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It is shown that if & and H are star-forests with no single edpe stars, then (G, H) i
Ramsey-finite if and only if hoth & and H are single stars with an odd number of edges.
Further (8, JkS,. 8, LIS, is Ramsey-finite when m and noare odd, where § denotes a star
with  edges, In general, for G and H star-forests, (LIS, HUIS,) can Be shown 1o be
Ramsev-finite or Rameey-infinite depending on the chowe of 3, H, k, and | with the general
case unseltled. This disproves the conjectore given in [2] where it is sugpested that the pair of
graphs (L, M) is Ramsey-finite if and only if (1) either L or M i 0 matching, or (2) both L and
M are star-forests of the type 8§, LES . m odd and k =0,

1. Introduction

Let F, G and H be (simple) graphs. Write F— (i, H) to mean that if each edge
of Fis colored red or blue, then either the red subgraph of F, denoted (Flg,
contains a copy of G, or the blue subgraph, denoted (F)g, contains a copy of H.
The class of all graphs F (up to isomorphism) such that F—(G, H) has been
studied extensively, e g. the generalized Ramsey number r{G, H) is the minimum
number of vertices of a graph in this class.

A praph F will be called (G. H)-minimal if F—{(G, H) but F'-4{G, H) for each
proper subgraph F' of F. If G, H and F have no isolated vertices, F' can be
replaced by F—e, where ¢ is any edge of F. Here F—¢ denotes the graph with
veriex set the same as F and edge set that of F less edge e The class of
{G, H)-minimal graphs will be denoted by #(G, H). The pair (G, H) will be
called Ramsey-finite if #(G, H) is finite, and Ramsey-infinite otherwise.

Several recent papers discuss the problem of determining whether the pair
(GG, H) is Ramsey-finite (see [2.3.4, 7. In particular NeSetfil and Rédl [7]
showed that (G, H) is Ramsey-infinite if both G and H are 3-connected or if G
and H are forests neither of which is a union of stars. It is shown in [4] that
(G, H) is Ramsey-finite if & is a matching and H arbitrary. In addition, if (G, H)
is Ramsey-finite for each graph H, then the results of [5] indicate that G must be
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a matching. The purpose of this paper is to discuss one of the remaining gaps.
which is to determine whether (G, H) is Ramsey-finite or infinite whenever G and
H are star-forests, i.e., a forest of stars,

At this point we introduce some further notation and terminology. The word
“coloring™ will always refer to coloring each edge of some graph red or blue. A
coloring of F with neither a red G or blue H will be called (G. H)-good. The
maodifier (G, H) mav be dropped when the meaning 15 clear. For notational
convenience a (G, Hi-good coloring of F will be frequently symbolized by
G=£(Fig and H£(F)g. Here the symbol “="" i5 read “subgraph of”". The depree
of a vertex x in (Flg (or (Flg) will be denoted by dg(x) (or dy(x)). A cycle on n
vertices {x;, %2, ..., %,} with x, adjacent to x;,,, for each { will be denoted by
(X, X2, - - .2 %, %, ). The symbol mG will refer to m disjoint copies of the graph G.
Also 8, will denote a star with n edges. This notation, instead of the usual K, .
was selected because of its frequent appearance and its simplicity, Further
notation will follow that of standard references [1] and [6].

2. Stars

In this section we decide whether (G, H) is Ramsey-finite or infinite in the
special case in which G and H are stars. Since (G, H) is Ramsey-finite whenever
G is a matching [4], we deal only with nontrivial stars, i.e., not single edge stars.
We will show that (§,, §,) 13 Ramsey-infinite except when both s and 1 are odd, in
which case R(S,. 51=1{8,.,.1}

Ta begin we state a well-known “old” theorem which is used strongly in what
follows,

Theorem 1 (Petersen [B]). A comnected graph G s 2-factorable if and only if it is
regular of even degree.

Theorem 2. Let s and t be odd positive integers and let F be an arbitrary graph. If
A(Fy<<s+i1—1, then F can be colored such that §,#(F)g and 8,#(F)g.

Proof. Embed F in a regular graph F' of degree s +1—2. By Petersen’s Theorem
(Theorem 1) F' is 2-factorable when s+1—2>=0, so color (s—1)/2 of the factors
red and (—1)/2 of the factors blue, Clearly F'-%(5,. 5,) so that F-(5, 5,).
Corollary 3. If s and t are odd positive integers, then ®(5,. 5)=15,., .}

Proof. Clearly §,,, .35, 8. Also if Fe@®(S,, §,), then by Theorem 2, A(Fi=
s+t=1. Hence FeR(S,, 5 ) implies 8., =F so that F=§,,, ..

Theorem 4. [f s and t are even positive integers, then (5., 8,) is Ramsey-infinite.
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Proof, Let [ be an odd positive integer, |=s5+1t—1. Recall that K is the edge
disjoint union of ({—1)/2 spanning cycles Gy, Ga,. ... Gy_yo Define F as the
union of the cycles Gy, Ga ..., G- Clearly F has | vertices and is regular
of degree s+1—2. It is easy to see that F—(8,, S,). If this were not the case, then
there would exist a coloring of F with (F)e regular of degree s—1 and (Fly,
regular of degree t— 1. This is impossible since then both (Fig and (Flg have an
odd number of wvertices of odd degree. Furthermore if e= E(F). then
F—e-4(8,, 5 ). To see this assume without loss of generality that e e E(G, ,_5.2)-
Then color allernating edges of the path G, 5,z —¢ together with all the edges
of Gy, Gs ..., Gyqys red and the remaining edges of F—e blue. This gives a
good coloring of F—e. Hence we have shown that Fe (8., §,). Since [ is any odd
positive infeger preater than s+i1—2. the result follows.

Theorem 5. Let s be odd (s=3) and t be an even positive integer. Then (S, S,) is
Ramsey-infinite,

Proof. Let | be an odd positive integer, =35+ Then K, is the edge disjoint
union of (I—1)/2 spanning cyvcles G, Ga, . ... Gy 5. Suppose that Gy is the
eyele (xy, Xou ..., %, X} Define the graph FUS) as the edge disjoint union of the
cveles: 'Ga, Gaiooes Giiaotiz and the edges {x3, xahdxg 2:d0 0 I x ) of Gy,
together with free edge B attached at vertex x,. i.e., edge B has one of its end
vertices identified with x, and the other end vertex remains of degree 1 in F(B).
Thus F(B) is a graph on 1+ 1 wvertices, | of them of degree s+1—2. and the
remaining vertex (an end vertex of 8) is of degree 1.

We show that F(B) can be colored such that §,+(F(B))p and 5, (F(8)}g. but
under such colorings @ is colored blue. To see that such a coloring exists, color
the edges of G,, G, ..., Gy red and the remaining edges blue. Mote that
under this coloring B8 is colored blue, Also under all good colorings of F(8) each
of the | vertices of degree s+1—2 must be of red degree s— | and blue degree
t—1. Thus edge 8 is colored blue, otherwise (F{8)— )y is a graph on [ vertices,
regular of degree ¢ 1, i.e., has an odd number of vertices of odd degree. We have
shown that Fig) has good colorings, but under all such colorings 8 is colored
blue.

MNext we show F(8) 15 minimal with respect to the property that under good
colorings B is colored blue. By this we mean that if e= E(F(B)), ¢# B, then
Fi{B)—e has a vood coloring with 8 colored red. To establish this let e e E(F(B)),
e¥ 3. Since s =3, let G5 be the cyele (yy: va: o0 v vy ) Without loss of generality
assume e E(G;UG;) and that e is incident tw y,. Then color the
edges {va.¥ah, DVavsho.o{vwwt dof G, and &l the edges of
G e Oroemme - -0 o Orgaroye blue. This remaining edees of F(f8)—e are colored
red. This coloring is a (8, §,)-good coloring of F(3}—e with edge 8 colored red.

We now take t copies of F(B), call them F(f,), F(3.), ..., Fi,), and identify
the vertices of degree one. Call this graph G and name the identified vertex ¢, i.e.,
{7 has the vertex v with incident edges 3, 8...... B.
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Observe that G—(5,, 5}, since the only good colorings of the F(f) would
make all 8 blue giving a blue S, with central vertex v, Also for e E(G), G —¢
can be given a (8, §,)-good coloring, If e e FiB;) give F{j3,)—e the good coloring
described above with 8; (if present) colored red and F(B ), i=2, the good
coloring described above with {5 colored blue. This coloring shows G —e can be
good colored so that G —e-+(S5,, 5,). Hence G e R(S,. 5,).

Since | is any odd positive integer, [ =5 +1, we have that R(S, 5 is infinite.

3. Star-forests

In this section we consider the more general pair
5 1
(U Sm* U Sm,)r 531 oar '23?..‘
i =1 i=1

and ask whether it is Ramsey-infinite. This is answered affirmatively when all the
stars are nontrivial, i.e., not single edges. In light of the results of the previous
section and the previously mentioned result that (mS,, H) is Ramsey-finite for
arbitrary H, one might expect, if M and L are matchings, that (GUM, HUL} is
Ramsey-finite if and only if (G, H) 15 Ramsey-finite. We shall see this isn’t the
case even when G and H are star-forests.

Lemma 6. Let F;=J{_, S, and F;=1J{., 8, with n,=n,=-:-=n, and m; =
my=:--=m, Let g =max{m+m—1|i+f=l+1}forl=1,2,..., k, kss+1-1.
Then

k—z 41

(:LEJ'1 Sﬂ)—h LH S rL__J1 Sm,) forz=sand l=k—z+1=1

In particular if z=5 and k=s41—1, then

+i—1

:L:'I. SH)—*{F,. ).

Proof. Color |Ji_, §,. Assume for some r,r=<z, that |J{_; S, <(lJi_, §,)& but
L S, £ (U 5, )e- Since the g are nonincreasing, we can assume without loss
of generality that §, =(8,)z for 1=i=r Therefore S, %£(U, .1S5,)s But
g=nytm_, —1lforl=r+1,r+2,... r+k—z+1. Hence 5, _ =(5,)s for l=
rrl e+ .., rek—z+1,s0 that L7, S, #£(JE . S, )= implies that

J=n
Lemma 7. The pair (S, U S, §) is Ramsey-infinite for 5.6, |=2.

Proof. We assume throughout the proof that s =1 Consider a disjoint family of
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sets {4}, (k even, k=6) with

A |=s+1-1, lAsl=1 lAl=Kl-1) fori=3,....k-2,
LA, =1 |A|=1.

Let & = G5, t, |, k) be the graph with vertex set | ., A, each A, an independent
set in (G, such that each of the following hold:

(1) The pairs (A, As) and (A, _ . A, ) generate complete bipartite graphs,

(2) The pair (A, A, ;) generates a regular bipartite graph of degree t+[-3
when { is odd (3=i=k —3) and regular of degree 1 when i iseven (d=i=k~—4).

(3) The pairs (A, As) and (A, o, A, ) generate bipartite praphs with the
vertices of A.(A, ;) of degree [—1 and the vertices of As(A,_ ;) of degree 1,
(This degree is relative to the subgraphs generated by the pairs (A, A;) and
(A —2s Agq).)

The graph G has no edpes other than those indicated in (1}, (2} and (3) above and
is shown for s=35, =3, t=3, and k=8 in Fig. 1.

Caolor G and suppose that GG contains no red 5, U S, and no blue 8, First note
that dix)=s+t+1=2 for xeA,. Since §%(Gly, de(x)=s5+1—1 for xe A,
Also 8, LIS, # (G )g so that the number of vertices collectively adjacent in (G g to
any two distinet vertices in A, is at most s+&— 1. Hence all the edges between
vertices of A, and A, are red and between A, and A, are blue. This implies that
the pair (A, A,) generates a regular bipartite graph of degree t= 1 in (Gl and a
regular bipartite graph of degree [—2 in (G)g. Then all the edges between
vertices of Ay and A; are blue. Hence the coloring of the edges between all pairs
(A, A ) are determined for i=k—3. They are colored like those between the
pair (A, Ag) if i is odd and like those between the pair (A, As) when [ s even,
This implies that the edpes between A,_, and A, _, are blue, which in turn forces
the edges between A, , and the vertex of A, to be colored red. This gives
S8 US =(Glg, a contradiction. Hence G—(5, US,, 5,

Next let e ={x, x5, ElG), x € A, X € Ay, 1 = 2. Consider the case when e
is colored red in the coloring given above. Under this coloring there exists a

¥
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path with vertices x, x.,;....,%. where x4, for each j, with the edges
frox b Aaxahooadgonxt in E({G)s) and the edges {agq, x40k
[ e xade oo oo dxe s, %} in E({G)y). Replace this red-blue alternately colored
path by a blue-red alternately colored one, i.e., interchange the colors on this path
leaving unchanged the rest of G as colored, The case when e is blue is handled
similarly. It follows that G —e under this modified coloring is (5, U S, 5 )-zood.
Thus G —e-+(8, WS, ;). Thus removing appropriate edges between A and A,
gives a graph G'= R(8, US, §) of diameter k — 1. Since k can be taken arbitrarily
large we have that R(S,US, §) is an infinite set.

Lemma 8. Let u, w. r, z be positive integers with u=w=2,r=z=2. Set
A={Fe®R(S,US_,8.)| F=(8,, 8 US.,)}.
B={Fe®(S,, S US,)|F—(§,US,, 5.}

Then either A or B has infinitely many elements.

Proof. Without loss of generality assume z =w, Suppose neither A or B have
infinitely many elemenis, and let k be chosen so that k—1 exceeds the diameter
of all the graphs in AUWB. Let G, =Glw, w, z, k) and G:=Gl(r, z, w, k) where
Gis, . L k) 15 the graph G defined in the proof of Lemma 7. Since Gi—
{(S.. 5 U8, and all subgraphs of G, in $(5,, S, US,) are of diameter k—1 we
have that G,-+(5, US,. 5.}, otherwise (5. contains a subgraph of diameter & —1
in AUB. Take a (5, WS, 5. )-good coloring of G, and select distinct vertices
X, vy A, of the graph G,. Since dix)=d(yl=r+z+w—2 and S.%E(G4)y, dulx)
and dg(y) are both at least r+w—1. But S, US_ £(G.)g so that r+w—1=
u+w—1, giving that u=r. Also G,—(5,U5,.5.), and all subgraphs of G, in
RIS, US,. 5.) are of diameter k — 1, so that as above G,-%{5,.. 5, LS. ). Give G,
a (8,5 US. )-good coloring and seléct distinet vertices x, ve A of the graph G,.
Sincedixi=dlvi=u+w+z—-2and 8, £(G ), di(x) and dg(y} are bath at least
u+z=1=r+z—1. But 85 US.£(G)s 50 that dy(x)=dglyl=r+z—1, which
means that x and y have common adjacencies in (G )y and w=r. This mplies
that w =z so that G,—=(8§, U8, S.} implies G, —(8,., 5 US,), a contradiction.
Hence A or B is an infinite set.

Theorem 9. The pair (JI_, 8. |J}_, S..) is Ramsey-infinite for n,=n,=---=
n=2 m=my==m, =2, when s=2 or t=2.

Prool. First consider the case when s=2 and t=2. Set u=n,.,, w=mn,, r=i, ;.
and z = m, and define A and B as in Lemma 8. Without loss of generality assume
A is infinite. Set ;:[=nmxin,+m,—]I"l'+r'=!—.ll- for I=1.2,....8+1—3 and
color the graph |J}1\ 7 S,. If

. PR . r k=3
U Sn. E.‘é' ( U Sq,) and I-._J 5|mI .*‘ ( U Sp_.) ]
[ (8 [ 1 A
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then by Lemma & we have

=1 ap=3 T—2 w+i—3
Us,<(Us,) ama Us,=(Us,),
-1 -1 R =1 =1 8
or
=2 w4+-i—3 i—1 E+1—3
US,,‘E(USW) and LJ-S,“IE(L_J Sm).
i=1 =1 R =1 1=1 B
Without loss of generality assume the former occurs. Take He A and color it.
Since 8, =(H)g or S,,  US, =(H), it follows that

(0's)ur= (0 s U s).

=1 { =1 =1

Next let ee E(H) and give H-¢ a (5, US,,S§,, )-good coloring. Color the

1215, red ‘and color the [JjZi77 S, blue. Clearly this coloring gives a
(L1 8., Uj-1 S, )-good coloring of (Ui S, ) U(H —e). Since A is infinite we
deduce that R{|J{-, 5, L)i-1 8, ) 15 infinite when both s=2 and (=2,

The proof when s =1 or { =1 is similar. Without loss of generality assume 1= 1

so that s=2, Let He (S,  US,, 5, ). Observe as in the first case

(U s.)us- (1:1I Suv S, ) and (ul S, )UH—e) (U sw S )

where ¢ € E(H) and g =n +m,—1. Since (5, US§,. 5, ) is Ramsey-infinite by
Lemma 7. we have that (LJ}_, S, S, ) is Ramsey-infinite also. This completes the
proof of the theorem.

We next investigate whether (G, H) is Ramsey-finite or Ramsey-infinite when
i and H are star-forests with some of the stars trivial (single edges). Unfortu-
nately our results are incomplete and indicate that the complete solution of the
problem could be difficult.

Theorem 10. The pair (5, U,5,, 8, Ut:5) is Ramsey-finite when bath s, and s,
are odd positive integers, and 1, and t, are nonnegative integers.

Proof. If either s, or 5. is 1, then the result follows from [4], where it is proved
that (mS,, H) is Ramsey-finite for all graphs H. Also if ¢, =, =0, then the result
is that of Corollary 3. Hence we assume throughout the proof that s, =s.=3 and
setting t =max{t;, 1.}, that 1=1. We also let *=max{t, + ., 1, + 1, z+ 1}

It suffices to show that the number of edges for members of #&(S, U5, 5.0
t:5,) 15 bounded above. In particular we show that if FeR(S, UHS,. 5. ULS)
then |[E(F)|=k**+1 where k =41+ 25, — 1. We remark that this upper bound is
undoubtedly not the best possible, only a convenient one.
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The proof is by contradiction, so suppose there exists an Fe
RS, U8, 5, ULS,) such that |[E(F)|=k*™+1. Let v be a vertex with d(v)=
A(F). Since s, and s, are both odd, Theorem 2 implies that d{vi=s,+5— L

Assume for the moment that d{v) >k Remove an edge ¢ incident to v and give
F—e a good coloring, Then dg(v)=2t+s, or dglv)=2t+45;. s0 assume the
former. If ¢ is colored red and F—e keeps its good coloring, then 8, U 6,5, = (Flg.
Thus in (F—e)g either 1,8, or 5, U(t,— 118, is disjoint from v. But (;§, is
incident to at most 24, neighbors of v in (F— el and 5, U(t, —115, is incident to
at most §;+2t—1, Thus de(v)=21+5, in F—e implies, in either case, that
5, U1,S,=(F—¢e)g a contradiction. Hence d(v)=A(F)=k.

We next show that each edge of F is incident to a vertex of degree s, or more.
Suppose this were not the case. Let e be an edpe incident to vertices of degree
less than s, and consider a good coloring of F—e It must happen that § U
(1,=1)S,=(F—elp and §,_U(,—1}5,=(F—e)y. This implies that each edge in
{F—e)y is incident to or part of any collection of 1, disjoint stars in {(F—e}z and
each edge in (F—e)y is incident to or part of any collection of £ disjoint stars in
(F—¢)g Since A(Fi=k, the number of edges in a star together with edges
incident to the star is at most k%, Thus there are at most k71, edges in (F—elg
and at most k7t, edges in (F—e)y implying that |E(F—e)|=k*(t,+1;). This
contradicts |E(F)|=k"r*+ 1, so that each edge of F is incident to a vertex of
depree s, or more,

MNext we show that there exists an edge of F whose end vertices are both of
degree less than s, Suppose this were not the case. Then by removing an edge ¢
with end vertices different from v. F —e would contain at least 1%+ 1 disjoint stars,
* of them of degree 5, or more, since as in the previous discussion * disjoint
stars can account for at most k*1® edges, But div)=¢,+s,—1 in F—e and F—e
contains at least t*+ 1 disjoint stars. % of them of degree s, or more, so that
F—e—(5, U5, 5, Ut:5,). a contradiction. Hence there exists an edge fe E(F)
whose end vertices are of degree less than s,.

Give F—f a good coloring. Then S, U(r,—1)8, =(F—f)z. But each edge of F is
incident to a vertex of degree s, or more and |E(F— f)|=k%t* + 1 s0 that F—¢ has
at least 17+ 1 disjoint stars with at least 1* of them of degree s, or more. This
together with §, =(F—f), implies that the coloring given F—{ is not good. a
contradiction. Hence the original supposition |E(F)[=k*t™+1 is false and the
proof is complete.

Theorem 11. Let L n and s be positive integers with | and n odd and n=1+s-1,
Then the pair (8, US,. § UkS,) is Ramsey-finite for k={n+21+s-2)"+1.

Proof. As in the proof of Theorem 10 it sufficies to show that members of
RS, U8, 5 UES,) have a bounded number of edges. We show that if Fe
M8, US,, 5, UKkS,), then

|E(F)=(k+ D{c*+e)+(n— 1Nk +2¢)
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where c=n+2k+1+s Since R(H. mS&,) is finite, we assume throughout the
proof that 1= 1.
Suppose there exists an

Fe®R(S, US,. § UKS,)

with |[E(F)|=(k+1{c¢*+e)+(n—1(k+2¢c). By Theorem 2 we have A(F)=
n+[—1.

Next we show by an argument similar to the one given in Theorem 10 that
A(Fy=c. To see this let v e V(F) such that d{v)=A(F) and suppose divi=¢+1.
Remove an edge ¢ incident to v and give F—e a good coloring. Then dgi{vi=
n+s+1lordgivi=2k+1in F—e If dglvi=n+s+1. then color e red with F—e
keeping its good coloring: Since 8, U S, = (Flg. this means that either 5, or §, isa
subgraph of (F)p disjoint from v. But S, and S, contain n+1 and s+ 1 vertices
respectively, so that dgivi=n+s+1 in F—e insures 8§, US, =(F—el; with v as
central vertex of one of the stars. This contradicts the assumption that the
coloring of F—e 15 pood. Likewise if dyl(e)=2k+[ in F—e, it follows that
5 UkS,=(F— ey, a contradiction. Hence A(Fj=c.

Let e ={w vle BE(F). If diu)=<s and d{v) =< then a good coloring for F—¢ can
be extended o a good coloring for F by coloring edge e red. Hence each edge of
F i3 incident to a vertex of degree s or more.

We next caleulate bounds on the number of vertices of F of degree n or more.
For convenience let w denote this number. Clearly w =k + 1. for otherwise color
all edges incident to anyone of these w vertices blue and all other edges of F red,
vielding a good coloring of F.

Ta caleulate sin upper bound on w, let t be maximal such that 8§, ., UtS, =F
MNote that t=k, since n =35 and

Sui1t UKS, US, eR(S, US.. 5, UKS)).

Each vertex of depree n or more must have an incident edge which is also
incident to a vertex of S, , U1S,. Since A(F)=¢, there are at most (t+1)(e*+1)
such vertices. Hence k+1=w={k+ U7+ 1).

let H={eceE(File={x,y} and maxdix).d(y)i=n}) and T=
{veH |divi=n}. Since [T|=w=(k+1){c’+ 1) and A(F)=¢ the number of edges
assumed in F implies that there exists an e E{(F)1—E(H). Give F—e a good
coloring and observe that S, =(F—¢lgNH. We wish to show that 5=
(F—elp MH. Select ve T such that dp(v)=A(F—e)gz). I div)=n+1+s then
since w=k+1, n=l+s—1, and §, US,#(F—e)p. we have §;=(F—ely NH. If
divh=n+1+s5—1, then dylzy=n+l+s—1 for each zeT. But w=k+1 and
k={n+21+%—2)"+1 implies the existence of a vertex we T such that d{u)=
n+21+5—1 or the existence of two disjoint stars in H, one of which is a red 5.
In either case we have § =(F—e)y N H. Thus under the good coloring of F—e,
we have §, =(F—ely NH and §(F—e¢)y N H with the centers of these stars in T,

Finally since |E(F)|=(k+10c*+e)+(n— DXk +2¢), |T|=(k+1Me*+1), and
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A{F)=c, there are at least (n— 17(k +2¢) edges of F—¢ which are outside of H.
But diz)=n—1 for ze ViF}—T and each edge of F is incident to a vertex of
degree s or more. Hence there exist at least k +2¢ disjoint stars of degree s or
more oulside of T. Since A{F)=¢, at least k of these disjoint stars are themselves
disjoint from the §, in (F—elp and the 5 in (F—elgz exhibited in the last
paragraph. Since all of these stars are in F—eg, it follows that §, US, =(F—e¢)g or
5, W kS, =(F — e}y, a contradiction. This final contradiction completes the proof of
the theorem.

Theorem 12, Let |, n and s be positive integers with | and n odd, n=s=2, | =2,
and n<I+s—1. Then the pair (S, US,, 5 UKS,;) is Ramsey-infinite for all non-
negative integers k.

Proof. Let ¢ be an even integer, t=6, and let G=G(n, s L) where G is the
graph constructed in the proof of Lemma 7. It is easy to see that each subgraph
G’ of G, G'eBR(S, US,, S, has diameter ¢t — 1 and besides G'—(5,, 5§ U 5,]. Set
k*=max{0, k— 1}, Then since G'—(S5, U8, 8) and G'—(8_, § US,) it follows
that G'UK*S, US, —(5, U5, S UKS,). Also for eseE(G') pive G'—e a
(5.US,, 5)-good coloring and color [ =1 edges of each star in the k5, U S, blue
and the remaining edges red. This clearly gives a (S, U S, §, UkS,)-pood coloring
of (G'—e)Uk*S, US,. Thus, since t is any even integer (1=6) it follows that
(5, U8, 5 Wks,) is Ramsey-infinite, completing the proof.

Let {H}", and {G,}}-, be families of connected graphs with (H;,, G,) Ramsey-
infinite for some i’ and j'. It seems reasonable to expect (1™, H. L}, G;) to be
Ramsey-infinite. Theorem 11 together with Theorem 5 shows that this is not the
case. In particular, in Theorem 11 let 5 be even and | odd {{=3). Then by
Theorem 5, (8,, 5)) is Ramsey-infinite but (5, US,, 5 UkS,) is Ramsev-finite for
k=(n+21+5—2)+1. This example is yet another indication that it is difficult to
determine whether a pair of graphs is Ramsey-finite or Ramsey-infinite,

Qur results are complete when G and H are star-forests with no single edge
stars. In fact we have shown for such G and H that (G, H) is Ramsey-finite if and
only if both G and H are single stars with an odd number of edges (Theorems 4
5, 9 and Corollary 3). Further we have shown that when G and H are star-forests
with no single-edge stars and with (G, H) Ramsey-finite, then (G U kS, HU5,)
is also Ramsey-finite (Theorem 10). We have failed 10 determine whether or not
(G UES,, HUS,) is Ramsey-finite or infinite for arbitrary star-forests G and H,
although it can be shown to be Ramsey-infinite for large classes of star-forests.
The special case when the pair is (5, US,, S UKS,), n=s n and | odd, k large, is
completely settled in Theorems 11 and 12. In particular, since (5, U5, 5;) is
Ramsey-infinite for n=35=2 and 1=2, it would be of interest to find the |argest
integer ky such that (5, U85, 5 Uk,S;) is Ramsey-finite, n and | odd, n=1+5-1
(see Theorem 11). This leaves the following questions. For what star-forests G and
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H and what positive integers k and ¢ is (GUkS,, HUtS,) Ramsey-finite? In
particular, if (G, H) is Ramsey-finite, is (G U kS, HU8,) Ramsey-finite?
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