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RANDOM GRAPH ISOMORPHISM*

LÁSZLÓ BABAli, PAUL ERDŐS* AND STANLEY M. SELKOW§

Abstract. A straightforward linear time canonical labeling algorithm is shown to apply to almost all
graphs (i .e. all but o(2 (2 >) of the 2 t 1 graphs on n vertices) . Hence, for almost all graphs X, any graph Y can be
easily tested for isomorphism to X by an extremely naive linear time algorithm . This result is based on the
following : In almost all graphs on n vertices, the largest n 0 .15 degrees are distinct . In fact, they are pairwise at
least n0 .03 apart .
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1 . A straightforward algorithm. The problem of testing graphs for isomorphism
belongs to those combinatorial search problems for which no polynomial-time
algorithm is available as yet . It is, however, striking, that even the most trivial
isomorphism testing algorithms have a good performance if tested on randomly
generated graphs. The aim of the present note is to give some theoretical background
for this .

By a canonical labeling algorithm of the class X of graphs we mean an algorithm
which assigns the numbers 1, • • • , n to the vertices of each graph in X, having n vertices,
in such a way that two graphs in X are isomorphic (if and) only if the obtained labeled
graphs coincide . (We assume that X is closed under isomorphisms .) Clearly, given a
canonical labeling algorithm of X, and an algorithm deciding whether a given graph
belongs to .71 or not, we also have an algorithm, deciding whether X - Y for any two
graphs X, Y provided X e X. Namely, if YV X then X ~?= Y ; and if Y E X then we have
to check whether X and Y coincide after canonical labeling .

We describe a class .J1 of graphs (closed under isomorphisms) and a canonical
labeling algorithm of X. Deciding whether X E X and subsequently, canonically
labeling X will require linear time (i .e . 0(n 2 ), where n is the number of vertices) on a
random access machine which operates in one step on binary words of length 0(log n) .
We shall prove, that .X contains almost all graphs on n vertices (i .e . all but o (2 2)) of the
graphs on a fixed vertex set of cardinality n) . In particular, we prove

THEOREM 1 .1 . There is an algorithm which, for almost all graphs X, tests any graph
Y for isomorphism to X within linear time .

The algorithm is as follows :
Input: a graph X having n vertices . (The graph is represented by its adjacency

matrix .)
1 . Compute r = [3 log n/log 2] .
2 . Compute the degree of each vertex of X .
3 . Qrder the vertices by degree ; call them v(1),

	

v(n). Denote by d(i) the
degree of v(i) :d(1)--d(2)? • • • --- d (n) .

4 . If d(i) = d(i + 1) for some i, 1 < i < r-1, set X X, end. Otherwise
5 . Compute

f(v(i))= Y- a (i, j)2'

	

(i=r+1, • • • , n)
i = 1
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(the "code of v(i) with respect to v(1), • • • , v(r)"), where a(i, j) = 1 if v(i) and
v(j) are adjacent and a (i, j) = 0 otherwise .

6 . Order the vertices v (r + 1),

	

v (n) according to their f-value: w (r + 1),
•

	

• • , w(n) where f(w(r+1))>- -- f(w (n)) .
7 . If f (w (i)) = f (w (i + 1)) for some i, r + l -- i -- n -1, set X,,, X, end. Otherwise
8. Label v(i) by i for

	

and w(i) by i for i = r+ 1, • • -,n . This
labeling will be called canonical . Set X E,7(. End .

In other words, the first r labels will be assigned to the vertices with largest degrees,
in decreasing order of the degree. If this is not unique, then Xe X The rest of the labels
will be assigned to the remaining n -r vertices in decreasing order of their codes with
respect to the first r vertices, as defined in step 5 . Again, if two vertices get the same code
then X)9 .7C.

Obviously, this algorithm defines a canonical labeling, indeed, and X is closed
under isomorphisms . The running time of the algorithm is O(n 2 ), as readily verified .
Our principal result is the following :

THEOREM 1.2 . The probability that a random graph on n vertices belongs to the class
,7C, specified by our canonical labeling algorithm, is greater than 1--~l/n (for sufficiently
large n) .

This clearly implies Theorem 1 .1 .
At this point we have to stress that our algorithm is not intended for practical use :

more involved but still very natural heuristic algorithms are much better . Our purpose is
to show that even such an extremely naive, fast algorithm solves the problem for almost all
graphs .

The referee and the first named author share the responsibility for almost two years
delay in publishing this paper . Since 1977, the paper has been circulated as a preprint
essentially in its present form (except for the introduction and a simplification of the
proof in § 4, suggested by the referee) .

In the preprint we formulated the following two problems :
(i) Find a fast canonical labeling algorithm with exponentially small probability of

rejection .
(ü) Find a canonical labeling algorithm of all graphs, with polynomial expected

running time .
The preprint seems to have inspired further work instantaneously . Both problems

have been solved shortly after submission of this paper . R. Lipton [8] gives a canonical
labeling algorithm with O(n 6 log n) running time and exponentially small probability
of rejection (c -", c > 1) . R. M. Karp [7] improves this, giving an O(n 2 log n)
algorithm, with O(n3/22-"/2) probability of rejection . Babai and Kucera [1] prove
that the standard vertex classification algorithm gives a canonical labeling in 0(n2 )

time with c - " probability of rejection. In addition, it is proved in [1] that the rejected
graphs can be handled such as to obtain a canonical labeling algorithm of all
graphs with linear expected time, i .e . the average running time over the 2 (2) graphs is
0(n 2) .

This short survey tends to convince us that, despite of the long delay, the present
note may merit some attention . Apart from [1], it still appears to be the only example of
a linear time canonization of almost all graphs . [1] definitely outscores our results, but
the simplicity of our algorithm can hardly be improved on, and it may be worth noting
that still, such an algorithm canonizes almost all graphs .

The performance of our algorithm relies on our results on the degree sequence of a
random graph . This aspect of the paper, which extends the idea of [4], may have interest
on its own. The results of § 3 are stronger than what would be necessary to prove the
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main theorem. Recently, B . Bollobás [2] has obtained finer and more detailed results on
this subject .

More about random graphs can be found in Erdős-Spencer [3] .
Concerning the probabilistic analysis of some hard combinatorial problems we

refer to Karp [6] .

2 . Preliminaries . Throughout this paper, we shall use the following notation :

(1)

	

P(m, l) =' ~ ( ml=l+1 S

Clearly,

(2)

	

P(m, l)=P(m-1, l)+P(m-1, l-1) .

We shall refer to the following well-known asymptotic formula :

(3)

	

l e -2t2 /m+o(T)
(m/m2+ t = ([m/2]l

where T = t2/m 2 +t4m 3 (cf. Feller [5, Chap . VII/2]) . The O notation always refers
to absolute constants (not depending on any of our parameters) . Of course, m/2+t
should be an integer . This means that t is either an integer or a half-integer, depending
on the parity of m . Similar restrictions on the possible values of parameters are
understood throughout without explicit mention .

Random variables are denoted by block letters . A random graph X on the vertex
set V ={1,

	

n} assumes as its values each graph on V with probability 2 -(2) .
We start with some elementary computation with binomial coefficients .
PROPOSITION 2.1. If 1=m/2+t (0 < t < m/2) and f > r(log 2/2)m, then

Proof.
-

	

M-1

\l+fl/(I) -(m-I) .

	

- I -f+1)/(l+f) . . . (l+1)<(1+lt ) f<(m/21f

_ (1-2t/m)r < exp(-2tf/m) < exp(-r log 2) = 2 - ' .

COROLLARY 2 .2 . If 1=m/2+t (0 < t < m/2) then

P(m, I)l (I
) < m

.

Proof. Let g = [m log 2/(2t)] + 1 . Then, by Proposition 2 .1,

P(m,l)<( f I .(b'+g/2+g/4+ . . .)<2g(l)</t(I)
.

	

11

On the other hand, a lower bound of the same order of magnitude also holds . To
this end, we need another simple estimate :

PROPOSITION 2.3 . If l=m/2+t (0 < t < m/2) and 0 < f < t, then

( m\
>( m )(1-4tflm) .

I )

	

l-f
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Proof.

-(M -'+f)

	

(m-l+1)/l(l-1)

	

(l-f+1)> ((m-1)/1)flJ

	

l-f
_(m/2 tlf
-\m/2+t1 >(1-2t/m)2f >1-4tf/m.

COROLLARY 2.4. If l = m/2 + t (2,/m < t < m/30), then

P(m, 1)/ M
> m

l

	

23t'

Proof. For any natural number f, obviously

P(m'1)l\,1/>f(1+f)l\1/

By Proposition 2.3, the right side exceeds f(1-4(t+f)f/m). Set f=[m/9t]+1 . So,
f > m/9t and f < m/9t + 1 < t/27 ; hence our quantity exceeds

m
1

r

	

4 .28 4 . 28 tl

	

m
9t \

	

9 .27 27 m/ > 23t *

3. The largest degrees are distinct . Let X be a random graph on the vertex set
{1, • • • , n}. Let d(x) denote the degree of the vertex x . Let us fix a natural number d, and
set zX = 0 if d(x) < d, z x = 1 otherwise . Let z = Y-X=1 z x.

We are interested in the behavior of the expected value E(z) (depending on the
choice of d) .

LEMMA 3 .1 . Let m = n -1, d = m/2 + t where

t= to +(o„,(m/log m) 1/2

where

to= (zm log m) 1/2 -8(2m/log m) 1/2 log log m,

and

If (om < 0 then

if wm > 0 then

E(z) < c2 exp(-2.8com -2w2 /log m) .

If co-/log m > -e/,/2 (m -* oo) where O < e < 1 (s is fixed) then

E(z) > m E«-F+oa»

Proof. Clearly, for any x(1--x n),

E(z) = nE(z x ) = n2''P(n -1, d)

= (1 + o (1))m 2 --P(m, d) .

Now we apply Corollaries 2 .2 and 2 .4 to obtain 9, 0 < 0 < 1 such that

	 1	
(dm) m

1+O(1)

	

-2, 2/m

	

1/2P(m, d)
1+229 \dl t 1+228 2

-m e

	

/(t( 1 ,2rm) )

- log m/V 2 < (,),,, < M 0 .7

E(z) >c, e -1 .aw,
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(by (3)) . Hence,
log E(z) = O(1) + 3 log m/2 -log t-2 t2/ M .

For t = to the right side is bounded ; hence in the general case,

log E(z) = O(1)-log (t/t o)-2(t z -t ó)/m
= O(1)-log(l+to_J2/log m)-2con,(V2-, 2loglog m/4 log m+(o,,,/log m) .

Now our assertions can be readily checked .
COROLLARY 3.2 . With the notation of Lemma 3.1, the probability that x has a vertex

of degree >
to +wm(m/log m) i z is less than c2 exp (-2.8(,)_ -2(om/log m)((om > 0) .

In order to obtain the counterpart of Corollary 3 .2 for co m < 0, we have to compute
the variance of z .

LEMMA 3.3 . Let m = n -1 and d = m/2 + t, where 2,/m < t < m/30 . Then
Var(z)/E(z) 2 < 1/E(z) + 67 t2/ M 2 .

Proof. Clearly,

V ar z = E (Z2) - E(Z)2 = MA +
( n)

B,

where

A = E(z,)(1-E(zx) < E(zx )

	

(hence nA < E(z)),

B =E(zxz,,)-E(z,)2

	

(for any 1--x < y <_ n) .

Clearly, for x y

E(zxz,,)=Prob(d(x)>d and d(y) >d)=(P1 +P2)/2,

where P i , P2 are conditional probabilities :

P, =Prob(d(x) > d and d(y) > d Ix and y are adjacent)
= 2-2n+4P(n -2, d -1) 2 ;

P2 = Prob(d(x) > d and d(y) > d Jx and y are not adjacent)
= 2-2n+4P (n - 2, d) 2 .

It follows (using (2)), that

B=2-2n+2(2P(n -2, d -1)2+2P(n-2, d) 2 -P(n -1, d)2 )
=2-2n+2(P(n-2, d-1)-P(n-2, d)) 2

Hence

= 2 -2 n+2
(n

2\ 2
1\

	

/ I
d

Var z

	

1

	

(nl

	

2

	

1

	

l % n-2) 2/P

	

z
E(z)2 < E(z) + \2/ B/E(z) < E(z) + 2 \ d

	

(n 1, d)

z

	

2

<E(z)+8 \ \dl/P(m'd)/ < E(z) + 8\23t1

< 1/E(z)+(23t/m) 2/8 < 1/E(z)+67 t2 /m 2 .

(We have used here the inequality (" d 2 ) < z("d1 ( n- ) which trivially holds for d > n/2 ; and
subsequently Corollary 2.4 .) 11



Proof. By Chebyshev's inequality,
Prob (z < E(z)/2) < 4 Var z/E(z)2 .

This implies our second statement, by Lemmas 3 .3 and 3 .1 . Namely,

2t<m log m +2co„m/log m = O(m log m),

hence

1/E(z)+67t2/m2<e 1.a-,„+0 (log m/m)

and log m/m = exp (log log m -log m) = o (exp (-1 .4 log m/,/2)) = o (e The
third statement follows similarly .

For the first statement, by Lemma 3 .3 and Chebyshev's inequality we only have to
prove that if E(z) -> oo then t/ m 0 . This is obvious from Lemma 3 .1 . 0

LEMMA 3.5 . Let 0 < k <,I n, J3/2<a < 1 and t = a (n log n) 1/2 . Then the prob-
ability of the event that X has two vertices x, y of degrees exceeding n/2+t such that
ld(x)-d(y)l < k is

Hence, the probability that a --d(x) < d(y) d(x)+k is at most

k 2-2n+a "I1 (n 2\ 2

s=a s-1

By Proposition 2 .1, the sum here is less than

n (n -2) 2
a-n/2 a-1

Setting a =[n/2+ t], we obtain (by (3))

(for n not too small) . 0

RANDOM GRAPH ISOMORPHISM

Prob (z< E(z)/2) < cam-E(2- F+ o (l»

p < \2/ k
e -a ` 2i "l(2 )( 1 + 0M)

,/2 (1 +0(1))
n 2k(n log n)-1/2 n-2.2

ora

< kn 3/2 2a2/(log n)1/2
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COROLLARY 3 .4. If the sequence d„ is so chosen that (setting d = d") we obtain
E(z) - oc (n oo), then

Prob (z < E(z)/2) 0 .

Using the notation of Lemma 3 . 1, for -log mJ2 < com < 0 we have

Prob (z < E(z)/2) < c 3 e 1 a

If w-/log m - e/V2 where 0 < e < 1 (s is fixed), then

p = o (kn3/2-2,2)

	

(n cc) .

Proof. Let n/2 < a -- b . The probability that d(x) = a and d(y) = b (x y) is clearly

1%%n- 2)(n -2

	

%n-2l n-2

	

z" a<2

	

\
z" +a%n 2l 2

2\\ a

	

b

	

+\a-11(b-1))/2

	

a-11
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Now we are in the position to prove
THEOREM 3 .6 . Let d, - d2 > • • • - d„ denote the degrees of the vertices of the random

graph X. Let k = [n 0 .03] and l = [n 015] For n sufficiently large, the event that d; -d; -- k
for every i, j satisfying 1 -- i < j <_ 1 has probability exceeding 1-n -o .Is

Proof. Set e =112, a =I-e, t = a (n log n) 1/2 /,/2, d = [ n/2 + t] . Then, with the
notation of Lemma 3 . 1, t= to +wm (m/log m) 1/2 where w„,/log m -é/,/2, whence, by
3.1,

E(z) > m ' (2 -E+oil»

E(2-,-)>0.157, hence E(z)/2>n ° .IS - l for sufficiently large n . By Cor. 3 .4, this
implies that X has at least E(z)/2 vertices of degree > d with probability
>1-c4m-E(2-£+o (t)) > 1 _ M-o.ISS Finally, by Lemma 3 .5, the difference between the
degrees of any two of these vertices is at least k with probability > 1-kn 3/2-2«z >
1 -n o.o3+,s-2,z > 1-n -o.tsos Hence the probability that X does not satisfy the
theorem is less than

This proves Theorem 1 .2 . 0
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