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RANDOM GRAPH ISOMORPHISM®*

LASZLO BABAIY, PAUL ERDOSE anp STANLEY M. SELKOWS

Abstracl. A 5tru15hiforwnrd linedr time canonical labeling algorithm s shown to-apply to atmost all
graphs {Le.all but o2 of the 2 24 graphson i verticesk Hence, for almost all graphs X, any p_'raph Y can be
edsily tested for isomorphism to X by an extremely naive linear time adgorithm, This result is based on the

following: Inalmost ali graphs on i vertices, the fargest ™ '° degrees are distinct, In fact, they are pairwise at
least n™"™* wpart,
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1. A straightforward algorithm. The problem of testing graphs for isomorphism
belongs to those combinatorial search problems for which no polynomial-time
alporithm is available as yet. It is; however, striking, that even the most trivial
isomorphism testing algorithms have a good performance if tested on randomly
generated graphs. The aim of the present note 15 to give some theoretical background
for this.

By a canonical labeling algorithm of the class 3 of graphs we mean an algorithm
which assigns the numbers 1, - - -, n to the vertices of each graph in 3 having n vertices,
in such a way that two graphs in & are isomorphic (if and) only if the obtained labeled
graphs coincide. (We assume that & is closed under isomorphisms.) Clearly, given a
canonical labeling algorithm of 3, and an algorithm deciding whether a given graph
belongs to I or not, we also have an alporithm, deciding whether X = ¥ for any two
graphs X, ¥ provided X e & Namely, if Y& & then X # Y; and if ¥ = then we have
to check whether X and Y eoincide after canonical labeling.

We deseribe a class % of graphs (closed under isomorphisms) and a canonical
labeling algorithm of #. Deciding whether X e and subsequently, canonically
labeling X will require linear fime (i.e. (1"}, where n is the number of vertices) on a
random access machine which operates in one step on binary words of length O(log n).
We shall prove, that 3 contains almest all graphs on n vertices (i.e. all but 0{2'?") of the
graphs on a fixed vertex set of cardinality n). In particular, we prove

Tueorem 1.1. There is an algorithm whick, for almost all graphs X, tesis anv graph
Y for isomorphism to X within linear time.

The algorithm is as follows:

Input: & graph X having n vertices. {The graph is represented by its adjacency
matrix.)

1. Compute r=[3 log n/log 2],

2. Compute the degree of each vertex of X.

3, Qrder the vertices by depgree; call them ¢(1),: - -, vin), Denote by dif} the

degree of vii): d{l)=d(2)=---=dln}.
I dli)=dli+ 1) forsome i, 1=i=r—1, set X£ X, end. Otherwise

5. Compute

flolin=% ali,ji2'"  (i=r+1,--+,n)
el
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(the “code of v(f) with respect to o (1), -+ <, edr)"), where a(f, /) =1 if ¢{i) and
v(f)are adjacent and a(f, j) = 0 otherwise.

6. Order the vertices vir+1),-- -, vin) according to their f-value: wir+1),

e win) where fiwlr+ 1= =flwin)).

7. U fiw(i))=fiwli+ 1)) for some i, r+1=i=n—1, set X£ X, end. Otherwise

8. Label ©(f) by i for i=1,-+-,r. and w(i) by i for i=r+1,.--,n This

labeling will be called canonical. Set X =3 End.

In other words, the first r labels will be assigned to the vertices with largest degrees,
in decreasing order of the degree, If this is not unique, then X g . The rest of the labels
will be assigned to the remaining n = r vertices in decreasing order of their codes with
respect to the first r vertices, as defined in step 5. Again, if two veértices get the same code
then X £t

Obviously, this algorithm defines & canonical labeling, indeed, and 3 is closed
under isomorphisms. The running time of the algorithm is O(n”), as readily verified.
Our principal result is the lollowing:

THEoREM 1.2 The probability that a random graph on n vertices belongs to the class
X, specified by our canonical labeling algorithm, is greater than 1~ I/n | for sufficiently
large n).

This clearly implies Theorem 1.1.

At this point we have to stress that our algorithm s not intended for practical use:
more involved bat still very natural heunstic algorithms are much better. Our purpose is
to show that even such an extremely naive, fast algorithm solves the problem for almostall
grapls:

The referee and the first named author share the responsibility for almost two vears
delay in publishing this paper, Since 1977, the paper has been circulated as a preprint
essentially in its present form (except for the introduction and b simplification of the
proof in § 4, sugpested by the referee).

In the preprint we formulated the following two problems:

(i) Find a fast canonical labeling algorithm with exponentially small probability of
rejection.

(it} Find a canonical labeling algorithm of all graphs, with polynomial expected

running time,

The preprint seems to have inspired further work instantaneously. Both problems
have been solved shortly after submission of this paper. R. Lipton [8] gives a canonical
labeling algorithm with O(n" log n) running time and exponentially small probability
of rejection (¢ ", c>1), R, M. Karp [7] improves this, giving an O(n” logn)
algorithm, with O(n**2" ") probability of rejection. Babai and Kubera [1] prove
that the standard vertex classification algorithm gives a canonical labeling in O(n”)
time with ¢ " probability of rejection. In addition, it is proved in [1] that the rejected
graphs can be handled such as to obtain a canonical labeling algorithm of all
mp?s with linear expected time, i.e. the average running time over the 2'*' graphs is
O(n*).

This short survey tends to convince us that, despite of the long delay, the present
note may merit some attention. Apart from [ 1], it still appears to be the only example of
 linear time canonization of almost all graphs. [1] definitely outscores our results, but
the simplicity of our algorithm can hardly be improved on, and it may be worth noting
that still, such an algorithm canonizes almost all graphs,

The performance of our algorithm relies on our results on the degree sequence of a
random graph. This aspect of the paper, which extends the idea of [4], may have interest
on its own. The results of § 3 are stronger than what would be necessary to prove the
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main theorem. Recently, B. Bollabds [ 2] has obtained finer and more detailed results on
this subject.
* More about random graphs ean be found in Erdds-Spencer [3].
Concerning the probabilistic analysis of some hard combinatorial problems we
refer to Karp [6].

2, Preliminaries. Throughout this paper, we shall use the following notation:

(1) Plm = 5 (’")
p=d41 el
Clearly,
(2) Pim, Iy=Pim—1, )+ P(m~1,1-1).
We shall refer to the following well-known gsymptotic formula:
(3 ( m ]=( m )g—Zri-'rer.ll,:l
S22t [mif2]

where r=r"/m>+t'm® (I, Feller [5, Chap. VII/2]). The O notation always refers
to absolute constants (not depending on any of our parameters). Of course, m/2+¢
should be an integer. This means that 1 is either an integer or a half-integer, depending
on the parity of m. Similar restrictions on the possible values of parameters are
upderstood throughout without explicit mention.

Random variables are denoted by block letters. A random graph X on the vertex
set V. ={1, -+, n}assumes as its values each graph on V' with probability 2 %',

We start with some elementary computation with binomial coefficients.

Prorosrrion 2.1 If l=m/24+r (0<r<m/2) and f>r({log 2}'2}5?. then

(ITIF){Z"{TL
Proof.

() =nbeestmmt-pri - < (i) <(ta)
=(1=2t/m) <expl—21f/m)<exp(—rlog2)=2" O

CoroLLary 2.2. If l=m/2+¢ (0=t=m/2) then

m

P(m, m('f) <

Proof. Let g =[m log 2/(2)]+-1. Then, by Proposition 2.1,
m m\ _ mfm
; ; 24g/a+y<2g(T) = ) 0
Pim “{:(i’) (g+g/2+af }{Zg(F = AW

On the other hand, a lower bound of the same order of magnitude also holds. To
this end, we néed another simple estimate:
Prorosimion 2.3, If l=m/24+t (0<r<m/{2) and 0= f<t, then

()=, Jo—satrm.

e
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Proof.

(T)/(ff) =He=di e '{m"f+15m:-n s (== (m =0

I-n! B
=($:2+;) = (1= 20/m)" = 1~ dsf/m. -
CoroLLARY 2.4, If I=m/2+:¢ {sz-:::c:mg’:iﬂ}, then

ﬂ"l

re ()2

Proof. For-any natural number f, obviously

m [ m m
P /(7)1 2 )/ (7):
By Proposition 2.3, the right side exceeds fi1—4(t+f)f/m). Set f=[m/91]+ 1. So,
f=m/9t and f<<m/9t+1<1/27; hence our quantity exceeds
1:1( 428 4:28 i);,...’_’.*_ 0
9\" 927 27 ml!” 23¢
3 The largest degrees are distinct. Let X be a random graph on the vertex set
{1, +--,n} Letd{x)denote the degree of the vertex v, Let us fix a natural number d, and

set 7, = D if d(x)=d, z, =1 otherwise. Letz=Y__, 2.
We are interested in the behavior of the expected value Efz) (depending on the

choice of d).
Lesma 3. 1. Letm=n~-1,d=m/2+ where

t=ty+w, (m/log m)' e,

where
to={3m logm)""* —H2m/log m) 2 log-log m,

and
—log miN2 <w, =m®7

If wp =<0 then

Elz)=cye Ao

if w =0 then ;

Elz)<c:expl—2.8w, — 2wlog ).

If w/log m —r—sfv"i (m —00) where O < ¢ <1 (¢ i fived) then
E{zi=m

wi(2—s il

Proaf. Clearly, forany x(1=x=n),
Elz)=nE(z,)=n2"""Pln—1,d)
~(1+0(1))m2 “Pim. d).
Now we apply Corollaries 2.2 and 2.4 to obtain #, 0= #<1 such that

I myin. 1+oll) peitlieang, o o
1+223(d) t q1+32&2"mf Mrlamm) )
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{by (3)). Hence,
log E(z}=0(1)1+3 log m/2 —log -2 /m.
For t =ty the right side is bounded; heénce in the peneral case,
log Efz) = O(1) —log (¢/ta) —2(£> — 13)/ m
=0(1}—logll +ay v"i;’lng it r—zw.,,hfi —2 log log m/4 log m +wmflng m).

Now our assertions can be readily checked. [

CoroLlLary 3.2, With the notation of Lemma 3.1, the probability that x has a verrex
of degree > to+wy(mflogm)'® is less than ¢z exp (—2.8ww — 2w m/10g m)(w,, = 0),

In order to obtain the counterpart of Corollary 3.2 for w,, <0, we have to compute
the variance of z. v )

LemMA 3.3. Letm=n—1 and d =m/2+t, where 2¥m=1<m/30. Then

Varlz)/E(z)’ < 1/E(2)+ 671" /m’.
Proof, Clearly,

Varz=E(z')~ E(z)’ = mA + (:) B,
where
A=E(z)(1-E(z,y<E(z,) (hence nA <E(z)),
B:Etz;:.,l—Elizrj: fforany 1=x<y=n).
Clearly, forx #y
Elz.z,)=Prob{d{x)>d and diy)=d)= (P, +Pa)/2,
where Py, Ps are conditional probabilities:
Py=Probidix)=d and d(y) }dlx and y are adjacent)
=27 Pin =2, 4 -1}
P, =Probidix)=d and di y) = d|x and y are not adjacent)
=27""P(n—2,d)".
It follows (using (2}), that
B=2""2P(n—2,d— 1} +2P(n-2,d* -Pln —1,d))
27 P(n—2,d—1)-P(n-2,d))

:2-1”3(";2)2.

Varz 1
Elz)  E@

Hence

( )EKF{:F *-i!z—ﬁ%(n;z):j."{n— 1, d)’
2

1 1y/m : 1 Arm?
E{z}l+3((d)’;mm' ‘”) {EE+§(E)
< 1/E(2)+(23tfm)* /8 <1/E(z) +671/m"°.

(We have used here the inequality (" =<3 5" which trivially holds for o =n/2; and
subsequently Corollary 2.4.) [
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CoroLLary 3.4, If the sequence d, is so chosen thar (setting d =d,) we obtain
El{z)—= a0 (n — 00}, then
Prob (z==Ef{z)/2)-={).
Lsing the notation of Lemma 3.1, for —log my2< ary, =0 we have
Prob (z<E(z)/2) < c3 e,
If wflog m —rs,n"\E where 0=<e <1 (& is fixed), then
Prob (z<E(z)]2) < gqm =0t
Proof. By Chebyshev's inequality,
Prob (z<Ei(z)/2)=4 Var z/E{z)".
This implies our second statement, by Lemmas 3.3 and 3.1, Namely,
t* < log m+ 2w am/log m = O(m log m),
hence
1/E@)+6T7r /m><e "=+ Ollog m/m)

and logm/m =exp (loglog m —logm)=plexp—1.4]log mfv"'i]} =o(e”'"*"=). The

third statement follows similarly.

Far the first statement, by Lemma 3.3 and Chebyshev's inequality we only have to
prove that if E(z) -+ 20 then ¢/m — 0. This is obvious from Lemma 3.1. [

LEMMA 3.5, Let D=2k -::w";, \"E,-"Z <g<1 and t=eln log n}m+ Then the prob-
ability of the epent that X has two vertices x, v of degrees exceeding n/2+1 such that
ld(x)—diy)| <k is

p=uolkn "% (m—=00),

Proof. Let n/2 < a = b. The probability thatdix}=a and dly =& (x # y) is clearly

= T i I _mid
21 (5 G ey V)| ol W
Hence, the probability that g =dix)=div)=d(x )+ k is at most
]
ima \$—17 "

By Proposition 2.1, the sum here is less than

i —J-Iln'fz (: :f)’

Setting @ =[n/2 +t], we abtain (by (3)}

n E ~411fn %
pq(z)kfe Jmn)(1+e(1))

_V2(1+0(1))
= i

= kns.fz—zu!}.“ﬂg ﬂ]”:

nk(nlogn)

(for n not too small). O
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Now we are in the position to prove

Tueorem 3.6. Let dy =dz = - - =d, denote the degrees of the vertices of the random
graph X. Let k = [n"" ] and I =[n""*]. Forn sufficiently large, the event that d;, —d, = k
forevery i, f sarfsfyfn;: L=< j=/has probability exceeding 1 —n """,

Proof. Set £ =15, te=1-e, t=a(nlogn)''*/¥2, d=[n/2+1t]. Then, with the
notation of Lemma 3.1, 1 = tp +w, i m/log m )''* where Wy lOg m = —&/+2, whence, by
3.1,

el2—p+alilh

Elz)=m

e(2—&)>0.157, hence E@)/2>n"""=! for sufficiently large n. By Cor. 3.4, thig
implies that X has at least E(z)/2 vertices of degree >d with probability
=1—cam " =1 ™" Finally, by Lemma 3.5, the difference between the
degrees of any two of these vertices is at least k with probability =1 —kn*>" >
1—p™Ms 0t gy 5% Henee the probability that X does not satisfy the
theorem is less than '

—0.155 —(L 15015

-D1%
" +1 o O

Remark. The particular corollary to Theorem 3.6, that the vertex having maximum
degree is unique in almost all graphs, appears in Erdés—Wilson [4].

4. Uniqueness of the codes of the vertices. Asin § 3, let X be a random graph
having V ={1,.-., n} for its vertex set. Let dy=d:= - -=d, denote the degree
sequence of X. Set r =[3 log n/log 2], and let € denote the event thatd, =d,.,+ 3 for
i=1,+++,r+2. We write C for the negation of C. By Theorem 3.6,

Prob (C)<=n ™",

For i # j, let Cli, f)denote the event that in the graph X(j, /) obtained from X by deleting
i and j, the largest r degrees are distinct. Clearly, C implies C{i, ) forall i, jil=i= =
n). Let: Ay, f) denote the event that either CI4, ) fails or § and j have identical codes
with respect to the vertices having the largest r degrees in XI5, /).

The probability that X is rejected by our algorithm is less than

Prob (C)+Prob (C and the graph X has two vertices

with identical codes)

= Prob (C)+ ¥ Prob (C and Ali, /)

5 |

=Prob (C)+ ¥ Prob (C(i, ) and A(i, )

i

b=

=Prob (C)+ (;)2"’{ n o +G[%) <n V7,
This proves Theorem 1.2. [
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