
On the Möbius function

By P. Erdős at Budapest and R . R. Hall at York

Introduction . In this paper we prove some results about the function

M(n, T)=Y_ IM (d) :dln, d<=T} .

Let w(n) denote the number of distinct prime factors of n . If we split the divisors of n
into Sperner chains, and note that the contribution to I M(n, T) I from each chain is at most 1,
we have

IM(n, T)I ~( wnn)2])-o(2w("),

moreover the inequality is best possible . If n = p, P2' *'p . where Pr+ i > p, P2 p, for
every r then

-1<M(n, T)<<=1

for every T.

For almost all n, it is known [2] that

maxIM(n, T)J<Aw(")

for any fixed A > 3/e . We do not know if the constant 3/e is sharp : maybe A > 1 is
sufficient . It seems certain that for almost all n the innocent looking inequality

maxIM(n, T)J >>=2

holds, but we are unable to prove it .

Theorem 1. For every L > 0, there exists a To such that for fixed T > To, the density
of the integers n such that M(n, T) =k 0 does not exceed a . More precisely, this density is
<< (log T)-v° where yo = I -(e/2) log2 .

This result suggests that in some suitable sense, M(n, T) is usually zero . One of us
conjectured that for almost all n, we have

Y T : T< n, M(n, T)*0}=o(logn),

and this is a corollary, with quite a lot to spare, of the following result .
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Theorem 2 . Let q be fixed, q >= 2, u = q/q -1 and Q = 0 or 1 according as q > 2 or not .
Then for almost all n, we have

provided 0(n) - cc as n -> co . Here

we have {F(u)}(q-') >-2 with equality if and only if q=2. In particular

for almost all n . Since the normal order of w(n) is loglogn, the corollary mentioned above
follows .

Next, if {di , 1<i<2' ( n ) } are the squarefree divisors -}f n arranged in increasing order,
since M(n, m) = M(n, di) for d < < m < di+ , we deduce that

An immediate corollary is that

Plainly

(1)

Remarks . Since
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1 IM(n m)Iq< ~(n) {F(u)}(q- ') "(n) (loglogn)am<_ n m
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F(u)=	 i 2sin O-) u d6 i 2u-'(1-cosO)d0=2n- '
2~ 0
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Y- 1 IM(n, M)I2<_ ~(n)2`' loglogn
m < n n,

Y_ IM(n, di)I ' log d̀+1 < 0(n)2" loglogng
d;

i
min log d`+ '-< I IM(n, di)1 z

	

0(n)?-' (n ) loglogn .
d

IM(n, di)I 2 >2",n,-1

(since IM(n, di )I jumps ±1 for every i) . An old conjecture of Erdős [1] is that almost all
integers have two divisors d, d' such that d< d'< 2d ; this would follow from a small
improvement of the above inequality (1) .

Lemma 1 . Let 8(T) denote the asymptotic density, of the integers n with at least one
divisor din the interval[ T, 2 T] . Then

F(u) =
21~

i I1-e`al°d8=1«u+2)12)

6 (T) << (log T) - " where a =1 --
1
g2- C - log

1 g 2 /
.
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Proof: Split the integers into two classes according as QT (n) <_ K loglog T or not,
where QT counts the prime factors -< T of n according to multiplicity, and K is to be chosen .
For any y < 1, the number of integers -<- x in the first class is

< y -KloglogT yi yQ ,, .(n)

n<<-x

where the dash denotes that n has a divisor in [T, 2T] . This is

(log T)-K1ogy

	

yf2T(d)
y'

yf2T(n)

T_<d<2T

	

m<x/T

Plainly d has at most one prime factor > T. So this is

<< y -f (log T)-K 'gv Y

	

ys~(d)
x (log T)v - i << xV-i (log T)zv-2 -K togs

T<<-d<<-2T

	

T

We choose J'= K/2, which is in order provided K<_ 2. Hence the number of these integers
does not exceed

xK-1 (log T)K-2+KIog2/K

The number of class 2 integers up to x does not exceed
z-KloglogT

Y Z
OT(n)

provided z >= 1 . This is

<< x(log T)'-i-"log'

and we choose Z=K, so that we have to have K E [1, 2] . In fact we put K= 1/log2 so that

K-2+K log2/K=K-1-K logK=-1 .

This completes the proof .

Lemma 1' . Let 8(T, ,,) denote the asymptotic density of the integers n with at least
one divisor d in the interval [T, T exp ((log T)')] . Then for 0 < y < 1 - log 2, we have

n -x

1-y

	

1-y
d (T, , ) << (log

T)-~(y) where a (, ) = 1 - log2
1 -

log log2

In particular 6(T,

	

0 as T oo for each fixed y in the range given .

Proof : We have

5(T, r)<6(T)+6(2T)+ . . .+6(2'T)

and by Lemma 1, we have

-
where r

	

(log T)"
-	

log2

6(T, ,,) << (log T)I - x .

This is insufficient. However, we notice that if we follow through the proof of Lemma 1,
with the wider interval, the factor (logT)l only appears in the treatment of the integers
in class 1, since the divisor property of the integers in class 2 was not used. Thus
a different choice of K, namely K = (1- y)/log 2, is optimal in the new problem : and this
gives the result stated .
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Proof of Theorem 1 . Put H= exp ((log T)v) . First of all, by Mertens' theorem, the
density of integers with no prime factor <_ H is « (log T) -1 . Now consider an integer n
with at least one prime factor <_ H. Let p, = p, (n) be the least prime factor of n and let
n = p; m, p,,rm . Then

M(n, T) = Y_ µ(d)= E µ(d)+ Y- µ(pld)=M(m, T)-M(tn, T/p,) .
dIn

	

d 1m

	

d 1m
d5T

	

d<T

	

p,d<T

Hence M(n, T)+0 implies that m, and so n, has at least one divisor in the interval (T/H, T] .
By Lemma 1', the density of such integers is « (log T)'(1) . Therefore the density of

e
integers for which M(n, T) +- 0 is « (log T) - v° where yo = a (y o ), or yo =1- 2 log 2 .

This is the result stated .

Lemma 2. Uniformly ,for real, non-zero t, ,for x >_=exp (1 / l t l) and on any,finite range
0 < u o -< u<- u, , we have that

where

and so we have

as required .

Y I II-p"ln=F(u)loglogx-F(u) log'	ltl	 + 0 (loglog (3 + I t 1)),X	

Proof: We may show as in [3] Lemma 4 that for any y in the range 2 < y < x,
we have

I
1
I1-p" l n =F(u) log

~logx
+0

(

	 I	
+(3+ tj)e - aVogvl

v <p<X p

	

logy

	

Ill logy,y,

where fl is an absolute positive constant . If Ill > 1, we choose y such that

log y=- ~2 log2 (3+ tj)

and make the trivial estimate

y
1

11 -p"lu « loglog y « loglog(3 + ltl) .
p < y p

If this y> x, we apply the trivial estimate to the whole sum . Next, if Itl < 1, we set log y=1/lt l .
In this case y<<=x automatically . We have

Y 1 I1_Pi,I"s Y ?- (ItIlogPY<<(ItI logy)n=0(1)
p_<_y P

	

p<y P

Y
1

I1-p"I" =F(u) loglogx-F(u) log
1

+0(1)
p<X P

	

Ill

F(u)- -
1

f l1-e`alndO=
2" r(2'(1+u»

27r o

	

,/ F(i(2+u»



Proof of Theorem 2. For n > 1, we have
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n
f(n, t) _ Y- y (d) d" _ - i t f M (n, z) z` r- ' dz .

dIn

	

0

For z >_ n, we have M (n, z) = 0, so we can write

f(n, t)
= f M(n, es) ersrds .

- it

We apply the Hausdorff-Young inequality for Fourier transforms, which gives
a~

	

l/q

	

1

	

.0

	

1/u

IM(n, es)Igds

	

<( 2 ~ f It-l.f(n, t)I"dt)f0x
when q>2 and u = q/q-1 . Since M(n, z) = M(n, [z]), we have

and so if we define

we have that

1
I M (n, m) l q <_ 2 f I M (n, z) I q

dz ,

M-1 m o

	

z

n

	

1

	

1/q-1
d(n,q)= y_ IM(n, m)Iq

m=1 m

u/q

	

1

	

w
A (n, q) <<= 2

	

f I M (n, ,s)
q ds

	

<	f I t- ' f(n, t) I" dt .

Let Y' denote summation restricted to integers n such that (t) (n) > z loglogx. Then for y > 0,

2 '~'
1' y° rn>4 (n, q)<-- f

	

y "' I .f(n, t)Iut - "dt,
n<x

	

0 n<x

since f is an even function of t . We split the range of integration according as t__< 1/logx
or not : call these integrals I l and Iz . We consider Iz first, and here we ignore the condition
on o-) (n) . As in [3] Lemma 3 we have

1 y pt "i I f (n, t) I"«
x

exp (y Y- 1 I fAP, t) I ")
n < x

	

logx

	

p<x P

uniformly for real t, and on any finite range 0 < u < u 1 . We have 1 <=u <_ 2, so we may apply
lemma 2 . We get

yw(" ) f(n, t) I" «x(t* logx)J'" (n) logK V (3 + t)lo
g xn<x

	

-

where K is an absolute constant and t* = t (t < 1), t* =1 (t > 1). We
the conditions

(i) u > 1,

(ü) y F(u) - u > -1 ,

and we deduce that for fixed u and y,

Iz « x(log x)v'" -' (loglogx) 11

where /3 = 0 or 1, according as there is strict inequality in (ü) or not .
Journal Wr Malhematik. Band 315
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Y
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Let us set y = 1 /F(u), so that we may replace the above conditions by

(iii) 1<u-2or2<q<oo .

We have 12 << x (loglogx)R, where [3 = 0 or 1 according as u < 2, or not. Now consider
By the arithmetic-geometric mean inequality, we have

t logn wtnt

~ .Í (n, t) <

	

t log p <_ ~- w (n)
PIn

and since we may assume w(n) >>= 2 >= u (by the definition of Y_') the integral is convergent .
Indeed,

11F(u) A u'tn1

I, < ~

	

(logx)n- t « x
n_x w

(
n
)

since F(u)>=1 and jw(n)j'tn1>logx for large x . Putting these results together, we have
now proved that for fixed q >_ 2,

Y_' {F(u)}-°'tn14(n, q) «x(loglogx)l` .
n<_x

Let t/t t (n) -> oo as n -- oo . For all but o(x) integers n in this sum, we have

d (n, q) _<_ 0, (n) I F(u)}wtn' (loglogn)l'

and so this is true for almost all n : the number of n < x neglected by Y.' is o (x), by the well
known result of Hardy and Ramanujan that w(n) has normal order loglogn . Since
(q -1)

	

we deduce that for almost all n,

Y,
1

I M(n, m) I9 <_ 0 (n) 1,F(u)} t9 - "°' , "t (loglogn) fl ,
m<_n in

which is the result stated .
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