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If G is a graph such that the deletion from G of the points in each closed neighborhood
results in the complete graph K. then we say that G is K, -residual. Similarly, if the remove! of
m consecufive closed neighborhoods yields K, then G is called m-K, -residual. We determine
the minimum order of the m-K, -residual graphs for all m and n. The minimum order of the
connected K, -residual graphs is found and all the extremal graphs are specified.

1. Introduction

A graph G is said to be F-residual if for every point u in G, the graph obtained
by removing the closed neighborhood of u from G is isomorphic to F. We
inductively define multiply-F-residual graphs by saying that G is m-F-residual if
the removal of the closed neighborhood of any point of G results in an
(m—1)-F-residual graph, where of course a 1-F-residual graph is simply an
F-residual graph.

We are concerned with residually-complete graphs, i.e., graphs which are -
K, -residual for some m and n. It is easy to see that there exists such a graph for
any m and n, since (m + 1)K, is clearly such a graph. Actually we show that there
exist infinitely many connected m-K,-residual graphs for any m and n.

It is natural to ask what is the minimum number of points that an m-X,-
residual graph must contain. We easily prove that this number is (m + 1)n and
that the only m-X, -residual graph with this number of points is (m+ 11K, The
same question for connected nmi-X, -residual graphs is more interesting. We are
able to show that a connected K|, -residual graph must have at least 2n + 2 points
if n# 2. Furthermore, the cartesian product K, . ; X K, is the only such graph wiih
2n+2 points for n# 2, 3,4. We complete the result by determining 2} connected
K, -residual graphs of minimal order for n=2,3, 4.

Alttough we have not obtained the minimum number of points for a connected
m-K, -residual graph, we include some canonical examples which might be
expected to have smallest order when n is large.



In general the notation follows that of [17. In particular p(G) is the number of

points in a graph G, N(u) is the neighborhood of a point u consisting of all points
adjacent to u. N*(u) is the closed neighborhood of u. Also, for any real x, the
symbol [x] denotes the ceiling of x defined as the smallest integer n= x.

2. Residually-complete graphs of minimum order

We begin this section with a simple observation which will turn out to be
extremely useful.

Remark 1. If G is F-residual, then for any point u in G, the degree d(u)=
p(G)—p(F)— 1. Hence every F-residual graph is regular, though this is generally
not true for multiply-F-residual graphs (see Example 3).

Theorem 1. Every m-K, -residual graph has at least (m+1)n points, and
(m+ DK, is the only m-K,-residual graph with (m +1)n points.

Proof. Let G be K, -residual, and u, v nonadjacent points in G. Then H, =
G- N*(u) and H,= G- N*(v) are disjoint copies of K, contained in G, so
p(G)=2n. If p(G)=2n, then G = H; U H, so all that remains to be shown is that
there are no lines between H; and H,, which is clear since G is (n — 1)-regular by
Remark 1.

Using induction on m, the rest of the theorem can easily be proved by
similar arguments.

Theorem 2. Every connected K, -residual graph has at least 2n+2 points if n# 2.

The proof of this theorem requires a few preliminary results. We begin with the
following definition.

For two points u, v in G, we say u is K, -adjacent to v if there exists a copy of
_K,, in G which contains both u and v.

Lemma 2a. Let G be a K, -residual graph with p(G)<2n+[3n], and let u, v, w be
points in G such that u is K, -adjacent to v and v is K,-adjacent to w. Ther u is
adjacent to w, in fact, u is K, -adjacent to w. -

Proof. Let H; and H, be copies of K, contained in 7 with u, ve H; and
v, we H,. Suppose u is not adjacent to w. Then we H,= G— N*{u) which is
arother copy of K, in G Clearly HNH;=0 since H,<N*(u). Thus
p(H,—H,)=p(H,NH,) and we sece that p(H,—H,)+n(H,— H, =p(H,))=n.
This shows that max{p(H, — H,), p(H, ~ H;)}= [in]. Now consider the degrees of
v and w. We have

d(v)=p(Hy)—1+pH,— H,)=n-1+p(H,— H,)



dw)=p(H;)—1+pH,—H;)=n—1+p(H,— H3).
Hence there exists a point y in G with d(y)=n—1+ [3n]. showing that
p(G)=n+(n—1+[in])+1=2n+[3n]

by Remark 1, which contradicts the hypothesis p(G)<2n - [3n]. Thus we see
that u is adjacent to w. By repeating this argument, it is clear that u is adjaceni to
every point in H,, and hence u is K, -adjacent to w.

Remark 2. If G is a K,-residual graph with p(G)<2n+ [in], then for any rwo
nondisjoint copies H; and H, of K,, contained in G, we have H; U H, =K where
s=p(H, UH,).

Proof. Choose ve H; N H,, and let u, w be any two points in H; U H,. Clearlv u
is K,-adjacent to v and v is K,-adjacent to w, so by Lemma 2a. u and w are
adjacent.

Lemma 2b. If G is a connected K,,-residual graph with p(G)<2n — [3n], then G
contains a copy of K, ;.

Proof. Since G is connected and K, -residual, by Theorem 1 we have ptG)=
2n + 1. Choose some copy of K, in G, denoted by H,, and let u be a point in H;.
Since p(G)=2n+1, we have d(u)=n and thus we can find ve N*(u)— H,. If
(H,U{v})=K,,, we are done, so assume there exists we H,— N*(v). let H,=
G — N*(v). Now H; and H, are nondisjoint copies of K, in G, so (H; UH-:=K,
where s=p(H;UH,)=n+1 since ue H,— H,.

We are now ready to prove Theorem 2. Let G be a connected K, -residual
graph. The case where n =1 is obvious since neither of the connected graphs of
order 3, P; and K, is K;-residual. Thus we assume n=3.If p(G)=2n+ [3n] we
are done since [3n]=2. If p(G)<2n+[3n], then G contains a copy of K.,
which we denote by H. Since G is connected and G—H# @, we must have
d(u)=n+1 for some point u in H, and thus

p(G)=n+(n+1)+1=2n+2

by Remark 1.

The next result determines the connected K, -residual graphs of minimum
order. It is interesting to note that for n# 3, 4 the graph is unique.

Theorem 3. If n#2, then K,,,, X K, is a connected K,,-residual graph of minimum
order, and except for n =3 and n=4, it is the only such graph. For each of the cases



Ka X Kz Ks X Kp

Fig. 1. Two examples of K, ; X K.

n=3 and n=4 there is exactly one other such graph. Finally, Cs is the only
connected K,-residual graph of minimum order.

The graphs K, X K, -and K5X K, are shown in Fig. 1 while the other smallest
connected K, -residual graphs for n=3 and 4 are given in Figs. 2 and 3.

Proof. It is easy to verify that K, ., X K, is a connected K, -residual graph for any
n. Since p(K,.1XK;)=2n+2, Theorem 2 shows that K, ;X K, has minimum
order for n# 2. Suppose n=5 and that G is a connected K, -residual graph with
p(G)=2n+2. Then p(G)<2n+[in] so G contains a copy of K,,;, which we
denote by L={(xy, ..., X,.1). Since d(x;)=n+1, it follows that N*(x;)— L ={y,}.
Also G=Jr; N*(x;) since otherwise we would have L = G—N*(u) for some
point u in G. This shows that G—L =(y,,..., y,.+;) and since p(G—L)=n+1
we find that the y,’s are distinct. Moreover, for i# j we see that y,, y,€ G— N*(x,)
for any k#1i,j and hence y, and y; are adjacent, showing that G—L=K,,,.
Clearly G=K,,; XK.
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Fig. 2. Stegs in the construction of the other smalles: connected K;-residuai graph.
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Fig. 3. The other smallest connected K,-residual graph.

We now prove the remainder of the theorem involving the small cases n <4.
For n=1,K,x K,=C, is the only regular connected graph of degree 2 on 4
points, and similarly for n =2, Cs is the only regular connected graph of degree 2
on 5 points.

For n=3, suppose G is a connected Kj-residual graph with p(G)=8. If G
contains a copy of K,, then the same proof as for n=5 will show that G=
K, X K,. Thus we may assume that G does not contain a copy of K,. Let

V(G) = {ll, U1, Uz, U3, Uy, Wy, Yv2a W3}

where N(u)={v, v,, v5, v,} and (W)=(w,, w,, w;)=K, (see Fig. 2a). Since
K,#G we see that W& N(v,) for any i, and for the same reason N(w;)N
N(u)# N(w;) N N(u) if i# j. Thus for each pair of distinct i and j we have

p(N(w;) NN(u) N N(w;)) = 1.

By symmetry we may assume that N(w;)={v;, v,, Wy, ws} and N(w,)=
{v1, v4, Wy, ws}. These imply (u, v5, v,)=Kj; and (u, v,, v5)=Kj;. In particular v, is
adjacent to v, and v, is adjacent to v; (see Fig. 2b). Since W& N(v,), v, is not
adjacent to w;, hence either v, or v, is adjacent to w,, and by symmetry we may
assume v, is adjacent to w;. Thus N(v,) ={u, v;, w,, w3} so (v;, v, w;)=K; and in
particular v, is adjacent to v, (see Fig. 2¢). Finaliy, since N(v;) = {u, v,, wy, w.} we
have (v,, v, w3)=K; s0 v is adjacent to w;. Now every point in G has degree 4,
so the construction is finished (see Fig. 2d).

For n=4, suppose (G is a connected K,-residual graph with p(G)=10. If G
contains a copy of Ks, then as before one finds G=K;xK,. If G does not
contain a copy of K, then similar arguments as for the case n = 3 will construct the
graph shown in Fig. 3.

3. Multiply-X, -residual graphs

In this section we first nete that for any m and »n there are infinitely many
connected m-K, -residual graphs, then exhibit some canonical examples, and close
with some conjectures on the minimum number of points in a connected m-K, -
residual graph.



Remark 3. For any choice of positive integers m and n, there are infinitely many
connected m-K,-residual graphs.

Proof. Observe that if G, and G, are disjoint m-K, -residual graphs, then their
join G,+G, (as in [1, p. 21]) is a connected m-K,-residual graph. Since
(m+ 1)K, is an m-K, -residual graph. we can repeatedly use the above technique
to construct an infinite collection of graphs.

It is easy to see that G is K, -residual if and only if Gis n-regular and contains
no triangles. This observation of R.W. Robinson verifies Remark 3 at once for
m=1.

Example 1. The join (m+1)K, +(m+1)K, is a connected m-K,-residual graph
with 2n(m + 1) points.

Example 2. The cartesian product K, _,, XK, ., is a connected m-K,-residual
graph with (n+m)(m + 1) points. This is easily proved by induction on m since we
have already noted that K, ., XK, is K, -residual.

Notice that for n=m, the graphs of Examples 1 and 2 have the same order
although they are not isomorphic unless n=1.

Example 3. For each m =1, the graph G,, defined by

V((;m)::{um es ey um+17 Ula e g vma WO’ (R Wm—l}
and
E(Gm) ={Ul; 1, UW, UL 1, U;W;, UiW;_4

can be shown to be a connected m-K,-residual graph with 3m +2 points. The
graphs G,, for m=1,2, 3,4 are shown in Fig. 4, as well as another connected 3-
K,-residual with 11 points. Notice that the graph G, is not regular unless m = 1.

4. Unsolved problems and conjectures

We have conly determined the minimum oxder of the connected K, -residual
graphs. The question is open for m-K, -residual graphs when m =2.

Conjecture 1. If n#2, then every connected m-K,-residual graph has at leas:
min{2n(m + 1), (n+m)(m + 1)} points.

Every connected m-K,-residual graph has at least 3m +2 points.

Note that this guantity agrees with that of Theorem 2 for m =1 when n# 2, and
with Theorem 3 when n=2.

We believe that there will be an analogous uniqueness result for m=2.
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Fig. 4. Multiply-K,-residual graphs of small order.

Conjecture 2. For n large, there is a unique smallest connected m-K,-residual
graph.

The link of a point u of a graph G, written L(u), is the subgraph (N(u))
induced by the neighborhood of u. A graph G has constanr link if for all
u, ve V(G), L(u)=L(v). Clearly G is K, -residual if and only if its complement G
has constant link K,.
~ In general, then, G is an F-residual graph if and only if G has constant link F
In later communications we propose to investigate F-residual graphs for F= K.
in order to determine the minimum order among such graphs, and to specify- the
corresponding extremal graphs.
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