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It is shown that if G and H are star-forests with no single edge stars, then (G, H) is
Ramsey-finite if and only if both G and H are single stars with an odd number of edges .
Further (5,,, U kS 1 , S, U 1S T ) is Ramsey-finite when m and n are odd, where S, denotes a star
with i edges . In general, for G and H star-forests, (G U kS i , H U lS,) can be shown to be
Ramsey-finite or Ramsey-infinite depending on the choice of G, H, k, and l with the general
case unsettled . This disproves the conjecture given in [2] where it is suggested that the pair of
graphs (L, M) is Ramsey-finite if and only if (1) either L or M is a matching, or (2) both L and
M are star-forests of the type Sm U kS 1, m odd and k ~ 0 .

1. Introduction

Let F, G and H be (simple) graphs . Write F---> (G, H) to mean that if each edge
of F is colored red or blue, then either the red subgraph of F, denoted (F) R ,
contains a copy of G, or the blue subgraph, denoted (F)B , contains a copy of H.
The class of all graphs F (up to isomorphism) such that F- (G, H) has been
studied extensively, e .g . the generalized Ramsey number r(G, H) is the minimum
number of vertices of a graph in this class .

A graph F will be called (G, H)-minimal if F--> (G, H) but F'-,4 (G, H) for each
proper subgraph F' of E If G, H and F have no isolated vertices, F' can be
replaced by F-e, where e is any edge of E Here F-e denotes the graph with
vertex set the same as F and edge set that of F less edge e . The class of
(G, H)-minimal graphs will be denoted by R(G, H) . The pair (G, H) will be
called Ramsey-finite if R(G, H) is finite, and Ramsey-infinite otherwise .

Several recent papers discuss the problem of determining whether the pair
(G, H) is Ramsey-finite (see [2, 3, 4, 7]) . In particular Nesetril and Rödl [7]
showed that (G, H) is Ramsey-infinite if both G and H are 3-connected or if G
and H are forests neither of which is a union of stars . It is shown in [4] that
(G, H) is Ramsey-finite if G is a matching and H arbitrary . In addition, if (G, H)
is Ramsey-finite for each graph H, then the results of [5] indicate that G must be
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a matching. The purpose of this paper is to discuss one of the remaining gaps,
which is to determine whether (G, H) is Ramsey-finite or infinite whenever G and
H are star-forests, i .e ., a forest of stars .

At this point we introduce some further notation and terminology . The word

"coloring" will always refer to coloring each edge of some graph red or blue . A

coloring of F with neither a red G or blue H will be called (G, H)-good . The
modifier (G, H) may be dropped when the meaning is clear . For notatíonal
convenience a (G, H)-good coloring of F will be frequently symbolized by
G (F)R and H (F),, . Here the symbol " _ " is read "subgraph of" . The degree
of a vertex x in (F)R (or (F),,) will be denoted by d, (x) (or d,,(x)) . A cycle on n
vertices {x ,, x2 , . . . , xn } with x i adjacent to xii_, for each i will be denoted by

(x,, x z , . . . , x,,, x,) . The symbol mG will refer to m disjoint copies of the graph G .
Also Sn will denote a star with n edges . This notation, instead of the usual K,, n,,
was selected because of its frequent appearance and its simplicity . Further
notation will follow that of standard references [1] and [6] .

2. Stars

In this section we decide whether (G, H) is Ramsey-finite or infinite in the
special case in which G and H are stars . Since (G, H) is Ramsey-finite whenever
G is a matching [4], we deal only with nontrivial stars, i .e ., not single edge stars .

We will show that (Ss , S,) is Ramsey-infinite except when both s and t are odd, in
which case R(S,, S,)={SS+,_,} .

To begin we state a well-known "old" theorem which is used strongly in what
follows .

Theorem I (Petersen [8]). A connected graph G is 2-factorable if and only if it is
regular of even degree .

Theorem 2. Let s and t be odd positive integers and let F be an arbitrary graph . If
0 (F) < s + t -1, then F can be colored such that S, (F) R and S, (F)B .

Proof. Embed F in a regular graph F' of degree s + t - 2 . By Petersen's Theorem
(Theorem 1) F' is 2-factorable when s + t - 2 > 0, so color (s -1)/2 of the factors
red and (t-1)/2 of the factors blue . Clearly F'-4(S,, S,) so that F-4 (S,, S,) .

Corollary 3 . If s and t are odd positive integers, then R (Ss , S,) _ {SS+,-,I .

Proof. Clearly S s+,-, c R (Ss , St ) . Also if F E R (Ss , S,), then by Theorem 2, a (F)
s+t-L Hence FER(S„ S,) implies $, +,-,_F, so that F=Ss+,_, .

Theorem 4. If s and t are even positive integers, then ($s , S,) is Ramsey-infinite .
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Proof. Let l be an odd positive integer, l > s + t- l . Recall that K, is the edge
disjoint union of (l -1)/2 spanning cycles G,, G	G (t_,) ,2 . Define F as the
union of the cycles G,, G2, • • . , G(,+t-2)i2 • Clearly F has l vertices and is regular
of degree s+t-2 . It is easy to see that F- (Ss , S,) . If this were not the case, then
there would exist a coloring of F with (F),, regular of degree s -1 and (F)$
regular of degree t-1 . This is impossible since then both (F)R and (F),, have an
odd number of vertices of odd degree . Furthermore if e E E(F), then
F- e-,4 (S,, St ) . To see this assume without loss of generality that e c E(G(,+r-2)i2)-
Then color alternating edges of the path G(,+(-2)i2-e together with all the edges
of G,, G2, . . . , G(,-2)i2 red and the remaining edges of F-e blue . This gives a
good coloring of F-e. Hence we have shown that FE R(Ss, St ). Since l is any odd
positive integer greater than s + t-2, the result follows .

Theorem 5 . Let s be odd (s , 3) and t be an even positive integer . Then ($,, S,) is
Ramsey-infinite.

Proof . Let l be an odd positive integer, l > s + t. Then K, is the edge disjoint
union of (l-1)/2 spanning cycles G,, G2 , . . . , G ( ,-,),2 . Suppose that G, is the
cycle (x,, x2 , . . . , xt, x,) . Define the graph F((3) as the edge disjoint union of the
cycles G2, G	G(,+ ,-,),2 and the edges {x 2 , x3}, {x4, x,},. . . , {x,_,, x,} of G,,
together with free edge (3 attached at vertex x,, i .e ., edge (3 has one of its end
vertices identified with x, and the other end vertex remains of degree 1 in F((3) .
Thus F((3) is a graph on l + 1 vertices, l of them of degree s + t -2, and the
remaining vertex (an end vertex of (3) is of degree 1 .
We show that F((3) can be colored such that S, (F((3)) R and S,~(F((3))B, but

under such colorings (3 is colored blue . To see that such a coloring exists, color
the edges of G2, G3 , . . . , G(,+,)/2 red and the remaining edges blue . Note that
under this coloring (3 is colored blue. Also under all good colorings of F((3) each
of the l vertices of degree s + t - 2 must be of red degree s -1 and blue degree
t-1 . Thus edge (3 is colored blue, otherwise (F((3)-(3)B is a graph on l vertices,
regular of degree t -1, i .e ., has an odd number of vertices of odd degree . We have
shown that F((3) has good colorings, but under all such colorings (3 is colored
blue .
Next we show F((3) is minimal with respect to the property that under good

colorings (3 is colored blue. By this we mean that if e e E(F((3)), e # (3, then
F(t3)-e has a good coloring with (3 colored red . To establish this let e E E(F((3)),
e R . Since s -_ 3, let G2 be the cycle (y,, y2, . . . , yt, y,) . Without loss of generality
assume e E E(G, U G 2) and that e is incident to y,. Then color the
edges {y2 , y3}, {Y4, ys}, - - - , N-1, Yt} of G2 and all the edges of

Gt,+sv2, G(,,5)12,. . . , G ( , + ,-,),2 blue. This remaining edges of F(t3)-e are colored
red. This coloring is a (S„ S,)-good coloring of F(P)-e with edge (3 colored red .

We now take t copies of F((3), call them F(/3,), F((32), . . . , F((3,), and identify
the vertices of degree one . Call this graph G and name the identified vertex v, i .e .,
G has the vertex v with incident edges 0 ,, (32, . . . , t3, .
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Observe that G (Ss, St ), since the only good colorings of the F(pi) would
make all Pi blue giving a blue S, with central vertex v. Also for e E E(G), G - e
can be given a (Ss , Si)-good coloring . If e e F((3,) give F((3,)-e the good coloring
described above with (3, (if present) colored red and F((3,), i%2, the good
coloring described above with Ri colored blue. This coloring shows G - e can be
good colored so that G - e-74 (S„ St ) . Hence G E OR (S s , S,) .

Since l is any odd positive integer, l > s + t, we have that R(S,, Si ) is infinite .

3. Star-forests

In this section we consider the more general pair

s

i
1 S„,, JU

1
Sm,

==

k-+1 k
U Sm U SJ
i=1

	

i=1

	

B

s>2 or t>2,

and ask whether it is Ramsey-infinite . This is answered affirmatively when all the
stars are nontrivial, i .e ., not single edges. In light of the results of the previous
section and the previously mentioned result that (mS,, H) is Ramsey-finite for
arbitrary H, one might expect, if M and L are matchings, that (G U M, H U L) is
Ramsey-finite if and only if (G, H) is Ramsey-finite. We shall see this isn't the
case even when G and H are star-forests .

Lemma 6 . Let Fi = U,!-, S,, and Fz= U;=, Sm, with n,> n2 ::' • • • > n, and m,
mz~-:_ •

	

Let g,=max{ni +m;-1~i+j=l+1} for 1= 1, 2, . . ., k, k--s+t-1 .
Then

k

	

z

	

k-z+1
(U Sg,)~(U S , U S

	

for z-s and 1<k

In particular if z = s and k = s + t-1, then

G
s +t- l
U Sg, -> (FI , F,) .
1=1

Proof. Color U , , S g, . Assume for some r, r < z, that U i _, S, < (U l =, S,), but

U i -,' 5,,, (U i-, Sg ,)R . Since the g i are noníncreasing, we can assume without loss
of generality that S„ _- (Sg )R for 1 < i < r. Therefore Sn- ( U i_,+1 Sg,)R . But
g i 1 for 1=r+1,r+2, . . .,r+k-z+l . Hence S_, --(Sg,) B for l=
r + 1, r + 2, . . . , r + k - z + 1, so that U i'=, S„ (U k, Sg)R implies that

Lemma 7. The pair (SS U St, St ) is Ramsey -infinite for s, t, 1-- 2 .

Proof. We assume throughout the proof that s , t. Consider a disjoint family of



sets {Ai }k, (k even, k , 6) with

JA,I=s+t-1,

	

JA,J=t,

	

JAJ=t(l-1) for i=3, . . .,k-2,

IAk-11 = t,

	

IAk I = 1 .

Let G = G(s, t, l, k) be the graph with vertex set U k_, A,, each A, an independent
set in G, such that each of the following hold :

(1) The pairs (A,, Az) and (Ak-,, Ak) generate complete bipartite graphs .
(2) The pair (A i, Ai+ ,) generates a regular bipartite graph of degree t + l - 3

when i is odd (3 _ i _ k - 3) and regular of degree 1 when i is even (4 _ i _ k - 4) .
(3) The pairs (A2 , A,) and (Ak_2, Ak_,) generate bipartite graphs with the

vertices of A 2(Ak-1) of degree l-1 and the vertices of A3(Ak-2) of degree 1 .
(This degree is relative to the subgraphs generated by the pairs (A,, A3 ) and

(Ak-2, Ak-7) •)
The graph G has no edges other than those indicated in (1), (2) and (3) above and
is shown for s=5, 1=3, t=3, and k=8 in Fig . 1 .

Color G and suppose that G contains no red S, U S, and no blue S t . First note
that d (x) = s + t + l - 2 for x E A2 . Since S, (G)B , dR (x) , s + t -1 for x E Az .
Also SS U Sri (G)R so that the number of vertices collectively adjacent in (G) R to
any two distinct vertices in A 2 is at most s + t - l . Hence all the edges between
vertices of A, and Az are red and between A 2 and A3 are blue . This implies that
the pair (A3 , A,) generates a regular bipartite graph of degree t -1 in (G), and a
regular bipartite graph of degree 1-2 in (G), Then all the edges between
vertices of A, and .As are blue . Hence the coloring of the edges between all pairs
(A,, A i +,) are determined for i _ k-3 . They are colored like those between the
pair (A3, A,) if i is odd and like those between the pair (A,, As) when i is even .
This implies that the edges between Ak_2 and Ak-, are blue, which in turn forces
the edges between Ak-, and the vertex of Ak to be colored red . This gives
S, U S, _ (G) 1z, a contradiction . Hence G- (SS U S„ St ) .

Next let e = {x,, x i +,} E E(G), xi EA i , xj+ , c Ai+ ,, i % 2 . Consider the case when e
is colored red in the coloring given above . Under this coloring there exists a

A,

	

A2
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Fig. 1 .
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A 8
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path with vertices xi , x,+ ,, . . . , xk , where x; E Ai for each j, with the edges
N, x,+1 }, {xi+2, xi+3}, . . . , 14 -1, xk I in E((G)R) and the edges {x, + ,, x,+z},
K+3, xi+a{, . . . , 14 -2, xk ,} in E((G)B ) . Replace this red-blue alternately colored
path by a blue-red alternately colored one, i.e ., interchange the colors on this path
leaving unchanged the rest of G as colored . The case when e is blue is handled
similarly. It follows that G - e under this modified coloring is (S s U St, S,)-good .
Thus G - e-,4 (SS U S„ S,) . Thus removing appropriate edges between A, and A,,
gives a graph G' c R (S S U S„ S,) of diameter k -1. Since k can be taken arbitrarily
large we have that R(S, US,, S,) is an infinite set .

Lemma 8 . Let u, w, r, z be positive integers with u > w _- 2, r : z :-:- 2. Set

A = {F E R (S. U Sw , Sz ) I F-~ (Sw , S, U SJJ,

B ={FE R(Sw , Sr U S z ) I F (Su U Sw, SJJ .

Then either A or B has infinitely many elements .

Proof . Without loss of generality assume z > w. Suppose neither A or B have
infinitely many elements, and let k be chosen so that k -1 exceeds the diameter
of all the graphs in A U B . Let G, = G(u, w, z, k) and G2, = G(r, z, w, k) where
G(s, t, l, k) is the graph G defined in the proof of Lemma 7 . Since G,-~
(Sw , S, U S.) and all subgraphs of G2, in R (S_ Sr U SJ are of diameter k -1 we
have that G, (Su U Sw , S.), otherwise G, contains a subgraph of diameter k -1
in A U B. Take a (S. U Sw , S z )-good coloring of G 2, and select distinct vertices
x, y c Az of the graph G, Since d (x) = d (y) = r + z + w - 2 and S. :~k_ (G,),,, d" (x)
and dR (y) are both at least r + w -1 . But S u U Sw (GAI so that r + w -1
u + w - l, giving that u , r. Also G,-~ (Su U Sw, Sz ), and all subgraphs of G, in
R (Su U Sw , Sz ) are of diameter k -1, so that as above G, (Sw, Sr U Sz ) . Give G,
a (Sw , S, U S.)-good coloring and select distinct vertices x, y E A of the graph G, .
Since d (x) = d (y) = u + w + z - 2 and Sw 9' (G,)R , dB (x) and dB (y) are both at least
u+z-1>r+z-1 . But S,US, (G,)B so that dB (x) = d, (y) = r + z - 1, which
means that x and y have common adjacencies in (GOB and u = r. This implies
that w = z so that G, ---> (Su U Sw , SJ implies G, (Sw, S, U SJ, a contradiction .
Hence A or B is an infinite set .

Theorem 9. The pair (U i', 5,,,, U'i_, 5,,,,) is Ramsey-infinite for n,%n z
ns -2, Ml > rnz l-:- gy m, _-2, when s-_2 or t--2 .

Proof. First consider the case when s > 2 and t -- 2 . Set u = ns_,, w = n,, r = m, ,,
and z = m, and define A and B as in Lemma 8 . Without loss of generality assume
A is infinite. Set g, = max{n i + mi -1 i + j = 1+11 for 1=1,2, . . . , s + t - 3 and
color the graph U i+~s S". If

s

	

c+t-3

	

t

	

s+t-3

U S„( U s g,)

	

and U Sm, : ( U Sg,) ,
i=1

	

I=1

	

R

	

i=1

	

l=1

	

B



then by Lemma 6 we have

or

s-1

	

s+t-3
US,,

	

U S ,

	

and
i=1

	

1=1

	

R

s-2

	

s+t-3
U S„ < U S~,

	

and
i=1

	

1=1

	

R

(+t-3
U SK, u
1=1

Ramsey-m nimal graphs for star-forests

t-2

	

s+t-3

U S
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n, U s-,).
J=1

t--1

	

s+t-3

	

\

( U S.l
=1

	

l 1

	

B
U S-i

Without loss of generality assume the former occurs . Take H E A
Since Sn < (H)R or Sm U Sm < (H)B it follows that
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and color it .

Next let e E E(H) and give H-e a (S,,, , U S, ', S_)-good coloring . Color the

U i_2I S,, red and color the U i±s 1 S,,, blue . Clearly this coloring gives a
(U i =, S,,,, U j' . 1 S_)-good coloring of (< JI , 3 S g,) U (H-e) . Since A is infinite we
deduce that R (U i=, S,,, U j , S„,) is infinite when both s > 2 and t - 2 .
The proof when s =1 or t = 1 is similar . Without loss of generality assume t = 1

so that s > 2 . Let H E (Sn _, U S.., S_,) . Observe as in the first case

-2

	

s

	

s-

1

2

U1 S",) U H--> ( U sn , sm,) and

	

U S~,) U (H-e)~ U
1
Sn ,, S-,),

1=

	

t -1

	

1=

	

e -

where e e E(H) and g1 = n 1 + ml - l . Since (S,,_, U &,, S_,) is Ramsey- infinite by
Lemma 7, we have that (U i=, S„,, Sm ,) is Ramsey-infinite also . This completes the
proof of the theorem .

We next investigate whether (G, H) is Ramsey-finite or Ramsey-infinite when
G and H are star-forests with some of the stars trivial (single edges) . Unfortu-
nately our results are incomplete and indicate that the complete solution of the
problem could be difficult .

Theorem 10. The pair (S s , U t, S,, S,2 U t2S,) is Ramsey -finite when both s, and s2
are odd positive integers, and t, and t 2 are nonnegative integers .

Proof. If either s, or s2 is 1, then the result follows from [4], where it is proved
that (mS,, H) is Ramsey-finite for all graphs H. Also if tl = t2 = 0, then the result
is that of Corollary 3 . Hence we assume throughout the proof that s 1 : S2> 3 and
setting t = max{t,, t2}, that t -- 1 . We also let t* = max{t, + t2 , t l + l, t2 + '!-

It suffices to show that the number of edges for members of R (Ss , U t1S1 , Ss, U
t2S1 ) is bounded above . In particular we show that if FE R(S,, U t, S,, S,, U t2S,)
then JE(F)j -_ k 2t*+ 1 where k =4t+2s, -1. We remark that this upper bound is
undoubtedly not the best possible, only a convenient one .
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The proof is by contradiction, so suppose there exists an F E

R(S,, U t,S,, S,2 U t2S,) such that JE(F)I > k't* + L Let v be a vertex with d(v) _

(F) . Since s, and s2 are both odd, Theorem 2 implies that d(v)>s,+s2-1 .
Assume for the moment that d(v) > k. Remove an edge e incident to v and give

F- e a good coloring. Then dR (v) > 2t + s, or d,, (v) > 2t + s,, so assume the

former. If e is colored red and F- e keeps its good coloring, then Ss , U t, S, _ (F)R •

Thus in (F-e),, either t,S, or S,,U(t,-1)S, is disjoint from v. But t,S, is

incident to at most 2t, neighbors of v in (F-e), and S,,U(t,-1)S, is incident to
at most s, + 2 t -1 . Thus dR (v) > 2 t + s, in F- e implies, in either case, that
Ss , U t, S, _ (F- e) R , a contradiction. Hence d (v) _ A (F) _ k .

We next show that each edge of F is incident to a vertex of degree s 2 or more .

Suppose this were not the case . Let e be an edge incident to vertices of degree

less than s 2, and consider a good coloring of F- e. It must happen that Ss, U

(t, -1) S, _ (F-e)R and S, z U (t 2 -1) S, _ (F-e), . This implies that each edge in
(F-e)R is incident to or part of any collection of t, disjoint stars in (F-e), and
each edge in (F-e),, is incident to or part of any collection of t2 disjoint stars in
(F-e),, . Since A(F) = k, the number of edges in a star together with edges
incident to the star is at most k 2 . Thus there are at most k2 t, edges in (F-e),

and at most k2 t2 edges in (F-e), implying that JE(F-e)J_k2(t,+t2 ) . This

contradicts JE(F)J > k 2 t* + l, so that each edge of F is incident to a vertex of
degree s 2 or more .

Next we show that there exists an edge of F whose end vertices are both of
degree less than s, . Suppose this were not the case . Then by removing an edge e

with end vertices different from v, F-e would contain at least t* + 1 disjoint stars,

t* of them of degree s, or more, since as in the previous discussion t* disjoint

stars can account for at most k2 t* edges. But d (v) -- s, +S2_ 1 in F- e and F- e
contains at least t*+1 disjoint stars, t* of them of degree s, or more, so that
F-e-->(S,, U t,S,, S,, U t2 S,), a contradiction . Hence there exists an edge f E E(F)

whose end vertices are of degree less than s, .
Give F- f a good coloring . Then S,, U (t,-1)S, _ (F- f)R. But each edge of F is

incident to a vertex of degree s 2 or more and JE(F- f) I > k2 t* + 1 so that F-e has
at least t * + 1 disjoint stars with at least t* of them of degree s2 or more. This
together with S,, _ (F- f )R implies that the coloring given F- f is not good, a

contradiction . Hence the original supposition JE(F)I > k2 t * + 1 is false and the

proof is complete .

Theorem 11 . Let l, n and s be positive integers with l and n odd and n -- l + s - l .
Then the pair (S.US„S,UkS,) is Ramsey -finite for k%(n+2l+s-2)2+1 .

Proof. As in the proof of Theorem 10 it sufficies to show that members of
R (Sn US,, S, U kS,) have a bounded number of edges . We show that if F E

R (Sn U S„ S, U kS,), then

JE(F)J _ (k + 1)(c 3 + c)+(n -1)2(k +2c)
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where c = n + 2 k + l + s . Since R (H, mS,) is finite, we assume throughout the
proof that l > 1 .

Suppose there exists an

F c (S,, U Ss , S t U kS,)

with JE(F)I >(k+1)(c3+c)+(n-1)'(k+2c) . By Theorem 2 we have A(F)--

n+1-1 .
Next we show by an argument similar to the one given in Theorem 10 that

A(F)--c. To see this let v c V(F) such that d(v)=A(F) and suppose d (v) -- c + 1 .

Remove an edge e incident to v and give F-e a good coloring. Then d" (v)
n+s+1 or dB (v)--2k+ l in F-e. If dR(v)--n+s+l, then color e red with F-e

keeping its good coloring . Since S n U S S _ (F)R, this means that either S, or SS is a

subgraph of (F)R disjoint from v . But S„ and SS contain n + 1 and s + 1 vertices
respectively, so that dR (v) -_ n + s + 1 in F- e insures Sn U Ss < (F- e) R with v as
central vertex of one of the stars . This contradicts the assumption that the
coloring of F- e is good . Likewise if dB (v) , 2k + l in F- e, it follows that

S, U kS, _ (F- e)B , a contradiction . Hence (F) _ c.
Let e = {u, v} E E(F) . If d(u)<s and d(v)<s then a good coloring for F- e can

be extended to a good coloring for F by coloring edge e red. Hence each edge of
F is incident to a vertex of degree s or more .

We next calculate bounds on the number of vertices of F of degree n or more .

For convenience let w denote this number . Clearly w > k + 1, for otherwise color
all edges incident to anyone of these w vertices blue and all other edges of F red,

yielding a good coloring of F.
To calculate yi n upper bound on w, let t be maximal such that S, + ,-, U tS„ _ F.

Note that t _ k, since n > s and

S„+t _, U kS„ U SS c R (Sn U Ss , S, U kS,) .

Each vertex of degree n or more must have an incident edge which is also

incident to a vertex of S, +, , U tSn . Since (F) _ c, there are at most (t + l)(c' + 1)
such vertices . Hence k + 1 _ w _ (k + 1) (c' + 1) .

Let H=({e c E(F) le ={x, y}

	

and

	

max{d(x), d(y)}, n})

	

and

	

T =
{v E H I d (v) > n} . Since JTJ = w _ (k + 1)(c'+ 1) and A (F) _ c the number of edges

assumed in F implies that there exists an e E E(F)-E(H) . Give F-e a good

coloring and observe that S,ti _ (F- e)R n H. We wish to show that S,-_

(F- e)B nH. Select v c T such that dR (v) _ A((F- e),,) . If d (v) > n + l + s, then
since w % k + 1, n > l + s -1, and Sn U SS (F- e)R, we have S, _ (F- e)B n H. If
d(v)_n+l+s-l, then d,,(z)_n+l+s-1 for each zcT . But w%k+l and
k -- (n + 2l + s - 2) 2 + 1 implies the existence of a vertex u c T such that d(u)--

n + 21 + s - I or the existence of two disjoint stars in H, one of which is a red S„ .
In either case we have S, _ (F- e),, nH. Thus under the good coloring of F- e,
we have Sn _ (F- e)R fl H and S,(F- e),, nH with the centers of these stars in T.

Finally since JE(F)J>(k+1)(c3+c)+(n-1)2(k+2c), JTJ_(k+1)(c2+1), and
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A (F) -- c, there are at least (n -1)'(k + 2c) edges of F- e which are outside of H.
But d (z) -- n -1 for z e V(F) - T and each edge of F is incident to a vertex of
degree s or more . Hence there exist at least k+2c disjoint stars of degree s or
more outside of T. Since A (F) -- c, at least k of these disjoint stars are themselves

disjoint from the Sn in (F-e), and the S, in (F-e),, exhibited in the last

paragraph . Since all of these stars are in F- e, it follows that Sn U S, _ (F- e)R or

S, U kS, < (F- e)B , a contradiction . This final contradiction completes the proof of
the theorem .

Theorem 12. Let l, n and s be positive integers with l and n odd, n , s a 2, l >- 2,
and n < l + s -1. Then the pair (Sn U S s , S, U kS,) is Ramsey-infinite for all non-
negative integers k .

Proof. Let t be an even integer, t a 6, and let G = G(n, s, l, t) where G is the
graph constructed in the proof of Lemma 7 . It is easy to see that each subgraph

G' of G, G' e R (Sn U Ss , S,), has diameter t -1 and besides G'--> (Sn, S, U S,) . Set

k * = max{0, k -1} . Then since G'--->(Sn U Ss, S,) and G' (5,,, S, U S,) it follows
that G' U k*Sn U S, (Sn U S s , S, U kS,) . Also for e E E(G') give G' - e a
(Sn U Ss , S,) -good coloring and color l -1 edges of each star in the k *Sn U S, blue

and the remaining edges red . This clearly gives a (S n U S s, S, U kS,)-good coloring

of (G'- e) U k *S,ti U Ss . Thus, since t is any even integer (t > 6) it follows that

(Sn U Ss , S, U k s ,) is Ramsey-infinite, completing the proof .

Let {HJ} , and {GJ , be families of connected graphs with (H i -, Gi) Ramsey-

infinite for some i' and j'. It seems reasonable to expect (U,_, Hi, U , Gr ) to be

Ramsey-infinite. Theorem 11 together with Theorem 5 shows that this is not the

case. In particular, in Theorem 11 let s be even and l odd (l % 3) . Then by
Theorem 5, (Ss, S,) is Ramsey-infinite but (S n U Ss , S, U kS,) is Ramsey-finite for
k , (n + 21 + s - 2)' + 1 . This example is yet another indication that it is difficult to
determine whether a pair of graphs is Ramsey-finite or Ramsey-infinite .

Our results are complete when G and H are star-forests with no single edge
stars . In fact we have shown for such G and H that (G, H) is Ramsey-finite if and

only if both G and H are single stars with an odd number of edges (Theorems 4,
5, 9 and Corollary 3) . Further we have shown that when G and H are star-forests
with no single-edge stars and with (G, H) Ramsey-finite, then (G U kS,, H U tS,)
is also Ramsey-finite (Theorem 10) . We have failed to determine whether or not
(G U kS,, H U tS,) is Ramsey-finite or infinite for arbitrary star-forests G and H,
although it can be shown to be Ramsey-infinite for large classes of star-forests .
The special case when the pair is (Sn, U Ss , S, U kS,), n , s, n and l odd, k large, is
completely settled in Theorems 11 and 12 . In particular, since (Sn U Ss , S,) is
Ramsey-infinite for n > s = 2 and 1-- 2, it would be of interest to find the largest
integer ko such that (Sn U Ss , S, U k,,S,) is Ramsey-finite, n and l odd, n > l + s -1
(see Theorem 11) . This leaves the following questions . For what star-forests G and



Ramsey-m n mal graphs for star-forests

	

237

H and what positive integers k and t is (G U kS t , H U tS t ) Ramsey-finite? In
particular, if (G, H) is Ramsey-finite, is (G U kS t , H U tS t ) Ramsey-finite?
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