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1. Throughout this paper, we use the following notation: 
Cl, G!, “‘, x*, Xl, a** denote positive absolute constants, We denote 

the number of elements of the finite set S by [AS\. We write e” = exp(m), 
We denote the least prime factor of ut by p(rz), while the greatest prime 
factor of 3% is denoted by P(n). We write p” I/S if p” 1% but pa+’ YN. tc) (s) 
denotes the number of all the prime factors of ,n so that CO(N) = 2 Q a>nd 

PIIn 
we write 

CO@,X,Y) = 2 ct. 
P% 

X<PQ?/ 

The divisor function is denoted by a(?~): 

Let A be a finite or infinite sequence of positive integers n, < Cz2 < . . . 
Then WC write 

(in other words, (IA (I&) denotes the number of divisors amongst the ui s) 
a,nd 

D, (3’) = max cl, (z) . 
l<VL<Z 

The aim of this series is to investigate the function DA(s). (See [l] 
and [2]; see aIso Hall [4].) Clearly, 

Thus if fA (x) is large then we have D, (m)& (m) @ 1. In Part II of this 
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series (see [2]), we showed that fd (m)-++ CO implies that 

We proved this by showing that if jA (II;) is large (in fact, it is sufficient 
to assume that N,(m) is large) then there exists an integer y such that 
x < y < exp((logm)z) and DA(y) is large. In this paper, our aim is to 
prove that if we have make i$ormaGo% about fA (s) then D, (@)lfA (x) must 
be large for the ~arnti m. In fact we prove that 

THEOREH 1. 6or db o > 0 ami! for x: > X0(w), 

(1) fa (0) > tlwlw~)20 
implies that 

W D.4 (4 > UfA Cm) ’ 
(Note that by Theorem 1 in [l], the lower bound (loglog$)*” in (1) csn- 

not be replaced by loglogm.) 
Sections 2 and 3 are devoted to the proof of this theorem while in 

Sections 4 and 5 we discuss some other related results, 

2. In order to prove Theorem 1, we need some lemmas. 
LEMNA 1. There em’& an absolute oonstmt cz such that for all u > 0 

avbd y > 1 we have 

Proof. Lemma 1 can be proved easily by using Brun’s sieve. In 
fact, (3) is trivial for u < 1 (since in this case, the left-hand side is equal 
to 0), while for u > 1, (3) is a consequence of [?‘I, p. 53, Theorem 4.10. 

ImaivrA 2. &?t us write 

(4) &(4 = x-(lfm)log(l+a). 

fZ%ert for I<y, 2y<g<v, O<u<l we have 

(5) c 
l< c,vexp 

( 

logx 
&( -a)log- 

lWY 1 
. 

4w,z)e)9(1E~ 2 l/P U<P<Z 

Pro of. Let 1 < v, 0 < a < 1, and let E: be an arbitrary nonempty 
Set of prime numbers not exceeding v. Put X(v) = 2 l/p. H. K. Norton 

WE 
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proved (see [5], Theorem (5.9); see also Halasz [3]) that 

c I< v-x$W--aPW). 
t&<V 

w%zTDEE %(I-q(v) 

By using this theorem with E = (p: y < p < x> (note that E f 0 by 
2~ c x),’ and with respect to the well-known formula 

(6) 

we obtain (5). 

c 
‘l/J) = logloga+c,-j-o(l), 

Pa 

LEMXA 3. Par l<y, 2y<x<v, Ota</?<l we have 

(where Q(x) is defimed by (4)). 
Proof. Let 0 < a < ,!? < 1, and let E be an a#rbitrary nonempty set 

of prime numbers not exceeding v. Put E(u) = 2 l/p. K. K. Norton 
PEE 

proved (see [S], Theorem (5.12) ; see also Hal&z [3 J) that 

c l< c~(~)a-1v(E(9))-1’2exp(&(a)E~~)). 
a<a 

P%%E YS(l -!-+w) 

By using this theorem with E = 1~ : y < p < x) (again, E # 0 by 2y < x), 
and with respect to (6), we obtain (7). 

3. In this section, we complete the proof of Theorem 1. Define the 
positive integer B by 

(8) 
~l-l/+l < iye-f.‘4(N3 < 5G’-‘/2R 

? 

i.e., 

2R-I< 310gx < 2R, 1 

fa (a 
R-l <----- 

log2 
lo 

Then for large x, we have 

(9) 
1 

R-C----- 
3logs 

log2 log .fA(@ 
~ +I < 210glogm. 

For i =O,l,..., R, let 
xi = &IQ, 

and for i =1,2 ,..., R, put 

Ai = An[sibl, 3;). 
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Then by (1) and (8), for large x me haye 

Obviously, there exists aln integer j such that 1 < j < R and 

hence with respect to (9) and (lo), 

Let us fix an integer j (1< j < R) satisfying (XI.), and write Aj in 
the form 

(12) A, = A;uA; 

where A; consists of the integers a such that a E Aj a’ud there exists an 
integer d satisfying 

(13) (loga)3 < a < $l/3~+1q&) 

and d] a, while Aj' consists of the integers u such that cc E Ai and d ~a 
for all d satisfying (13). (For &zi+lwf~(z) < (logx)‘, me have A; = 0.) 
We have to distinguish two cases. 

Case 1. Assume first that 

Then by (II), we have 

(14) 

For cc E A;, write (ic in the form 

Q = d”(a)b(a), 
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where d*(a) denotes the least integer d such that d satisfies (13) and d 1 a, 
Then for cc E A; we have I/(a) < a -C zj = ~?-l”~ and (logm)3 < d*(d) so 
that 

2’ (&)” = (1*;$)3 2 .-t- c 1 ma; &&--1123 CIEA’j 

b*(a)=b 
b’(e)=b 

1 
G (logx)3 l<:Yjx_l,2i c 4 2; 

CZEAa; b<x 

b*(a)=b 

1 
C) 

2 

< (10ga)3 
max 

l<b&+l/2i 
1 2loglr: = 

aEA; 
(l%@ 

lll2JX 
2) 

1. 
l<b<d--1@ 

l2EA A: 

b*(a)=b bm(a,Lb 

If II: is large enough (in terms of CO) then { 14) and (15) yield that 

2 c 
L 

(lop)2 
a 161bgloga fA (2) ’ d4 (4 +1 

EA: 
3 

SO that there exists an integer bO for which 

(16) 1 < b. < m’-1’2i 
and 

Put s = [OILY] +I. Then by (17), there exist distinct integers 
al, a2, . . ., a8 such that ai can be written in the form 

a, = b,d*(u,) = bodi 
where 

(18) ((log@ ( ) i& < zl~2~+1@4(@‘ 
Let 

u = b,,d,d, . . . d,. 

Then by (16) and (B), we have 

(19) 
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and obviously, a, = b,,&/u and a, = b,& E-A so that 

WV dAW 2 8 = Ccofa@:)lfl > ~fg($ 

(19) and (20) yield (2) and 
in this case. 

Case 2. Assume now that 

this completes the proof of Theorem 1 

cw 
1 -$ 

aeAt 
3 

Then (12) and (21) yield that 

hfA&‘) - if A# = +f,,bd > 
fAb:) 

8 Ioglogll: * 

For w >, 1, let 

Then for 1. < zc < f logfA(x), the function g(zc) is increasing since 

Y’(U) = Y(U)lW 
3h4fAt4 > o 

eu 

and for large 3, we have 

and 

g(l) = 31°gfA tx) < 
fA (4 

(loglogLc)~ 

g(p l”gfAb)) = (fA(s))31e > tI;lzz,2 l 

Thus there exists a uniquely determined real number t such that 

(23) 

and 

(24) 



We need a lower bound for this number t. By (l), we have 

(25) g (& log!, (x)) = (61’2)10gfA’z) z (fA (~))(“~)~~g~ 

( (fA (g)y* = J-A(X) f-4 (4 
(fA(X))“‘” < (logloga)2 * 

(23), (24) and (25) imply that 

(26) &log&(a) < t 

(since g(zc) is increasing for 1 < ‘u < 3 logf, (m)). 

Let us write 

Let AT denote the set of the integers Q such that a E A;’ and 

ix(a, zi, @j) > t. 

Now we are going to give an upper estimate for 

z;= c +. 

aeA :’ 3 WA” 3 * 
ahi; m(Q,zj,2*lz3)9t 

If a E A;’ and c*) (a, zj, s@) < t then by the definition of A;‘, we have 

and a can be written in the form 

whereP(u) < (logs)3, zj < p, -=c . . . 
p (9) > x1’23. 

-C p, < #2i, m < to(a) xi, @*) < t and 

Thus by Lemma 1, we have 

(27) 

aW; 



It is well-known that 

and 

)T p = logIogyfc,+o(l). 
p<2/ a=1 P” 

Thus with respect to (l), (23), (24) and (26), and b-y using the Stirling- 
formula, we obtain from (27) that for $ > X1(c~), 

(28) “J?$ < c,,log ((logx)“] 
[41,, 

I-+ 2 -&- (loglogs”“~-logIog.~j$c,,)r” 

&Aj m=1 * 

&A; 

= c,,loglogx 1+ 
rt1 1 

( 2 m!’ 
Qog2of, (33) +-c,,p 

?n=l 1 

jlw Cd-A (a) + %!J < o,,tloglogx - 
t! 



(22) and (28) yield that 

> fAbc) fA(@ fA trn) 

Sloglogla: - 16loglog; = 16loglogx * 

Let A!? denote the set of the integers n, such that W, < x snd n, can 
be written in the form 

(30) 9s = au where a EAjY %ld W(ZC, Xj, .‘lai) > $-lOgfa($). 

l?or fixed in E S, let P(W) denote the number of representations of N in 
the form (30), 

Then we have 

In order to estimate the last sum, we use Lemma 2 with xi, s@, g/a and 
l/400 in place of y, x, v and a, respectively. Then 1 < y and 2y ( x hold 
trivially by the definition of xj (and by j < R), a,nd also x < ZI holds by 

(since we have a E A.,* and thus a < q). Thus Lemma 2 can be applied, 
and we obtain with respect to (1) a&ml the definition of zj that for large x: 

(32) 
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Furthermore, by (6) we have 

(33) 

(34) 

-2 399 -I - 1 400 ’ - 399 l*g@i ’ y<,d21 *P 400 ( log 1ogxi -615 1 

By (S), we have 

L b-4 
G 

< loga”“R < logs? 

We obtain from (1) a.nd (34) that 

(35) 

(33) and 

(36) 

hence 

(37) 

(32) 

logz$ = lognax((logs)3, 2Y2i+1~~J”)] 

= max 
1 
3 log logs, 

logcPi 

2Q-fA w 1 

= maX 

1 

logml/2~ 3loglogy logL!@ 

log# ’ 24, (4 I 

< m8x 
i 
logx’/2~ 31~~log~ log $1’2” 

.L WI3 ’ 2dI, (4 I 

< max 
1 

* 3 (f, (x)p20 
logsY2’ 

log& 

L, (4 143 ’ 5wAW 

lslog~‘“~ 
= 

(L4 tx)f1g’20 * 

(35) yield for large s that 

399 7 1 
-2 

399 
400 - > 400 

e*<p&j * 

- log 
( 

log xli2j 

1OgXj -'I5 1 

399 - 
a 400 ( 

log (f.4(x))1g120 
18 -015 

) 

> g logf, (4 

2 I< 2 1. 

u<sla us&r/a 

W(U,Zj,Z1’2i)< $lLlSfA(Z) Ur(U*Sj,21’2’)<~ 2 l 
syx112jG 

and (37) yield that 



Thus we obtain from (29) and (31) that 

(38) 

Now we are going to give an upper estimate for 1 q(a). Obviously, 
n<x 

for r& f s we have pl(lz) < dA (12) < D,(a) hence 

(39) 

Thus in order to obtain an upper Bound for 2 ~(1%)~ we have t0 estimate 
n&z 

If% 
If ‘yb E 8 then by (26), (30) and the definition of the set AT, we have 

Q(~, ~j,~“2i) = W(U2L, Xj, ,l”j) = W(U, Zj, ~l”j) + O(21, Zj, ,1’2i) 

hence 

In order to estimalte this sum, we use Lemma 3 with zj, cc1’2i, cc, 17137 
and 9110 in place of y, x, V, (X and /?, respectively. (1 < y, 2y < x < 9 and 
0 < a < /? < 1 hold trivially with respect to the definition of Xj.) We 
obtain with respect to (8) and the definition of ~j that for 3 > X,(W), 

91 
< Cd-P - 1ooo ( 10gofA(S) 

1 1 
< aexp -& logf,(z) 

1 
= m(f,(m))-9”00. 
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Furthermore, with respect to (6) and the definition of Xi me have 

54 
< 3’i (loglogm”‘~ - loglog&~~+l~~~~~~ + c,,) 

= $ (h@&j (a) + $6) < g logf-4 (x) 

and thus 

(40), (41) 2nd (42) yield that 

(43) 1L!Y[ < Z(fA (iE))-p~loo* 

Finally, we obtain from (38), (39) and (43) that 

hence with respect to (l), 

for x > X,(U). Thus (2) holds also in Case 2 and this completes the proof 
of Theorem 1. 

4. By using the same method, me can show that Theorem 1 is true 
also with (loglogm)“” in place of (loglogx)20 on the right-hand side of 
(1). In fact, in order to prove this, the only non-trivial modifkations 
are that t must be defined as t = qlogf, (m) where 17 = q (E) (> 0) is 
sufficiently small in terms of E, and in (30), the condition w (u, q, CE”~‘) 

18 
> Ij logf, (cc) must be replaced by co (w, xi? s?‘~‘) > Klogf, (x) Tchere 

K = K(E) is sufficiently large in terms of F. Furthermore, then Lemmas 2 



and 3 must be replaced by lower and upper e&mates for 

mhere L is a,rbitrary large but fixed. Such estimates could be deduced 
by the methods used by K. K. Norton in [6]. (Norton’s estimates cannot 
be used in the original form since the error terms in his lower and upper 
estimates depend implicitly on the set E of the prime numbers whose 
multiples we iuvestigate. Thus in our cssc, these results would yield 
lower and upper bounds depending implicitly on (JI: y < 23 f $1, i.e., 
on y and 2, instead of the explicit estimates needed by us.) 

On the other hand, we guess that aSlso the exponent Z+E could be 
improved, and, perhaps, Theorem I is true also with (10glogm)~~” or 
even c,,(oJ)loglogm on the right-hand side of (1). This is the reason of 
that that we preferred to work out the slightly weaker estimate given 
in Theorem 1 whose proof is much simpler. 

5. One maIy expect that if we know that fA (y) is large for all y < s 
then Theorem 1 can be sharpened in the sense that the lower bound given 
for fAl(lr;) in (1) (for fixed x) can be replaced by a much smaller lower 
bound for jA(y) (for all y). In fact, we show in this section that 

THEOREX 2. For all o > 0, there es&s a real wumber X4 = X4 (CD) 

such that if x > X4 ad writ,ing y = exp ( (lo;;:gT$,)7 we have 

(44) fA(Y) > 22wwogY, 

thes 
(45) DA(x) > '-fAtx)' 

Furthermore, we show that Theorem 2 is best possible except the 
value of the constant factor on the right of (44): 

THEOREX 3. l%ere exist positive constads qs, c,~, X5 alzd aa isbjinite 
sequence A such that 

(46) fA(x) > c,,logloglogm fofbr aZZ x > X5 

ma 

In order to prove Theorem 2, we need the following lemma: 
LEMXA 4. If s > I, t > 1 cmd A is as m”bitrmy seque?zcs of positive 

irbtegers such that 

(48) DA(x) < t 

7 - Acta Arithmetica XLI, 4 
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i& (&(“fl)) < t. 

Proof of Lemma 4. Assume indirectly that 

iYA (2P+l)) > t, 

i.e., 
iv&$ (zl’(f+l)) > [t-j +I* 

Then there exist integers d,, a,, . . . , a[,,+l such that a, E A, a, E A, . , . 
. . . . u~,~+~ E A and 

(49) a, < a, < . . . < a(,,+, < LrP+‘). 

Put U = a, a, . . * U[Q,, . Then a, 1 zc for 1< zc < [5] +l and thus 

(50) oa,iu) z [tl+J- > t. 

On the other hand, by (49) we have 

(51) zc = u,u, ‘.. q,l+l < (&wly~l+l < (/&W)ffl = II;* 

(50) and (51) imply that 

in contradiction with (48) which completes the proof of Lemma 4. 
Proof of Theorem 2. We have to distingujsh two cases, 
Case 1. Let 

Then for s > ,X,(W), (45) 
Case 2. Let 

(52) 
Assume indirectly that 
(53) 

Then by using Lemma 4 

(54) NA ($yW ) 

-put J.J = N, (,et4(4+~)) 
not exceeding &( wfk”)+’ 1, 

f‘J (x) > (loglogrc)~~. 

holds by Theorem 1. 

fA (m) < (lOglOgsqO. 

with t = ~j* (s), we obtain that 

r JTA (~~wA(~)+l) )<t = Lofgb). 

and let al < a, < . . . < a, denote the a’s 
Then by (52) and (54), we have 
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On the other hand, by (51) we have 

Thus (44) yields that 

fA (xl’(mf@)+‘)) > fA (y) > 22logloglog~ 

= 22 log log 
logs? 

(loglog~)2~ 
> 21loglogIog~ 

in contradiction with (55) which completes the proof of Theorem 2. 

Proof of Theorem 3. In the proof of Theorem 1 in [l], for m 2 X7 
we constructed a sequerme B(S) such that 

(56) fB(Z) (d > %,lWlOW 
and 

(57) I&(x) < 2loglog9?. 

Let us define the infinite sequence m, < zS < . . . by the following 
recursion : let 

x2;1 = x, and xk = e~~(exp(exp(xk-,))). 

For x: > 1, let 

Finally, let 

A = ‘u” B(s,)wB(loglogm,). 
k=l 

We are going to show that this sequence A satisfies both (46) and (47). 
First we prove (46). Assume that II: > X,. Then there exists a 

uniquely determined positive integer k (> 2) such that xkml < s < zk. 
Then either 

(581 xk-, < x < exp(x& = loglogq 

or 

(59) exp(skJ = loglogzk < z < xk 

holds. If (58) holds, then by (56) we have 

fA (4 24 b%--1) kL3(zk-l) h-1) > %wog~~.-, k ~2llog~og~og~ 
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while if (59) holds then 

> 5 logloglog.~~ > ; logloglogm. 

Thus in fact, (46) holds in both cases. 
In order to prove that also (47) holds, it is sufficient to she-z that 

for k = 1,2, ‘.., me have, 

(601 
DA (%,A 
.fa4 @,J < a*2m 

If zc < sk then by (57) we have 

d h#wk SD,,,,, (u) -=c 3 loglog~~ 

hence 

(61) DA(Q) < 3loglog~~. 

Fnthermore, by (ES), me have 

(62) 

(61) and (62) yield (60) and the proof of Theorem 3 is completed. 
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