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Some Applications of Ramsey’s Theorem to
Additive Number Theory

P. ErRDOS

About 50 years ago, Sidon called a sequence of integers A ={a;<a;<-+‘} a B
sequence if the number of representations of i as the sum of r or fewer a's is at most k and
for some n is exactly k. In particular he was interested in B '2”, or, for short, B sequences.
For a B; sequence the sums a, +a; are all distinct. In 1933 Sidon asked me to find a B,
sequence for which a, increases as slowly as possible. [ observed that the greedy algorithm
immediately gives that there is a B; sequence for which

a, <en® (1)
holds for every . I also proved that for every B; sequence

. >
limsup a,/n" =00, (2)
o

Turdn and I [3] showed that there is a B> sequence for which

lim inf a,/n" < o0, (3)
s

There is a big gap between (1) and (2). It seemed likely that there is a B, sequence for
which

e

Gy <= H 4)

holds for every 1 == ngle ), but the proof or disproof of (4} 1s nowhere in sight. Rényi and 1
proved by probabilistic methods that there isa k = k(¢ ) for which there is a BY*' sequence
satisfying (4).

First of all I wanted to show that there is a B. sequence for which a, =o(n"). Very
recently Ajtai, Komlds and Szemerédi by a deep and ingenious application of combina-
torial analysis to number theory proved the existence of such a B. sequence. But their
result falls far short of (4) and only gives

a.=n"/{logn)

A few years apo Donald Newman and [ (independently of each other) asked: Is there a
BY' sequence which is not the union of a finite number of B, sequences? We both
expected that such a BY' sequence will exist. I wanted to attack the problem by
probabilistic methods. In our proof of (4) for BY' sequences with Rényi we built our
sequence by choosing n with probability n  * and then easily proved that for suitable &
almost all such sequences satisfy (4) and have property BY . I wanted to show that almost
all of these sequences are not the union of a finite number of B, sequences. This is almost
certainly true and would be interesting for its own sake but | have not been able to prove it,
Recently I observed that our conjecture with Newman follows easily from Ramsey's
theorem. In fact | prove the following slightly stronger

Treorem 1. There is a BS sequence A so that if A=\, A, is any decomposition of
A as the union of a finite number of subsequences then at least one of the A, is again a B3
Sequence.
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Let ny<ny<-- -satisfy n;.;/n; =4; in particular we can take n, = 4’ Our BY' sequence
A will be the integers of the form n; +n;, { # f. The inequality n;.,/n; =4 implies that the
integers of this form are all distinct and in fact every integer is the sum of distinct #'s in at
most one way. Denote by f{m ) the number of solutions of m = a, + a;, Observe that if m is
the sum of four distinet a's n; +n; +n.+n, then flm) =3, if m =2n, +n.+n, or 2n,+2n,
then f{m)= 1 and for all other integers f(m) = (. Thus our A has property B5'. Now if we
decompose A into the union of finitely many sequences A, r=1,..., T, then this can be
interpreted as the colouring of the edges of a complete graph of infinitely many vertices by
T colours. (The vertices of our graph are the n, the edges the n, + n,,i.e., the elements of A,
the edges of the rth colour are the numbers in A4, ). Now by Ramsey’s theorem there isa
monochromatic complete graph, i.e. one of the A,’s contains all the numbers of the form
{n,+ny} for some infinite subsequence of the n's. In other words A, has property B ' —as
stated. Thus Theorem 1 is proved.
i

r=1

ConJeCTURE. For every k thereisa Bih sequence A so thatif A = LI
least one of the A,'s is a BY' sequence.

A, then at

THEOREM 1. Qur conjecture holds for k=3, all k=2", and all %(3),5=1,2,....

For k =3 we already proved Theorem 1'. For k =2 let A consist of the integers of the
form {n; +n;}, [ # jimod 2). Clearly A is BY'. Theorem 1' now follows from the well known
result that if the edges of an infinite complete bipartite graph are coloured by a finite
number of colours then there always is a monochromatic Ca.

If k =2% 5>1, then A consists of the integers of the form n;, + 5y, +- - - +n, ., where the
fnr=1,...,5841, form a complete set of residues imod s +1). If k= 4% then A consists
of all integers which are the sum of s distinct n's, Theorem 1' then easily follows by
Ramsey's theorem for s-tuples or for k =2* by a result of mine [2].

These methods can no doubt be applied for other values of & too, but it is doubtful if it
will work for every k. In particular [ cannot at present prove my conjecture for £ =3,

More generally 1 conjecture that for every &k and r there is a sequence A which has
property B and if we decompose A into the union of finitely many subsequences
{A,}, 1=s5= T, then at least one of them again has property B."'. We can prove this by the
simple methods used here for every r and infinitely many k.

Now we outline the proof of a set theoretic result: let ¢ =¥, Then there is a set § of real
numbers, |§|=;, so that the number of solutions of (a is an arbitrary real number)

r+y=ua, XES, yes

is at most two and if we decompose § into the union of denumerably many subsets
8= L_,]:D,=1L S, then for at least one n there is an «, for which the number of solutions of
., =x+y % veS, is two.

The proof follows almost immediately from a result of Hajnal and myself: let |4|=N;,
|B| =M, A~ B=¢, Au B rationally independent. It is clear that if ¢ > such A and B
exist. § now is the set of numbers x +y, xe A, yeB. fa=xn+x:t+y;+y, x4, veB
then the number of solutions of & = u + &, w, ¢ £ 8 is two, by the rational independence of
AU B it can never be more than two. Now put § =|_J7_, §,. This induces a decomposition
of the edges of the complete bipartite graph K (A, B), |A|=N,, |B| =¥, into countably
many classes. An old theorem of Hajnal and myself states that at least one of these classes,
say S, containsa €, which shows that there is an &, for which the number of solutions of
@&, =u+u u vesS, is two—as stated.
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Finally we state a few extremal problems. Let l=a,<---<a;=# be a finite B
sequence. Put max { = fin). Turdn and I proved

ftr:}=(l+ﬂf1}in5
and we conjecture that
flm)y=n*+0(1), (5)

(5) if true is probably very deep. I often offered $500 for a proof or disproof,

Let u;<-- - <u, be any set of n integers. Denote by H, the largest r for which there
always is a subsequence 1, < - - - < u;,, r = H,, for which the sums of any two are distinct. |
conjectured that

H,=(1+o(1)n’ (6)

Komlds, Sulyok and Szemerédi [4] in a remarkable paper proved a general theorem
which implies

H, >cnt (7)

where ¢ is an absolute constant independent of n and of the sequence U, Their method
does not seem suitable to give (6).

Let u;<- - - <u, be a sequence of integers with property BY"', H'\' is the largest integer
for which one can always select a B subsequence w, < - - <uy, | = H, (k). [t seems likely
that

lim H'¥/p%= oo, (8)

I have not been able to prove (8), though it is not impossible that even H sy ¢ holds
for some ¢ = 0. [ can only give an upper bound for H e,

THEOREM 2

&
4

H® cenli  g¥ cont (9)

The proof uses the same method as Theorem 1 and 1'. Our sequence u; <+ - <u,,
n=m" are the integers of the form

4' +4, O0=/<2m, I=f=2m+1, ieven,jodd

We observed in Theorem 1' that our sequence satisfies B5". Its terms can be represented
by the edges of a cr.:rmplete blpanite graph of m white and m black vertices. The whﬂe
vertices are the integers 4, i =10, .. —1 and the black vertices 4*, =0, . —1,
A well known theorem due to W. Bmw V. T. S6s, A. Rényi and myself [1] |mphes that
every subgraph having 1:.‘,mi = nrg:I edges contains a C,, i.e. the corresponding
subsequence cannot have property B, which proves the first inequality of (9).

To prove the second inequality of (9) let our sequence u;< '+ +<u, n=m" be the
integers of the form

[4'+4'+4%), =31, j=3r+1, k=3t+2, O=r<m. (10)

These integers have property B3, To complete our proof of (9} we show that any
subsequence of Om” terms cannot be a B sequence.
To see thislet uy, ..., s t=Cm  bea subsequence of the the integers {10}. Denote by
a(j, k) the number of indices i for which 4' +4' +4* is one of our u's. Clearly
¥ agp=t=0Cm" (11)

1a k=3
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From (12) we obtain that there are two distinct pairs {1, K1}, {/2, k2} for which there are

mf?:m (ﬂlr"t)}(r;)' {12)

From (12) we obtain that there are two distinct pairs {5, ki}. { 2. k1) for which there are
two {'s [y and {5 so that all the four numbers

4'l+4"1 +4k:, 4'| _|_4I'z_|,_4.‘L.|Il 411 +4_I'|; ,+,4k1. 4"1.{. 4’:_!.4“: {13}

are u's. The sum of the first and fourth integer in (13) equals the sum of the second and
third. Thus our subsequence is not a B sequence, which completes the proof of Theorem
2. This proof could easily be reformulated in the langoage of hypergraphs.

Perhaps a further development of this method will show that for every e =0 there is a
ko= kole) such that

HP <n®™, (14)
[ could not decide (14)—in any case I feel fairly sure that (8) is true.

Note added in proof. Our conjecture has recently been proved for every k by 1. Nesetril and
V. Radl.

REFERENCES

1. W, Brown, On graphs that do not contain'a Thomsen graph, Canad. Math, Bull. 9 (1966), 281-285; P. Erdas,
A. Renyviand W, T. 568, On a problem of graph theory, Studia Sci. Math, Hungar. 1 {1966), 215-235,

2. P. Erdts, On extremal problems of graphs and generalized graphs, Torael 1. Marh, 2 (1964), 183-190),

3. All the references o B; sequences and the probabilistic method in number theory can be found in H.
Halberstam and K. F. Roth, Sequences, Clarendon Press, Oxford (1966}, Chapters 2 and 3; A, Stohr, Geloste
und ungeldste Fragen iiber Basen der natirfichen Zahlenreihe [ und 11, J. reine angew. Mark, 194 (1955),
40-65 and 111-140,

4. J. Komids, M. Sulyok and E. Szemerédi, Lintar problems in combinatorial number theory, Acta Math. Hunp.
Acad. Sci. 26 (1973, 113-121,

(Recelved 19 Saptember 1979) Paur ErRDOs
Mathematical Institute, Hungarian Academy of Scilence,
Realtanoda utca 11-13, Budapest 5, Hungary



	page 1
	page 2
	page 3
	page 4

