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The main object of the paper is to prove that if P is a set of primes with sum of
reciprocals _<K, then the number of natural numbers up to x, divisible by no
element of P, is _>cx, where c is a positive constant depending only on K. A lower
estimate is given for c and a similar result is achieved in the case when the
condition of primality is substituted by the weaker condition that any m elements of
the sifting set are coprime .

1. INTRODUCTION

For a set A of natural numbers let F(x,A) denote the number of natural

with a positive constant c depending only on K.
At first sight this may seem obvious ("easy to see," the first-named author

wrote 13 ]), but it is not. The sieves of Brun and Selberg give this result only
if the sifting primes all lie below xa, a < 1 . The reason is that these sieves
give a main term, which is the expected number of unsifted elements, and a
remainder term . In our case the expectation is

x Fl (1 - 1/p) - xe -K ,
PEP
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numbers n < x divisible by no element of A . Let

G(x, K) = min F(x, P), (1 .1)

where P runs over all sets of primes satisfying

Our main aim is to prove that

1/p <K.
PEP

(1 .2)

G(x, K) > cx (1 .3)
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but the real order is much smaller. If we choose the largest primes up to x
whose sum of reciprocals does not exceed K (roughly speaking, the interval
(xe ", x)), then (see de Bruijn [2 ]), the number of unsifted elements is

zxe -KeK ;

this fact makes our problem nonstandard .

PROBLEM 1 (cf. Erdös [3]) . Is G(x, K) asymptotically given by the
primes in (xe-K , x)?

The most we can achieve in this direction is

THEOREM 1 . We have

with a positive absolute constant c .

PROBLEM 2 . What happens if we sift by other residue classes? Suppose
Pi , • • • , Pk < x are primes with sum of reciprocals <K and to each pi
corresponds a residue class a i (modpi ) . Is it true that the number of natural
numbers n < x satisfying n Ek a i (mod p i) for all i is at least cx, c = c(K) > 0?

Another surprising feature is that we cannot omit the condition that the
elements of P be primes . Put

H(x, K) = min F(x, A),

where A is subject to the conditions

In the second part of the paper we shall show that

more exactly, that

G(x, K) > e-e K

	

(1.4)

1Ia < K,

	

1 A.

	

(1 .5)
acA

H(x, K) < xE,

	

K > K,(E) ;

log H(x, K)

	

I-Klim

	

lo

	

e

	

(K > 1).
x-00

	

g x =

H(x, 1) = a(x) has been shown by Schinzel and Szekeres [8] (not stated
explicitly) .



The case when A is fixed and x tends to infinity is considerably different ;
we have

A(A) = lim
F(x, A)

>, 11 (1 - 1/a) .
x-oo

	

X

	

aLA

This inequality is due to Heilbronn [51 and Rohrbach [6] ; cf. also Behrend
[1], Halberstam and Roth [4, Chap . V, Sect . 6] and Ruzsa [7 ] .
A similar estimate holds under the weaker condition that a < x' - " for

aEA.

THEOREM 2 . If

then
F(x, A) > c, 6e_ KX

	

(1 .8)

with an absolute constant c, .

Though the condition of primality cannot be dropped in Theorem 1, it can
be weakened to some extent . Let

H,,,(x, K) = min F(x, A),

	

(1 .9)

where A is subject to (1 .5) and any m of its elements are coprime .

THEOREM 3 . We have

H,,,(x, K) < cx,

	

c = c(m, K) > 0 .

	

(1.10)

The proof actually gives

H,, (x, K) > c z e-KG(x, K)

	

(1 .11)

for x > xo(m, K) ; with a slight modification we can even prove

H,,,(x, K) > G(x, K) - ex,

	

x > xo(e, m, K) .

	

(1 .12)

COROLLARY . If P is a set of primes satisfying (1 .2), then the number of
squarefree integers up to x which are divisible by no element of P is >cx,
c = c(K) > 0 .

This is obtained by applying Theorem 3 to the set

SMALL SIEVE : PRIMES 38 7

A c [2, x` -s ],

	

1/a < K,

	

(1.7)
aEA

A= P U {q2 : q is prime, q P) .
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2 . PROOF OF THEOREM 2

Let B denote the set of natural numbers divisible by no element of A .

LEMMA 2.1 . For ally we have

J 1/b >,H(1-1/a) logy + 1) .

	

(2.2)
b<y

	

aeA
bEB

Proof. Every number has (one or more) decompositions of the form

a; ' . . . a, kb,

	

b E B, a; E A .

Hence

lIn <

	

1/b H (1 + a - ' + a-z + ),
n<y

	

b<y

	

acA
bEB

which immediately yields (2.2) .

Note. As a by-product, this gives a proof for the Heilbron-Rohbach
inequality (1.6) .

Proof of Theorem 2 . Consider the numbers

by < x, p > x' -s ,

	

b E B, p prime .

	

(2.3)

We may assume b < and then these numbers are different . They all belong
to B : if a l bp, then either alb, or p l a; the first contradicts the definition of B,
the second contradicts a < x' -s < p. Therefore

F(x, A) > Y 1 =

	

(7r(x/b) - 7r(x' -s)) .

	

(2 .4)
bp<x bEB
p>x 1 _a b<xó
bEB

By the prime number theorem we have

7r(x/b) - 7r(x' -s) > c,x/(b log x)

if b < y = x s/2, so (2 .4) yields

F(x,A)>c'xV 1/b
log x b

)c;xlog(y+1) 11 (1 -1 la )log x

	

aEA

(2.5)
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according to Lemma 2 .1 . Obviously log(y + 1) > (6/2) log x and

H (I(1 - 1/a) > c 4 exp (-~ 1/a),
aEA

	

aeA

so (2.5) gives (1 .8) with c,=c,c 4/2 .

3 . PROOF OF THEOREM I

Let

our aim is to show

y(K) >
e eCK

	

(3 .1)

with a suitable constant c. We shall use a real-type induction, that is, we
shall deduce (3 .1) supposing it to hold for K - h, where h will be a positive
number, depending on K explicitly and monotonically decreasing .

Evidently

hence

y(K) > 1 - K,

which proves (3 .1) for K < 7.
We are going to estimate F(x, P) for a set P satisfying (1.2) . As

F(x, P) > 1,

y(K) = inf
G(x, K)

,
X

	

x

F(x, P) > x-

	

[x/p] > x(l -K);
pEP

G(x, K) > e-` ``

	

(x < e' A )

is obvious, thus we may assume

x > ee " .

	

(3.2)

Put k = eK+2 and let Q be the set of primes lying in

[x'ik x]\P.

Let B denote the set of numbers divisible by no prime from P . If q E Q and
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b E B, then n = qb E B ; as q > x' ", a number n < x may have at most k
divisors from Q, so it has at most k representations of this form . Hence we
have

Let

By (3 .2) we have

and

F(x, P) > 1

	

F(x/q, P) .

	

(3.3)k qEQ

a=
PEP

P >X1 -1/k

Since x/q < x' - ' Ik for q E Q, we have

F(x/q, P) > (x/q) y(K - a),

so that (3 .3) yields

F x, P) > e-K- 'y(K - a)x

	

1/q.

	

(3.4)
qEQ

1/q>

	

1/p-K> 1
qEQ

	

PE[XI/k X]

for c large enough, whence (3 .4) gives

F(x, P) > e -K-2y(K - a)x .

	

(3 .5)

This inequality will be sufficient if a is not too small, and otherwise we may
apply Theorem 2. To see this, set

we have evidently

F(x, P) > F(x, P*) - ax

F(x, P* ) > cs e -2KX

	

(c, = c, e -z )

by Theorem 2 . Therefore, with c b = c 5 /2 we have

F(x, P) > có e-2Kx

	

if a < có e-2K .

	

(3 .6)
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If this is not the case, (3 .5) yields

F(x, P) > e -K-2y(K-the -2K)x .

	

(3 .7)

Taking the minimum over the sets P we get

G(x,K)>min(c b e -u` e -K-Zy(K-cb e-2K ))x

	

(3 .8)

if x satisfies (3 .2).
An easy calculation yields

and

e -K-2 exp(-exp c(K - cóe-2K)) > e- 1K

if K > z and c is large enough ; this completes the proof.

4. PROOF OF THEOREM 3

We do not actually need the condition that any m elements of A be
relatively prime ; what we shall use is the fact that the composite elements of
A grow rapidly. Theorem 3 follows from the next two lemmas .

LEMMA 4.1 . Let (wj), wj > 0, be a fixed sequence satisfying

1/w / < 00 .

Suppose A is a set of natural numbers, not containing 1, such that
A = P U A, , where A, _ {a, , a,, . . . }, a i > w i , P consists ofprimes and

cbe-2K > e -e,K

Then we have

F(x, A) > cx,

where c depends on K and the sequence (wj ) .

LEMMA 4.2 . If a,< a 2 < . . . are composite numbers, any m of which are
relatively prime, then we have

1/a < K.
aEA

aj >j2/(ni - 1 ) z .
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Proof. Let ri be the smallest prime divisor of a, . Since a prime can occur
at most (m - 1) times among the ri's, we have r, > j/(m - 1) for some i < j .
Hence

To prove Lemma 4 .1 we need some preparation .

LEMMA 4.3 . Let P be a set of primes satisfying (1 .2) and F(x) = F(x, P) .
Uniformly for c E [0, 1 ] we have

Proof. Let D be the set of numbers composed exclusively of the primes
of P. We have

Hence

F(cx) - cF(x)

ERDŐS AND RUZSA

ai > a i > r; > jz/(m - 1) z .

F(cx) = cF(x) + O(e"x/log x) .

F(x) _

	

p(d)[x/d] .
dED

p (d)

	

d J - [ XdldeD

	

([

	

)

<

	

1 = O(e"x/log x) .
dcD,d<_x

Here the last inequality follows easily by Selberg's sieve .

LEMMA 4.4 . Let A be a set of k natural numbers and P a set of primes
satisfying (1 .2). Suppose that no element of A is divisible by any prime of P .
Then we have, with A(A) as defined in (1 .6),

F(x, P U A) = .A (A) F(x, P) + O(2 ke'x/log x) .

Proof. Again write F(x, P) = F(x) . By the sieve formula

F(x, P U A) = F(x) - I F(x/a) +

	

F(x/ [a, , a z ])
aEA

	

a1<a2
al,a2EA

Lemma 4.3 yields

F(x, P U A) = F(x) (1-~ 1 +~ 1
a

	

[a„ az ]

+ O(2 ke"x/log x) .

The coefficient of F(x) is just A(x), again by the sieve formula .
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Proof ofLemma 4 .1 . LetA t =A z UA 3 ,Az = {a,	a,,A3={a,,,, . . .},
k = [log log x] . Evidently

hence

F(x, A) > F(x, P U A z ) - 1 [x/a] = F(x, P U Az ) + O(x) .

	

(4.5)
aEA3

We may assume that the elements of A, are not divisble by any prime
from P, since any that are divisible may be dropped without influencing
F(x, A), and then Lemma 4 .4 yields

641 / 12/3-8

1/a <

	

1/wj -4 0,
aEA3

	

j>10g 10gx

by Theorem 1 . Formulas (4.5)-(4 .8) give Lemma 4 .1 for x > xo(K); for
small x we may use the trivial estimate F(x, A) > 1 .

To deduce Theorem 3 let A be a set, any m of whose elements are coprime
and let a, < a 2 < . . . be its composite elements. Lemma 4.2 implies

aj > wj = j2/(m - 1)

and now Lemma 4.1 yields (1 .10) since

1/wj=(m-1)Y,j_z< eo

obviously holds .
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