(xy_,) = loglogz, <z < o,

holds. If (58) holds, then by (56) we have

Jfa(@) = fa(wey) = fB{xk_l) (@g—y) > ¢y logloga, _, = ¢, loglogloga
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while if (59) holds then

1
(z) = E(loglogm,) = 122
fa(@) > B(logloga) > -
(oglogzp)P<n=<loglogzy,
> logloglog, = ; logloglogw.

Thus in fact, (46) holds in both cases.

In order to prove that also (47) holds, it is sufficient to show that
for k =1,2,..., we have

D, (xy)
60 — i
o0 Falw,) %

If <, then by (37) we have

dew)=D1= D} 1+ > 1

alu a=loglogx; loglogrp<a
acd alu,asd alu,asd
- 2 1 Fan 3 itd,w
a=loglogzg, aju a=<loglogx;,
aju,acd asB(zy) alu,acd

< loglog®, +Dp,) (v) < 3loglogay
hence
(61) D 4 (z) < 3logloga,.
Furthermore, by (56), we have

1 1
(62) falzy) = 2;2 Z pe = Iy (#) > ex1logloga,.
a=zy asB(xy)

asd

(61) and (62) yield (60) and the proof of Theorem 3 is completed.
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