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1. Introduction

In a previous paper P. ErRDGs [1] stated without proof that if X={x;},
n=12,..; l=si=n,

(1.1) —l=x, <Xy p<..<x,=1 (n=12.)

is a triangular matrix then there is a continuous function F(x), —1=x=1, so that
the sequence of Lagrange interpolation polynomials

L X, %) = L(F,9) = 3 F(xu)la()

diverges almost everywhere in [—1, 1], and in fact

Iim |L,(F, X, x)| =
for almost all x. (Here, as usual,

@, ()

02 W=ty

[k =1,2, ..., n; w,(x) = ké:(x*xk..]]

are the corresponding fundamental polynomials,

(1.3) W)= Sl A= max 4,0 (=12 ..)

are the Lebesgue functions and Lebesgue constants of the interpolation, respectively.

We now prove this statement in full detail. The detailed proof turned out to
be quite complicated and several unsuspected difficulties had to be overcome.

In the same paper P. Erdds also stated, that there is a pointgroup {x,} so
that for every continuous f(x) (—1=x=1) L,(f, x,)—~f(x,) holds for at least

n
one x, for which Tim 3 |/, (x,)|=c. This is perhaps true, but at this moment
A=oo =1
we cannot prove it (the original “proof” was probably incomplete). We hope to
settle it on another occasion.
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72 P. ERDOS AND P. VERTESI

2. Preliminary results
In his classical paper [2] G. FABER proved that for any matrix X

N-+co

from where we immediately obtain that for every point group there exists a contin-
uous function f,(x), —1=x=1 (shortly f;€C) so that

T (L, (fy, )l =.

(Henceforward [|g(x)|=|gl= max |g(x)| for g€C.) Almost twenty years later,

—1=x=1
in 1931, S. BERNSTEIN [3] showed that for every X with (1.1) there is an f,€C and
an x,, —1=x,=1, such that

I@ |Ln(.f2: xﬂ)l =%

Another problem is to prove divergence theorem on a set of positive measure.
In his paper [14] S. BERNSTEIN proved, that for the “bad” matrix
E={—1+2(k—1)/(n—1)} and the function |x]|

Iim |L,(lt], E, x)l == if x€(—1,1), x#0.
Then, using the “good” Chebyshev matrix

2k —1

(2.1) T= {x,m = €08 n

k=12 oy =12, }

G. GRUNWALD [4] got that there exists a function f,€C, for which

22) fim |L,(f;, T, x)| = e

holds for almost all x in [—1, 1]. Later he and (independently) J. MARCINKIEWICZ
proved that for a suitable f,€C, (2.2) is true for every x from [—1, 1] (see [5] and [6]).
Very recently A. A. PrivaLov [7] settled the case of Jacobi matrices

X(d,ﬂ) :— {x’{‘:-ﬂ): k = 1: 2, iees n; n= ], 2’ ,__}' u,ﬁ :5'_]_
(see e.g. [8], Part 2), showing that with a certain f,€C

(2.3) Iim |L,(fy, X*P, x)| =< a.e. on [-1,1],

where “a.e.” stands for almost everywhere. (He considered some further point
groups, too.) His proof strongly depends on the properties of the Jacobi roots x{%#,
Finally, he proved (2.3) for the whole (—1, 1) (see [13]).
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 73

3. Result

As indicated above we are going to prove (2.2) for any fixed point group X,
i.e. we state

THEOREM, For any matrix X with (1.1) one can find a function F(x)cC such that
(3.1) Im |L,(F, X, x)| == for almost all x in [—1,1].

On the other hand, considering the special matrix
X1
xnxa

X1, Xz, X3

we can say that (3.1) generally is not true for all x€[—1, 1] (see P. TUrRAN [9],
Problem III).

Finally, let us remark that the “Iim” cannot be replaced by “lim” or “lim”.
Indeed, as P. ERDGS showed, one can construct a point group so that for every
SEC and every x,€[—1, 1] there exists a sequence n; (depending on f and x,)

so that
Jim L, (f, %o) = f(x0)
(see [1], p- 384).

4. Proof

4.1. In what follows, sometimes omitting the superfluous notations, let
Xop=1, Xy41,,=—1 and

(41) Axp‘m i xlm_xk-i-l,n (k == 0’ ]$ el B= 1: 2: )

Let us define the index-sets K, and K,, and sets D,, and D,, by

=1 85 i keK,,

Ax,y Inn
(2 >4d, iff k€K,,,
Dy, :keLi(J Xer1s ¥idy Dow = [—1, I\ Dy,

If Ax,=6, (which means kcK,,,[x.41,x]<D;,) we say that the interval
[xk+1, xi] is short; the other ones are long.
The fact that for any given positive numbers 4 and ¢ the measure of those x
(—eo<x=oe) for which
l.(x)=4
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74 P. ERDOS AND P. VERTESI

holds if n=ny(g, A), is less than &, was shown by the first of us in [1]. But here we need
a stronger statement. Namely, if

]j.m:[.-.[.J_..M,_].'.g{_] (I=lg 2;‘.-,m))
m m

then for the short intervals we prove

LemMAa 4.1. Let A=0 be an arbitrary fixed number. Then with arbitrary

m=max [exp (84%), exp (exp 100)]%Lm,(A), for any n=n,(m) there exists a set
Hy,c Dy, for which u(H,,)=1/Inln m. Further, whenever xc D,,\ H,,,

4.3) 2 eI =nmY3=24 if n=ny(m).

xlmEDl.u
Xen€ L jxy, m
k¢ Ky,

Here x€1,, ,, (1=j=m), K;, is a certain index-set having VInn elements at most,
u(...) stands for the Lebesgue measure.

4.1.1. The proof of this lemma, which is one of the most important parts of
our theorem, consists of severals steps.

First we settle Lemma 4.2 regarding both short and long intervals.

Let us introduce the following notation.

(@) = Jin(q) = [xp 41t 9dx, Xy —qdx), Ty = Ji(0) = [xp44, X,
for 0=¢=1/2,0=k=n. If z,=2z,(g) is defined by

“44) ou(el = i lay ()l = 0,1, 1u0s

(obviously, z, is one of the endpoints of Ji(q)), we state

LemMaA 4.2, If x,=x,,, (1=r<k<n) then for arbitrary 0<gq=1/2

— .2 |CL)"(Z,)| Ax&
(4.5) GO+ 1 () = ¢ [0, )] X, — X 21

if xeJ(q).
To prove (4.5), first we use

w(x)
w’(xs)(x - xs)

_ oGl |z—x

|
e : = g|l,(z
oG x| ) = gl

TN

if s=k, k+1 and x€J,(q)

Ji(q) J(q)
| | | ] 1 1 1 | I
Xe+1 g Xk Xr+t1 Zp x X
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 75

(because z,—x,=qAx,+(X, 41— X) =q(Ax, + X, 41— X) = q(x—x,)], from where

@ N+l 1001 = g1+l (1) =
o)l A o
2 [ el B2 e 2221] =
= lo(z)]  Ax,  min(Z— X1, X~ Z) 5
q |69(Zk)f X, —Xiii Axk {”k(zk)l-l-“k-i'l(zk)” =
=g 2l % (e (),

ozl X, —Xi 41

using that /[(u)+/1(w)=1 if u€J; (see [11], Lemma IV).
Similar estimation holds when x,=x,.,.

4.1.2. We construct the set H,, for n=n,(m).

a) Any of J,,, J,, contained in Dy, should belong to H,,. Further, if J,,cD,,
intersecting two I,,, (1=/=m) or whenever either k or k+1€K,,, it should also
belong to H,,. The measure of these intervals J, is =26,+(m—1)8,+VInné,=
=(nlnm)—22Le2  if, e.g. n=exp (m>)=ny(m).

b) Let g=g,=¢,/8. The intervals J,,(q) or J,, from D;, not considered
at a) will be called exceptional if there exists an x=x(k, n)€J,,(q) for which the
estimation (4.3) does not hold. The exceptional J;,’s should also belong to H,,.
If > u(Jiu(g))=2c¢ (where the dash indicates that the summation is extended

k

only over the exceptional J,,’s), we state that c¢=c(n, m)=¢}, if n=ny(m) (whence
the aggregate measure of the exceptional intervals J,, is <3g2).

Indeed, supposing c¢=¢2, we shall obtain a contradiction.

Let us order the y, exceptional J,(q), J,(q), ..., J, () such that

@ zwE@) (I1=si=k=y,),

where Z, stands for the corresponding minimum in Ji(q) (see (4.4)). Then for a
certain ¢,, 1=9,=y,,

43) {Im(_fl)| = w(Z) = (Inm) " 2lo(z)| f 1=k=o,.
' lw(Z)] = (In m)'2|w(Z)| it g,<k=y,.
By a simple computation
(4.9) Z ,u(J (@) =c if n=ne(m)
i=p,+

(if, of course, ¢,=1,).
Indeed. otherwise, using that

W ' :
3= ¥4 5 #zyoize
i=p,+1 i=p,+1 i=p,+1

IinI,=e I N1, #o

Jm?
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76 P. ERDOS AND P. VERTESI

where Z,€1;,=1;;:, »,» We obtain

ZPuli(q)) =2m™t < g2 < ¢f2,

from where '@ u(Ji(g))=c/2. Then by (4.5) and (4.8) for any xcJ,(q) the sum
(4.3) can be estimated as follows

pANGEE L SO+ = L 3w 2@ 4%

lw@)| [Xip1—Xi -

20 ll.
=— (ln my2 W Az, = q (ln m)l/? = 3 = (In m)2 > (In m)'3

which is a contradiction, i.e. (4.9) is true. (Here X;,, and X, are the “farthest” points
of the corresponding intervals.)

4.1.3. Consequently, using the fact that the total measure yc (1=y=2) of
the exceptional J,(q), ..., J, (g) is bigger than &,, we should obtain a contradiction.
Notice that for J, we have (4 8), each J is in exactly one I,,; if i=0,n, or when
i or i+1€K,,, then J; cannot be exceptional. Obviously ¢,=clnn.

Dropping J, containing the middle point of [—1,1] and bisecting the same
interval [—1, 1], we have (say) in [0, 1] a set of measure =[c— u(J))2=(c—4d,)/2,
consisting of certain Ji(g)’s (1=/, t=0,).

At the k-th bisection we obtain that interval of length 2'—* which contains
certain J)(g)'s (1=I=¢,) of aggregate measure =2"%c—9,=2"%"1¢, if eg.

1=k=[15g m}+2<p=p,..

Consider these intervals Lj, L;, ..., L}.

Xg

—1 l;v—’%r—"——,--”—— -—--_.—t:l
Ly L L Lo
Fig. 1
Obviously u(Lf)=2%"?, each L contains at least k exceptional J,(q)’s, further

2 k(@) =2"7c (I=k=p,, 1=l=09,)

J(acL)

Let L,=L;, further L,=L}\L;_, 2=k=p,) (see Fig. 1). It is easy to see that
(2m)~1=p(L,)=m~1. Let us choose any fixed point x from any exceptional
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 7

Jion(q) contained in L, (1=/,=¢,). Then, by (4.5) and (4.8) the sum (4.3) can
be estimated as follows

9 |m(fla)] J A'Ei

@10) 31| = 5 S U@ +Hae= 3 3 g

k=1 T [w(zZ)] %41 — X N
Jig) Ly,
P AX
= q¥(lnm)~V2 3 ——t__ 3 g23(lnm)~12B,
k=1 ] |x,+1—x0|
Tilpc Ly

where X;., and X, are the “farthest” points of the corresponding intervals, 1=/,
ly=¢,, the dash means that we exclude k& whenever I, .M\ L# @. To estimate
B, let
(4.11) > 4%, % cy,.
1
Tl =Ly,

Using the construction, it is easy to see that

i
@.12) ¢ Jap=2-2% (1sisp)
(4.13) |Xg—%| =257 if XL, and X€L, (1=k=p)
By induction
(4.[4) ot = 2"_2051 (2 =k = p).

(Indeed, by construction oy=oy, 5=, +o =20, ..., from where we get (4.14).)
Now, by (4.13), (4.11), (4.12), the Abel transformation and (4.14) we can write

B?:*(:Z"Z 2 kg = 2P 22 Koy — 4max5—- =
k=1 =p 2

=0 Z(-Z ]2*+1+[2“]2r 4“1]}

1=

2
=F Sl 1 4]} logm _clnm

:ﬂ-czﬂ _.__._+~—_Tw_
k‘f‘ 2k+1 282 e

i.e., in virtue of (4.10),
g} (In m)yv/2

2 )l = e (Inm)¥3  (n = ny(m)),

i.e. for any x€J,(q) we have (4.3). But then J, (¢) is not exceptional which is a con-
tradiction. So c¢=¢g), as it was stated.

4.1.4. c¢) Clearly, for any point x€J,,(q)(Jy,=D,,) considered neither at a)
nor at b), the estimation (4.3) will be true. For these Ji, the sets J,\Ji,(q)
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78 P. ERDOS AND P. VERTESI

of aggregate measure c¢; should belong to H,,, too. Obviously, ¢, can be estimated
as follows

= 2 [nUw—r(n(@)] =2q Z Ax, = 7'"

kE in l|l|
So by a), b) and ¢)
.H(Hln) = 83|+3£?n+£m{(2 = Em

which proves Lemma 4.1.

4.2. Here we introduce an important definition. The interval 7, and its index
k will be called good for a certain n=ny(m) if

2’ “([km 'ij (” = HU(m))
JinCHyy,
where the dash means that we take only such J;,'s which were considered in a)
or b) (1=k=m). (Observe that [, is good whenever I, D,,=@.) Using that
2 u(Jy) = 4ep,

"rinc H].n
Jor any n=ny(m) at most 8me,, intervals I, are not good (m is fixed).

If we can choose a subsequence {n;}iz, such that 1, is good whenever n€ {n;}
we take it. Otherwise, let us define {n;} so that I,,, is not good if n€{n;}. Starting
from {n;} let us make the analogous process for 1,,,. So after the m-th step we essenti-
ally derive the following statement.

LEMMA 4.3. For every fixed m=my(A) and sequence {I.}2, (l,=ny(m) are
integers) one can select a subsequence {m)Z,C{l}~, such that for any
ne{ni, the intervals Ly, Iyy, ..., Ly, are good, apart from L o, Ly ms s B, om-
Here 1=k\<k,<..<k;=m, j=j(m)=8me, and, which is very important, the
indices k, (1=s=j) depend only on m. (If j=0, every I, is good.)

4.3. Now we shall treat the long intervals, i.e. the case when Ax;=4d, or what
is the same, k€K,,, (X, 11, X)) Dy,
The following estimation plays a similar role as Lemma 4.1,

LEMMA 4.4. Let Axy,=0, (k is fixed, 0=k=n). Then for any fixed 0<g=1/2
we can define the index t=t(k,n) and the set h,CJ,, so that p(h,)=4qAx,,,
moreover

(4.15) ()| =3 2Ly if x€JoN\Iw and n = n(q).

In the proof we refine some ideas of the papers by ErRpds and TUrRAN [11] and
ErDOs and SzaBapos [12]. Take those roots y,,=cos 9, (1=i=n) of the n-th
Chebychev polynomials T,(x)=cos n9=2""1x"+... (x=cos 3) which are in
Jin(q). Their number is not less than (1—2¢)nd,/m because of 9;,,—%=n/n
(1=i=n—1: see (2.1)) and A4x,=4,. If

he=UNA@IU] U [eos(9,44 %), cos (3,4 2]]},

Y €0 (q)
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 79
then p(h)=4g4x, and for arbitrary yeJ \h,=J,(g)\J we can write |T,(y)|=
= [sin n9; sin gn|=2q. Consider now the interval M=M(y)= [y —% Ops ¥ +% 5,,] &

cJ, which contains at least in& =nd2 roots of T,(x) (n=ny(q)). Then the

2n
polynomial p(y,n; x)=p(x)= [J[ (x—y,) of degree less than n, can be es-
nEM()
timated at any x4 (x,,,, x;) as follow;
|T,(x)| | T,x)| 5 ly=yi
X)| =0t = ; =
PGl 2 Q;Jx_.'-’i! PO) T,(») r,& [x—yil
¥y

Ip(y)1 Hl PO 1 _ IpO)
yim3 T 2g o o

Now, using the Lagrange interpolatory formula,

PO = 3 IpIILO) = p)I 3™ ,i’ 11,0)

from where Z|N})| =3"% if n=n,(q), because |p(y)|O0.
So for any fixed y€J,(g)\/i, there exists an index ¢=#(y, k,n) such that

w(y)

TG | = BEn@)

(4.16) 1l =

Let us choose the point y=u, such that

0@l = _ min o).
Then, for arbitrary y€J,(¢)\/i
O = [h ) A2 e =

lo@)l Ty—x| x;l

If t=k, k+1 we obtain as in (4.6) that |u,—x,| = q|y—x,|. (This inequality is
trivial if r=k or t=k+1.)
l.e., in both cases for n=n,(q)

L) = qll @)l = 3" if  ye(q)\h,

which means that in (4.15) the index t does not depend on x.
4.4. In the following part we shall construct the function F(x).

4.4.1. Let us consider the short intervals, the sequences {4, }2,, {m}2, sat-
isfying A,/ o, my=[m;(4,)]+1 and the intervals I;,, (I;, for short) of length
2im, (1=j=m,).
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80 P. ERDOS AND P. VERTESI

Let 7=1. Let us choose the subsequence Q fulfilling the requirements of
Lemmas 4.1 and 4.3. If n;€0, let us define g,(x) only on the nodes as follows.

(" l)k+1 if xk,nu E Dl,nu\‘rll
“17) 81 (%) = {0 otherwise.
Then, in virtue of Lemma 4.1
(4.18) Ly (g 0= 3 |L(x)] = (In m)'? = 24,
%, €D\T,

lf xE(IIﬂDl,nu)\Hl.uu
=Xin> k=ky, ks, ..., ks, then let L,,(f,x)ﬁ-le'f(xh)lk,(x). If T\=0, (418) is

meaningless.)

ety i (Generally, if f(x) is defined only for certain x,=

4.4.2. Let npp=nyy (nyy, mx€0) satisfy Vinm,>ny;. Let us define the set
7, by

(4.19)  2|L,, (g1, »)| = (nm)8 if x€T, < (N Dy p)\Himy EE T,

Moreover, if x€T,\ 75, (4.19) should not hold.
a) If 2u(T)=u(Ty) or Ty=@ let g(x;,,)=0 at x;,, not considered in
(4.17) (i.e. those for which does not exist / (1=/=n;,) such that x,,=x ).
b) If 2u(7y)=<u(T,) then for x;,, not considered in (4.17) let, with
la;, aj.)=1;,
(=1 if X, €D 0, \a and x, < a,,
(4.20) 81 (% my) = V(D X €Dy N\ but X = ay,
0 otherwise.

By (4.19) and (4.3) if x£ T,\.7,. then

|Ln12(g1 H ‘x)l = Ei Z(n ]lk,i'xu (x)| + FZ'\S) gl(xk.ﬂlg) !k,rlu (x)1l =
= (I mye—(nm)s = = (nm)io = 4, (TNT)

Here > is extended over the x,’s considered in (4.20); for them Lemma 4.1 can

be applied (because VIn ny5>ny,); in 3@ we take those &’s for which x; ,,=x; .,

at certain 1=/=ny;. So, by (4.19) 2/¥®|=(Inm)"? because x€T,\7,.
Consequently, in both cases we can define the set R,C7, and the function

g1(x) such that 2u(R,)=u(T;). Moreover

4.21) |L,, (g1, %) = 4, whenever x€R,C T.

(At a) R,=7,; at b) R,=T,\7,; if T,= &, the statement (4.21) is meaningless.)
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 81

4.4.3. By the above method we can obtain the sets T;=Ty,=
=(l, N Dyp )\Hy,,,, the subsets R,=R;cTy (i=1,2,..,m; Ry=T;) and
the function g,(x) such that 2u(R;)=p(Ty) and

(4.22) Ly (81, %) = 4, if x€RycCTy, 1=i=m.
Let
(4.23) G, U Ry
i=1

4.4.4. Now consider the polynomial ¢,(x)=¢,(g,,x) satisfying ¢,(x ,)=
=g1 (X, n) (1=k=ny; 1=i=m;) and |o@,|=2. Here deg@,=N,, where N,
depends only on the distribution of the nodes defining g,(x) (see [8], Part 3, 1I/§ 3).

4.4.5. Generally, starting from the subsequence obtained in the (#—1)-th step,
let us make the above construction for (4,,m,) (t=2,3,...). We can suppose

(424) ni—l,m-l = Ny—1 =Ny (‘ = 2! 3! )'

We successively get the sets T};, their parts Ry; with 2u(R,)=u(T,) (i=1, 2, ..., m,),
the functions g,(x) for which

(4'25) Jer(gn X)) =4, if x€RycTy, 1=i=m,
further the sets
(4.26) G,= U Ry.

i=1
We can also construct the corresponding polynomials ¢,(x), taking the values
(% n) (1=k=ny; 1=i=m,) for which [¢,=2 and dego,=N, (t=2,3,..).
Supposing

(4.27) A=132%,_, Gn=1Lt=12.),
let us define the set
(4.28) 6= [G G,]
k=1 M=k
and the function
t=k ‘ j'Nt-l
We state that
(4.30) "Ii@u |L,(f, x)| === whenever x¢G.

(Clearly f€C, moreover | f|=4 can be attained.) If G= @, we have nothing
to prove. Otherwise, if x€G there exists an index-set {r,};~; depending on x for
which x€G,, (k=1,2,...). Then, by (4.26), for any fixed r, we can find an s such
that x€R,, ;. By (4.29)

o Ly, ,(‘Pn X)
L"rk.s(f! x) e Zkl—' —

2
i=1 IAN._, i<r, i=r, i>n,
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Here by (4.24) L,,rk‘s((p,-, xX)=¢;(x) if i<r, so

E--1
| 3 |=2 :Z; i =,

i<r,

further, by (4.25) and (4.27)

i Ll!rk_x(‘pl'k ] x)

)
Tk AN,“_

A
»
x = rkilN
k

= 2 =1
rkANrk‘—l ’

1

Finally, supposing A,=>4; if I=j, I, jé{n;}U{N;}, we can write

IZ[E 2‘1"r

=T

o (-]
> 1:’*/15‘1_1 =2 121' i“F=,

"'si=rk+
because 7, <Ay, (see (4.24)). Consequently,
L, (9= (k=23,..; X€G)

which actually is more than (4.30).

4.4.6. Let us now take the sets TIH=TENRW (i=1,2,..,m; t=1,2,...;
TM=T,, RM=R,) given by the previous steps. If, e.g. ¢=1, let us begin the
construction of gl?)(x) exactly as we did for g;(x)=g{!(x) in 4.4.1 (i.e., we use
the same A;, my, T; and nodes; compare (4.17)), but the distinctions a) and b)
in 4.4.2 should be defined by the measure of 713 instead of 7,=Z where
T3 collects those points of the set THI=TINRY for which 2|L,, (g, x)|>
>(In m;)'”® (see (4.19)). Consequently, by the method analogous to 4.4.1—4.4.5
(using the same {n,}) we can construct the corresponding sets R, GI*}, the poly-
nomials ¢[*(x) of degree =N, and the continuous function

oo 21
(4.31) fL2(x) = 2_'@_
&1 Py,
with | f¥)| =4 such that on the set
4.32) aan=n[0 G;ﬂ]
k=1 \r=k
we have
(4.33) lim [L,(f1, x)| = (x€G).

By the same considerations starting from the sets 7/P=TU-IN\RI-1
(/=3,4, ..., p where p will be defined later), we can successively define the functions
fWeC, || fU)=4 and the sets G such that
(4.34) lim |L,(f1, x)] = (x€GU)

(=12, ..,p; fM=f GH=0QG).
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Later we shall apply the fact that for any ¢ and i

(439) WER =2 (=1,2..., )
t

and for any fixed 7 and i

(436) RENRM =g (1)

(see the definition of the sets RI).
Now let ¢=0 be arbitrarily small and p=p, the smallest positive integer
so that

437) WY =L (i=1,2,.,m 1=1,2,.).

r

It is easy to see that 1 §p9§3+!l(:)g ol

4.4.77. To define the proper (linear) combination of the functions 13, fI2, . fIr]
on GMUGHIU...UJGP we prove the following statement, which generalizes an
idea of G. GRUNWALD [4].

LeMMA 4.5. If ry(x), ra(x)C, moreover

(4.38) im |L,(ry, x)| == if x€By, u(By) <o,
(4.39) Iim [L,(ry, ¥)| =o= if x€By, p(By) <<,

then any fixed interval (f,, Bs) (f1=<Ps) contains an « such that
(4.40) Tiﬁ |L,(ar;+75, )| =< a.e. on ByUB,.
REMARK. An interesting special case can be obtained by B,=. To prove
the lemma let B, be the part of B, U B, fulfilling (4.38). Clearly B,CB,. If
E; = {x: xB,, TEE |Ly(Ary+ra, X)| <o} (By <24 <Py

then E;NE,=@ (A#p). Indeed, otherwise we can write for x€E;NE,
eo = im |(A—p) Ly (ry, x)| = Em |L,(ry 415, x)— Ly (ury+75, X)| =

= ,E.TII; (|Ln(’h-}.+r2" x)|+ILn(ﬂr1+r21 x)') <°°?

a contradiction. Using u(B;)<e and that only countable E,’s have posi-
tive measure (f,<Ai<f,), there exists a€(fy, f;) such that u(E,)=0 from
where (4.40) is true ae. on B,. If x€(B,UB,)\B, (when x€B,, too) both
L, (ary, x)|=K(x) (0=K(x)<oe), and 'El_m |L,(rs, x)|=c= hold which mean (4.40)

for x. These prove the lemma.

4.4.8. Choosing f,=0 and f,=0.5, consider that «€(0,0.5) for which,
with e,=ay fT1 + 1%,

"H:ﬁ IL,(ey, x)) === a.e. on GMUGH.
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Obviously |le,| =2+4<8. By this construction we succesively get the values
;_1€(0, 0.5) and the continuous functions e¢;=o;_;e;_;+f " satisfying

ElL,,(eg,x)[=m a.e. on GMUGE.. UGH
and [e|=0.5]e;_yf +1| /T <8 (i=3,4, ..., p,).

Le., if i=p,, we can say that for every fixed ¢=0 there exists a function
J.€C, | fll=8 so that

(4.41) fim |L,(fo, X)| === a.e. on G,

Pg
where G,= | GU.
i=1
4.4.9. We go on with the construction of F(x) for the long intervals (4x;,>=4d,
i.e. k€K,,) employing the same 4,,m,, n,; and I, (i=1,2,..,m; t=1,2,..)
as for the short intervals. First a simple note. If

(4.42) H,, ﬂkéﬁ)’ e (n=1,2,..)
and =

sm: "
(4.43) g = qy= 8:_n,

then by Lemma 4.4 for any ¢ and i
(4.44) W(Hy,) = 2:4,= =2, if 1y = nmy(m);

i §
the latter should be supposed.
For simplicity’s sake let (D, \Hs )N+ @, say, for the indices
jl’ jﬂ! LA | jseKz,ﬂu.

(4.45) (iyms i) Vg # D (0 =15 Jas weaJss S=1).

We take the indices 1(i, ny) (i=j,, jay ..., j) guaranteed by Lemma 4.4 and
define the function w;(x) as follows.

1 when k=1t(i,ny),
4i(Xe ) = 0 otherwise,
[ui(x)| =1, ycC. Then clearly
(4‘46) lLﬂll(uiD x)l = nnu_ lf xE Jf. I':u\hf,ﬂn (I = jl’j2’ seey js)'

4.4.10. To combine the at most 2my ! In ny; functions u;(x) we need the following
LeMMA 4.6. Let ry, r,€C, moreover

(4.47) IL,(ry, X)| = M, if x€By, p(By) <e,

(4.48) |L,(rs, )| = My if xEBy, (B, <-oo.

Consider the fixed real numbers f,<p, and the positive integer k. Further take
(4.49) t= BB +B (=01, k).
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Then, if My=M, and 0=p,<p,=0.5, there exists an o; (0=j=k) and E of measure

at least [lhk_:_I],u(BlUBz), EcB,UB,, so that

(4.50) |Ln(ojry+ 19, X)) = 20 ’9 ‘B‘ M, if x€E.
To prove this, we verify at first a statement which is slightly more than the special
case corresponding to B,=0.

Namely, if we have only (4.47), then there exist P, of measure :='"[1 —%],u (By),
P,CB, and a; (0=j=k) such that (4.50) is true for x€P,.

Indeed, let

Cf={x: x€B; and |L,(o;7 475, X)) %-E%M,} (i=0,1,.., k).

It is easy to see that any x€ B, can be contained in at most one B,\C; (see (4.47),
(4.50) and the similar part of 4.4.7), from where (B,\C)N(B\C)=@ (i=l).
By B\C;,CB,, for certain 0=j=k pu(B,\C;)=u(B,)(k+1)"', which gives the
special case with P,=C;.

Now let 15'1 be that part of B,UB, where (4.47) is satisfied. Take that «;, for
which (4.50) is true on certain P,C B,. If x€(B,UBy)\ B, then by (4.48),

|L,(atjry 475, X)| = [My;—0.5M,| = 0.5M, = (B,— ) M,
from where we obtain the lemma by E=P,U((B,UBy)\B,).
4.4.11. Using this lemma with the cast
n) =u,(x), Bi= (Jjnu \bym) Viymy Mi=1, (i=1,2),
pr=0, B,=05 and k=/[In?ny]
(see 4.4.9 and 4.4.10), we obtain a v,(x)€C for which

| Ly, (03, %)] =

where (with the above cast)

0= p(B,UBy) —pu(E,y) =

if x€E,

u(B,UB) 28

niy

k41 m,

lIA

3

[vall =B lIrall +llrell <2. At the next step, by ri=uv,, By=E;, ry=u;, and B,=
=(J;,\A;,) N1, we get the function v3(x)€C and the set E,. Finally, the (s—1)-th
step gives the function v,(x)%Lw,(x)eC, the set E. 2L W,cl, so that

Mg o e el
(4.51) |L)|n('l'11 \)' (4;‘)( 1 (4]!1 ", )11 Wy You if XEWI
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where
Wy . 2y

4.52) 2’ BN OL-E = =0 S = =0

because s<In ny,. Further notice that |wy|=2. By definition y, /= (e.g. 7,53/")
and

4.53) B, N ) OV ] =) = 12
if ny=n(my). (It is easy to see that the left hand sides of (4.52) and (4.53) are
the same.)

Now consider the polynomial y,(x) for which [;]|=4 and ¥, (x,)=w;(x;,)
(k=1,2,...,n; n=ny;). Clearly we can suppose n,,>degy,, too (compare
with 4.4.4).

By this construction one successively obtains the polynomials (x)=1;(x)
and the sets W,=Wy (:'—1 2, -mﬂ- then generally the polynomials 1, (x)

and the sets W, (i=1,2, ..., m, =1 ...) such that [y,|=4, degy,<n, ;\y
(where ng p, o 1=M;11,2) and

(4.54) | L Wiy X)| = g if xEW, C I,

(4.55) BUDg, e \Ha, ) VI ) — e (W) = L

(If (Dﬂ,,,ﬁ\). ) I m=@ then the corresponding W,,=Qj, further w,(x)=

l'l(x)_

4.4.12. We can define the sequence {n,;} (satisfying all the requirements mentioned
above) such that
?nﬂ e ml‘ts’?m i-1*

Consider the function

(4.56) = Sl S Ve

=1 ml l=ll M, i-1

(where /,,=1 and ),.w . ) on the set

@4.57) w=U D(U W,j].
k=1t=k “i=1

By the method applied in 4.4.5 we get

(4.58) H |L(h, x)| = if xEW.

Moreover it is easy to fulfil the condition |4 =8. Now, using Lemma 4.5 for f,cC
and the set G, (see 4.4.8), further for 2¢C and W, we obtain as follows.

For arbitrary fixed ¢=0 there exists a continuous function F,(x),|F,)|=16
(if, e.g. [Br, Bl=I[0,1]) such that

(4.59) lim |L,(F,, x)| == a.e.onP,, u(P)=2—p,
where P,=G,UWc[—1,1].
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Here the only thing we have to prove is that u(P,)=2—p. For this aim let us
see the definitions made in 4.4.6 and 4.4.8. We can write

o oo

G,UW = [U Grﬂ]UW 0A0U RE#’]

J=1k=1t=ki=1

B8 DM - 30 Dl = i (37 fon

k=1it=k i=1 k=1

[Indeed, by W=G and ) RY'=4,,,

i=1

G,NW = ) GUI—{U v A,,} -{n00 Au}s

i=0 j=0k=1t= k=1t=k j=0
because x€{...}, if and only if for a certain j there exist infinitely many ¢ such
that xcd,; (s=1,2). Of course, {...}s=) Qk.]
k=1

Let us see the measure of [...] for a good interval [; ,, if n=n,.

The sets R (j=1,2, ...,p,) overlap (Dy,, \H;, ,,“)F'II, m, apart from a part
of measure not exceeding gm,’l (see (4. 35)—(4. 37)). Morcover the sets of type
a) and b) from H,,, NI, have the measure not exceeding &,,(2m,)~" altogether
(since i is good); the same is true for the parts of type c) (see 4.1.4 and 4.2).

Further, by (4.55) the set W) contains the set (Dg,,\Ha,n,)];» excluding
a part of measure not exceeding g, (m,)~ .

Using that D,ND,=@, H,cD,, H,cD, and D,UD,=[—1,1], by the
above considerations and (4.44) we can estimate as follows (;=1; ).

p(l.-D = .L(((DJ\H]_)mI;)——-f-#((DE\Ha)ﬂI)_aml’ -

@ _E’i'sz __2._....1_ 3
m. m — m mr( E,,.,"‘Q)-

= #Uiﬂ(D1UD2)\(1'£DH1)\(I;QH2))_
By the construction and Lemma 4.3, the good intervals I, ,, are uniquely determined

by m,, ie. by t whenever n=ng, (k=1,2,...,my; T=t), its number is =m,—
—8mye,,. So we can write

e =§;#([---D§‘Z’,u([-'-])%(m. —8mep,) — (2 3em—0) =

= (1—8e,)(2—3e,,—0) >2—19%,—0¢ (t=1,2,..),

where >’ means that we consider only the good indices 7 (¢ is fixed).
By this we obtain

w(Qp = n [,g V,) = (V) =2-1%,,—¢

On the other hand, 0,2 0Q,>... from where, as it is well-known, u(Qy)—~u(P,
which gives pu(P,)=2—o.
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4.4.13. Now we state the following
LeMMA 4.7. If g€1,8s, ... €C and Tim g,(x)=co on B, then for arbitrary fixed A,

g and M there exist the set HC B and the index N such that pu(H)=¢g; moreover if
x€ BN\ H then for a certain u(x) we have

(4.60) Zuxy(X) = A where M = u(x) = N.
Indeed, let
H, = {x:x€B, gy, (x) <4, i=0,1,...,1} (=0,1,..).

If for a certain ¢t=s, u(H,)=¢, then we can choose N= M+ s, because if x¢€ B\ H,
then with suitable u(x), M=u(x)=N, we obtain (4.60). On the other hand, if

u(H)=e (t=0,1, ...) then using H,2H, , we get p[Lj H,]és wich means that
=0
for x¢ (\H,CB, Timg,(x)=4 holds, a contradiction.
=0 a2

4.4.14. Now we construct the function F(x). For this aim let m,=A4iy =1,
A;=2 and g;=2"1. By (4.59) and the previous lemma we can find an f;€C,
[l fil =16, the index n; and the set S;c[—1,1], u(S;)=2—2p, so that

IL,, x(f1, X)| = 4, = 13)5, whenever x€S; (see 4.4.4).

Generally, let §,=27% A,>kg2} _, and choose m,=N,_,+ 1. As above, we

obtain the polynomial ¢.(x) of degree =N, [ =32, the set S,c[-1,1],
u(S)=2-—29,, and the index n; so that

ILu o (Prs X)| = Ai = K325, _, if x€S,

with my=w(x)=n, (k=2,3,...). Choosing N, large enough compared to n,
we obtain, using the arguments of 4.4.4-4.4.5, that for the continuous function

k=1
and for the set S= ") [ S; of measure 2
k=1li=k

Tim |L,(F, x)| = = onS,

which is the statement of the theorem.
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