On the Small Sieve. I. Sifting by Primes

P. ERDÖS AND I. Z. RUZSA

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Realtanoda u. 13-15, Hungary H-1053

Communicated by H. Zassenhaus

Received September 29, 1978

The main object of the paper is to prove that if P is a set of primes with sum of reciprocals $\leqslant K$, then the number of natural numbers up to x, divisible by no element of P, is $\geqslant cx$, where c is a positive constant depending only on K. A lower estimate is given for c and a similar result is achieved in the case when the condition of primality is substituted by the weaker condition that any m elements of the sifting set are coprime.

1. INTRODUCTION

For a set A of natural numbers let F(x, A) denote the number of natural numbers $n \le x$ divisible by no element of A. Let

$$G(x, K) = \min F(x, P), \tag{1.1}$$

where P runs over all sets of primes satisfying

$$\sum_{p \in P} 1/p \leqslant K. \tag{1.2}$$

Our main aim is to prove that

$$G(x,K) > cx \tag{1.3}$$

with a positive constant c depending only on K.

At first sight this may seem obvious ("easy to see," the first-named author wrote [3]), but it is not. The sieves of Brun and Selberg give this result only if the sifting primes all lie below x^a , a < 1. The reason is that these sieves give a main term, which is the expected number of unsifted elements, and a remainder term. In our case the expectation is

$$x \prod_{p \in P} (1 - 1/p) \sim xe^{-K},$$

but the real order is much smaller. If we choose the largest primes up to x whose sum of reciprocals does not exceed K (roughly speaking, the interval $(x^{e^{-k}}, x)$), then (see de Bruijn [2]), the number of unsifted elements is

$$\approx xe^{-Ke^{X}}$$
;

this fact makes our problem nonstandard.

PROBLEM 1 (cf. Erdős [3]). Is G(x, K) asymptotically given by the primes in $(x^{e^{-x}}, x)$?

The most we can achieve in this direction is

THEOREM 1. We have

$$G(x,K) \geqslant e^{-e^{cK}}$$
 (1.4)

with a positive absolute constant c.

PROBLEM 2. What happens if we sift by other residue classes? Suppose $p_1,...,p_k \le x$ are primes with sum of reciprocals $\le K$ and to each p_i corresponds a residue class $a_i \pmod{p_i}$. Is it true that the number of natural numbers $n \le x$ satisfying $n \ne a_i \pmod{p_i}$ for all i is at least cx, c = c(K) > 0?

Another surprising feature is that we cannot omit the condition that the elements of P be primes. Put

$$H(x,K) = \min F(x,A),$$

where A is subject to the conditions

$$\sum_{a \in A} 1/a \leqslant K, \qquad 1 \notin A. \tag{1.5}$$

In the second part of the paper we shall show that

$$H(x, K) < x^{\epsilon}, \qquad K > K_0(\varepsilon);$$

more exactly, that

$$\lim_{x \to \infty} \frac{\log H(x, K)}{\log x} = e^{1-K} \qquad (K \geqslant 1).$$

 $H(x, 1) = \sigma(x)$ has been shown by Schinzel and Szekeres [8] (not stated explicitly).

The case when A is fixed and x tends to infinity is considerably different; we have

$$\Delta(A) = \lim_{x \to \infty} \frac{F(x, A)}{x} \geqslant \prod_{a \in A} (1 - 1/a).$$

This inequality is due to Heilbronn [5] and Rohrbach [6]; cf. also Behrend [1], Halberstam and Roth [4, Chap. V, Sect. 6] and Ruzsa [7].

A similar estimate holds under the weaker condition that $a < x^{1-\delta}$ for $a \in A$.

THEOREM 2. If

$$A \subset [2, x^{1-\delta}], \qquad \sum_{a \in A} 1/a \leqslant K,$$
 (1.7)

then

$$F(x,A) \geqslant c_1 \delta e^{-K} x$$
 (1.8)

with an absolute constant c1.

Though the condition of primality cannot be dropped in Theorem 1, it can be weakened to some extent. Let

$$H_m(x, K) = \min F(x, A), \tag{1.9}$$

where A is subject to (1.5) and any m of its elements are coprime.

THEOREM 3. We have

$$H_m(x, K) \le cx$$
, $c = c(m, K) > 0$. (1.10)

The proof actually gives

$$H_m(x, K) \ge c_2 e^{-K} G(x, K)$$
 (1.11)

for $x > x_0(m, K)$; with a slight modification we can even prove

$$H_m(x, K) \geqslant G(x, K) - \varepsilon x, \quad x > x_0(\varepsilon, m, K).$$
 (1.12)

COROLLARY. If P is a set of primes satisfying (1.2), then the number of squarefree integers up to x which are divisible by no element of P is $\geqslant cx$, c = c(K) > 0.

This is obtained by applying Theorem 3 to the set

$$A = P \cup (q^2 : q \text{ is prime, } q \notin P).$$

2. Proof of Theorem 2

Let B denote the set of natural numbers divisible by no element of A.

LEMMA 2.1. For all y we have

$$\sum_{\substack{b \le y \\ b \in B}} 1/b \geqslant \prod_{a \in A} (1 - 1/a) \log(y + 1). \tag{2.2}$$

Proof. Every number has (one or more) decompositions of the form

$$a_1^{\alpha_1} \cdots a_k^{\alpha_k} b, \quad b \in B, \quad a_i \in A.$$

Hence

$$\sum_{n \leqslant y} 1/n \leqslant \sum_{\substack{b \leqslant y \\ b \in B}} 1/b \prod_{a \in A} (1 + a^{-1} + a^{-2} + \cdots),$$

which immediately yields (2.2).

Note. As a by-product, this gives a proof for the Heilbron-Rohbach inequality (1.6).

Proof of Theorem 2. Consider the numbers

$$bp \leqslant x$$
, $p > x^{1-\delta}$, $b \in B$, p prime. (2.3)

We may assume $\delta < \frac{1}{2}$ and then these numbers are different. They all belong to B: if a|bp, then either a|b, or p|a; the first contradicts the definition of B, the second contradicts $a \le x^{1-\delta} < p$. Therefore

$$F(x,A) \geqslant \sum_{\substack{bp \leqslant x \\ p \geqslant x^{1-\delta} \\ b \in B}} 1 = \sum_{\substack{b \in B \\ b \leqslant x^{\delta}}} (\pi(x/b) - \pi(x^{1-\delta})). \tag{2.4}$$

By the prime number theorem we have

$$\pi(x/b) - \pi(x^{1-\delta}) \geqslant c_1 x/(b \log x)$$

if $b \leqslant y = x^{\delta}/2$, so (2.4) yields

$$F(x,A) \geqslant \frac{c_3 x}{\log x} \sum_{b \le y} 1/b$$

$$\geqslant \frac{c_3 x \log (y+1)}{\log x} \prod_{a \in A} (1 - 1/a)$$
(2.5)

according to Lemma 2.1. Obviously $\log(y+1) \geqslant (\delta/2) \log x$ and

$$\prod_{a\in A} (1-1/a) \geqslant c_4 \exp\left(-\sum_{a\in A} 1/a\right),$$

so (2.5) gives (1.8) with $c_1 = c_3 c_4/2$.

3. PROOF OF THEOREM 1

Let

$$\gamma(K) = \inf_{x} \frac{G(x, K)}{x};$$

our aim is to show

$$\gamma(K) > e^{-e^{cK}} \tag{3.1}$$

with a suitable constant c. We shall use a real-type induction, that is, we shall deduce (3.1) supposing it to hold for K - h, where h will be a positive number, depending on K explicitly and monotonically decreasing.

Evidently

$$F(x, P) \ge x - \sum_{p \in P} |x/p| \ge x(1 - K);$$

hence

$$\gamma(K) \geqslant 1 - K$$
,

which proves (3.1) for $K \leq \frac{1}{2}$.

We are going to estimate F(x, P) for a set P satisfying (1.2). As $F(x, P) \ge 1$,

$$G(x, K) > e^{-e^{cK}}$$
 $(x < e^{cK})$

is obvious, thus we may assume

$$x \geqslant e^{\epsilon c h}$$
. (3.2)

Put $k = e^{K+2}$ and let Q be the set of primes lying in

$$[x^{1/k}, x] P$$
.

Let B denote the set of numbers divisible by no prime from P. If $q \in Q$ and

 $b \in B$, then $n = qb \in B$; as $q \geqslant x^{1/k}$, a number $n \leqslant x$ may have at most k divisors from Q, so it has at most k representations of this form. Hence we have

$$F(x, P) \geqslant \frac{1}{k} \sum_{q \in Q} F(x/q, P).$$
 (3.3)

Let

$$\alpha = \sum_{\substack{p \in P \\ p > x^{1-1/k}}} 1/p.$$

Since $x/q \le x^{1-1/k}$ for $q \in Q$, we have

$$F(x/q, P) \geqslant (x/q) \gamma (K - \alpha),$$

so that (3.3) yields

$$F(x,P) \geqslant e^{-K-2} \gamma (K-\alpha) x \sum_{q \in Q} 1/q. \tag{3.4}$$

By (3.2) we have

$$\textstyle \sum_{q \in Q} 1/q \geqslant \sum_{p \in \{x^{1/4}, x\}} 1/p - K \geqslant 1$$

for c large enough, whence (3.4) gives

$$F(x, P) \geqslant e^{-K-2}\gamma(K-\alpha)x,$$
 (3.5)

This inequality will be sufficient if α is not too small, and otherwise we may apply Theorem 2. To see this, set

$$P^* = P \cap [2, x^{1-1/k}];$$

we have evidently

$$F(x, P) \geqslant F(x, P^*) - \alpha x$$

and

$$F(x, P^*) \geqslant c_s e^{-2K} x$$
 $(c_s = c_1 e^{-2})$

by Theorem 2. Therefore, with $c_6 = c_5/2$ we have

$$F(x, P) \geqslant c_6 e^{-2K} x$$
 if $\alpha \leqslant c_6 e^{-2K}$. (3.6)

If this is not the case, (3.5) yields

$$F(x, P) \ge e^{-K-2} \gamma (K - c_6 e^{-2K}) x.$$
 (3.7)

Taking the minimum over the sets P we get

$$G(x, K) \ge \min(c_h e^{-2K}, e^{-K-2}y(K - c_h e^{-2K}))x$$
 (3.8)

if x satisfies (3.2).

An easy calculation yields

$$c_6 e^{-2K} > e^{-e^{cK}}$$

and

$$e^{-K-2} \exp(-\exp c(K - c_6 e^{-2K})) > e^{-e^{cK}}$$

if $K > \frac{1}{2}$ and c is large enough; this completes the proof.

4. Proof of Theorem 3

We do not actually need the condition that any m elements of A be relatively prime; what we shall use is the fact that the composite elements of A grow rapidly. Theorem 3 follows from the next two lemmas.

LEMMA 4.1. Let (w_i) , $w_i > 0$, be a fixed sequence satisfying

$$\sum 1/w_j < \infty$$
.

Suppose A is a set of natural numbers, not containing 1, such that $A = P \cup A_1$, where $A_1 = \{a_1, a_2, ...\}$, $a_i > w_i$, P consists of primes and

$$\sum_{\alpha\in A} 1/\alpha \leqslant K.$$

Then we have

where c depends on K and the sequence (w,).

Lemma 4.2. If $a_1 < a_2 < \cdots$ are composite numbers, any m of which are relatively prime, then we have

$$a_j > f^2/(m-1)^2$$
.

Proof. Let r_j be the smallest prime divisor of a_j . Since a prime can occur at most (m-1) times among the r_j 's, we have $r_i > j/(m-1)$ for some $i \le j$. Hence

$$a_j \geqslant a_i \geqslant r_i^2 > j^2/(m-1)^2$$
.

To prove Lemma 4.1 we need some preparation.

Lemma 4.3. Let P be a set of primes satisfying (1.2) and F(x) = F(x, P). Uniformly for $c \in [0, 1]$ we have

$$F(cx) = cF(x) + O(e^{K}x/\log x).$$

Proof. Let D be the set of numbers composed exclusively of the primes of P. We have

$$F(x) = \sum_{d \in D} \mu(d)[x/d].$$

Hence

$$\begin{aligned} |F(cx) - cF(x)| &= \bigg| \sum_{d \in D} \mu(d) \left(\left[\frac{cx}{d} \right] - \left[\frac{x}{d} \right] \right) \bigg| \\ &\leq \sum_{d \in D, d \leq x} 1 = O(e^{K} x / \log x). \end{aligned}$$

Here the last inequality follows easily by Selberg's sieve.

LEMMA 4.4. Let A be a set of k natural numbers and P a set of primes satisfying (1.2). Suppose that no element of A is divisible by any prime of P. Then we have, with $\Delta(A)$ as defined in (1.6),

$$F(x, P \cup A) = \Delta(A) F(x, P) + O(2^k e^K x / \log x).$$

Proof. Again write F(x, P) = F(x). By the sieve formula

$$F(x, P \cup A) = F(x) - \sum_{a \in A} F(x/a) + \sum_{\substack{a_1 < a_2 \\ a_1, a_2 \in A}} F(x/[a_1, a_2]) - \cdots$$

Lemma 4.3 yields

$$F(x, P \cup A) = F(x) \left(1 - \sum_{i=1}^{n} \frac{1}{a_{i} + \sum_{i=1}^{n} \frac{1}{[a_{i}, a_{i}]} - \cdots \right) + O(2^{k} e^{K} x / \log x).$$

The coefficient of F(x) is just $\Delta(x)$, again by the sieve formula.

Proof of Lemma 4.1. Let $A_1 = A_2 \cup A_3$, $A_2 = \{a_1,..., a_k\}$, $A_3 = \{a_{k+1},...\}$, $k = [\log \log x]$. Evidently

$$\sum_{\alpha \in A_j} 1/a < \sum_{j > \log \log x} 1/w_j \to 0,$$

hence

$$F(x,A) \ge F(x,P \cup A_2) - \sum_{a \in A_3} [x/a] = F(x,P \cup A_2) + O(x).$$
 (4.5)

We may assume that the elements of A_1 are not divisible by any prime from P, since any that are divisible may be dropped without influencing F(x, A), and then Lemma 4.4 yields

$$F(x, P \cup A_2) = \Delta(A_2) F(x, P) + O(2^k e^k x / \log x)$$

= $\Delta(A_2) F(x, P) + O(x)$. (4.6)

Now we have

$$\Delta(A_2) \geqslant \prod_{a \in A_2} (1 - 1/a) > c_1 e^{-K}$$
 (4.7)

by the Heilbronn-Rohrbach inequality (1.6) and

$$F(x, P) > c_2 x$$
, $c_2 = c_2(K)$, (4.8)

by Theorem 1. Formulas (4.5)–(4.8) give Lemma 4.1 for $x > x_0(K)$; for small x we may use the trivial estimate $F(x, A) \ge 1$.

To deduce Theorem 3 let A be a set, any m of whose elements are coprime and let $a_1 < a_2 < \cdots$ be its composite elements. Lemma 4.2 implies

$$a_i > w_i = j^2/(m-1)$$

and now Lemma 4.1 yields (1.10) since

$$\sum 1/w_j = (m-1)\sum j^{-2} < \infty$$

obviously holds.

REFERENCES

- F. A. BEHREND, Generalization of an inequality of Heilbronn and Rohrbach, Bull. Amer. Math. Soc. 54 (1948), 681-684.
- N. G. DE BRUUN, On the number of positive integers ≤x and free of prime factors ≥y, Indag. Math. 13 (1951), 50-60.

- P. Erdős, Problem 2, in "Number Theory," Coll. Math. Soc. J. Bolyai, Vol. 2, p. 232, 1968.
- 4. H. Halberstam and K. F. Roth, "Sequences," Vol. I, Clarendon, Oxford, 1966.
- H. A. HEILBRONN, On an inequality in the elementary theory of numbers, Proc. Cambridge Philos. Soc. 33 (1937), 207–209.
- H. ROHRBACH, Beweis einer zahlentheoretischen Ungleichung, J. Reine Angew. Math. 177 (1937), 153-156.
- I. Z. Ruzsa, Probabilistic generalization of a number-theoretical inequality, Amer. Math. Monthly 83 (1976), 723-725.
- A. SCHINZEL AND G. SZEKERES, Sur un problème de M. Paul Erdős, Acta Sci. Math. (Szeged) 20 (1959), 221–229.