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1 . Introduction

The set A of nonnegative integers is an asymptotic basis of

order h if every sufficiently large integer is the sum of h elements

of A . For example, the squares form an asymptotic basis of order 4

and the square-free numbers form an asymptotic basis of order 2 . If

A is an asymptotic basis of order h, but no proper subset of A is

an asymptotic basis of order h, then A is a minimal asymptotic basis

of order h . Minimal asymptotic bases have been studied by Erdös,

Hártter, Nathanson, and Stöhr [4, 5, 7, 8, 10-12, 18, 19, 21, 23, 24] .

It usually is difficult to determine if a given asymptotic basis con-

tains a minimal asymptotic basis . For example, it is not known if

there is a minimal asymptotic basis consisting only of squares . In

a previous paper [11], we proved that the set of square-free

does contain a minimal asymptotic basis of order 2 .

prove the following more general result .

basis of order 2 . Let

the integer n in the form n = aj + ak , where a j , a k E A and a j < a k .

If r(n) > c log n for some constant c > log - 1 (4/3) and all n > N,

then A contains a minimal asymptotic basis of order 2 . Perhaps this

In this paper we

Let A be an asymptotic

numbers

r(n) denote the number of representations of
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theorem is best possible in the sense that there may exist an abso-

lute constant C > 0 such that, if c < C, then there exists a set A

of integers with r(n) > c log n for n > N such that A does not con-

tain a minimal asymptotic basis of order 2 . We are far from being

able to prove this . But we do prove that with Lebesgue measure on

the probability space of all sequences of nonnegative integers, almost

every sequence contains a minimal asymptotic basis of order 2 .

We obtain these and other results about bases in the following

more general situation . Let U be an infinite set of positive inte-

gers . The set A is an asymptotic basis of order h for U if all but

finitely many numbers u E U can be written as the sum of h elements

of A . If A is an asymptotic basis of order h for U, but no proper

subset of A has this property, then A is a minimal asymptotic basis

of order h for U .

Dual to the concept of minimal basis is that of maximal nonbasis .

The set A of nonnegative integers is an asymptotic nonbasis of order h

if there are infinitely many positive integers that cannot be written

as the sum of h elements of A . If A is an asymptotic nonbasis of

order h, but no proper superset of A is an asymptotic nonbasis of

order h, then A is a maximal asymptotic nonbasis of order h . In

other words, A is a maximal asymptotic nonbasis of order h, but,

for every nonnegative integer b f A, the set A U {b} is an asymptotic

basis of order h . Maximal nonbases were introduced by Nathanson [21],

and they have been studied by Erdös, Deshouillers and Grekos, Henne-

feld, Nathanson, and Turjányi [3, 6-9, 11, 20-23, 26] .

It is usually difficult to decide if a given asymptotic nonbasis

is contained in a maximal asymptotic nonbasis, or if a given sequence

of integers contains a maximal asymptotic nonbasis . In this paper we

prove that if A is an asymptotic basis of order 2 such that A contains

arbitrarily long intervals and also r(n) > c log n for some constant
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c > log - 1 (4/3) and all n > N, then A contains a maximal asymptotic

nonbasis of order 2 . Moreover, with Lebesgue measure on the space of

all sets of nonnegative integers, almost every set contains a maximal

asymptotic nonbasis of order 2 .

Many natural sets of integers do not contain maximal asymptotic

nonbases . Indeed, any maximal asymptotic nonbasis of order 2 must

contain arbitrarily long finite arithmetic progressions . We showed

in [11] that there is no maximal asymptotic nonbasis of order 2 con-

sisting only of square-free numbers, but that there does exist a set

A* of square-free numbers with the property that A* is an asymptotic

nonbasis of order 2, but, for any square-free number b ~ A*, the set

A* U {b) is an asymptotic basis of order 2 .

Let A and A* be sets of nonnegative

asymptotic nonbasis of order h maximal with respect to A if A* is an

asymptotic nonbasis of order h, but, for

integers . Then A* is an

every b E A\A*, the set

A* U ib) is an asymptotic basis of order h . We shall prove that if

A is an asymptotic basis of order 2 such that (i) r(n) > c log n for

c > log -1 (4/3) and n > N, and (íi) for every finite set F c A there

exist infinitely many n such that n - a E A for all a E F, then A

contains a subset A* such that A* is an asymptotic nonbasis of order

2 maximal with respect to A .

As before, we obtain these and other results about maximal non-

bases in a more general setting . Let U be an infinite set of positive

integers . The set A is an asymptotic nonbasis of order h for U if

there are infinitely many numbers belonging to U that cannot be

Written as the sum of h elements of A . If A is an asymptotic non-

basis of order h for U but every proper superset of A is an asympto-

3¢ basis of order h for U, then A is a maximal asymptotic nonbasis

order h for U . If A and A* are sets of nonnegative integers such

t A* is an asymptotic nonbasis of order h for U, but A* U (b) is
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an asymptotic basis of order h for U for every b E A\A*, then A* is

an a mptotic nonbasis of order h for U maximall with respect to A .

In this paper we prove theorems only about asymptotic bases and

nonbases of order 2 . It is an unsolved problem to obtain results for

bases and nonbases of orders h > 3 .

Notation . Let ISI denote the cardinality of the finite set S .

Let [a,b] denote the interval of integers a < n < b . Let L be a

positive integer . The set A of nonnegative integers contains an in-

terval of length L if [b, b + L - 1] c:A for some integer b > 0 . The

set A contains a gap of length L if [b, b + L - 1] n A = 0 for some

b > 0 . The relative complement of B in A is denoted A\B .

2 . Systems of Distinct Representatives

The critical device used in this paper is the following estimate

for simultaneous systems of distinct representatives .

s

	

t
LEMMA 1 . Let s > 1 and t > 0 . Let S = U

	

S • and T = U

	

T
i=1 1

	

k=1 k
be sets satisfying the following conditions :

(la)

	

JS i j'= 1 or 2 and ITkI = 1 or 2 for i = 1,

	

s and

k = 1, . . ., t ;

(lb) S i n S j = Tk n T Q = 0 for 1 < i < j < s and 1 < k < £ < t ;

(lc) S i ~ Tk for all i and k .

Let (D(S,T) denote the number of sets X c S such that

(1d)

	

IXI = s

(le)

	

IX A Si
l = 1 for í = 1, . . ., s ;

(If)

	

X n Tk ~

	

for k = 1, . . ., t .

Then 4)(S,T) < 2 s (3/4) í . This estimate is best possible .

Proof . Let ~(s,t) = 2 s (3/4) ít

t
T = U

	

T k satisfy (la), (lb), (lc) .
k=1

s
Suppose that S = U

	

Si and
i=1

We shall show that
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0(S,T) < (~ (s,t) . We can assume without loss of generality that

S i A T ~ 0 for i = 1, 2, . . ., s . The proof is by induction on t .

t = 0, then T =

	

and

<D(S,T) < 2 s = á(s,0)

for all s > 1 .

Now assume that (D(S,T) < ~(s,t') whenever s > 1 and 0 < t' < t .

We shall prove the Lemma for t . If TR n S =

	

for some k, then

X A Tt = 0 for all X c S, and so

4>(S,T) = 0 < ~(s,t) .

If ITR n SI = 1 for some £, then T Q n Sj = {bl for some unique j, and

b E X for every set X c S that satisfies (1d), (le), (If) . Let

X' = X\{bl . Then X = X' U {bl . Let S' = Ui#j S i and T' = Uk#t Tk .

Then S' and T' satisfy conditions (la), (lb), (lc), and X' satisfies

(Id), (le), (If) for S' and T' . Conversely, if X' satisfies (Id),

(le), (If) for S' and T', then X = X' U {bl satisfies (ld), (le), (If)

for S and T . The induction hypothesis implies that

(D(S,T) _ 1)(S',T') < 2s -1 (3/4)t -1

< 2 s (3/4) t = ~(s,t) .

Finally, if IT k n S1 > 1 for all k = 1, . . ., t, then condition

(la) implies that ITk1 = 2 and Tk c S, hence T = U*

	

Tk c S . There
k=1

are two cases .

Case I .

	

S = T .

	

If ISil = 1 for all i = 1, . . ., s, then

4(S,T) = 1 < ~(s,t) .

	

Suppose that Isis = 2 for some i, say, i

	

1,

and that S 1 = {a,bl . Then a E T Q and b E Tm , and condition (lc)

implies that k ~ m . Let T x _ ( a,dj and Tm = {b,cl . Then c E Sj for

some j # 1 . Let X c S satisfy conditions (Id) , (le), (If) . Then

a E X or b E X . If a EX, then b AX, hence c E X since X n Tm # 0 .

If
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Let X' = X\{a,c) . Let S' = Ui#l,j S i and T' = Uk¢Q,m Tk . Then

X' c S' and X' satisfies (ld), (le), (If) for the sets S' and T' .

Conversely, if X' c S' satisfies (1d), (le), (If) for S' and T', then

X = X' U {a,c} satisfies (ld), (le), (1f) for S and T . The induction

hypothesis implies that there are at most ~(s - 2, t - 2) sets X c S

such that a E X and X satisfies (ld), (le), (If). Similarly, there

are at most O(s - 2, t - 2) sets X c S such that b E X and X satisfies

(Id), (le), (If) .

	

Therefore,

4)(S,T) < 2~(s - 2, t - 2) = 2 .2s-2 (3/4) t-2

< 2 s (3/4) t = ~(s,t) .

Case II . S ¢ T . Then Sj ¢ T for some j . But Sj A T ¢ 0, hence

jSj j = 2 and jS j n Tj = 1 . Let Sj = {a,b}, where a E T Q c T and b 4 T .

Let TQ = fa,c} . We divide the sets X c S satisfying (1d), (le), (1f)

into two classes : Either a E X or b E X . If b E X, then a ~ X .

Since X n T R ~ 0, it follows that c E X . But c E Sm for some m ¢ j .

Let S' = Ui#j,m S i and T' = Lk#t Tk . Then X' = X\{b,c} satisfies (ld),

(le), (If) for the sets S' and T' . It follows that there are at most

~(s - 2, t - 1) sets X such that b E X and X satisfies (ld), (le),

(If) for S and T . Similarly, there are at most ~(s - 1, t - 1) sets

X with a E X . Therefore,

4~(S,T) < q)(s - 2, t - 1) + ~(s - 1, t - 1)

= 2 s-2 (3/4) t-1 + 2 s-1 (3/4) t-1

= 2 s (3/4) í = 0(s,í) .

This proves that O(S,T) < ~(s,t) for all s > 1 and t > 0 .

This estimate is best possible . If s > 2t, there exist sets S

and T satisfying conditions (la), (lb), (lc) such that
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4)(S,T) _ ~(s,t) .

	

Let al ,

	

a s , b l ,

	

b s be 2s distinct elements .

Let S i = {a i , bi} for i = 1,

	

s and let Tk - (a k, a t+k } for k =
S

	

t
1, . . ., t . Let S = U

	

SS and let T = U

	

T . It is easy to see
i=1 1

	

k=1 k

that <D(S,T) = 3 í 2 s-2t = ~(s,t) .

This completes the proof of Lemma 1 .

Remark . It is an open combinatorial problem to find good esti-

mates for cD(S,T) in Lemma 1 when condition (la) is replaced by

condition 1 < IS i j < h and 1 < IT k1 <

LEMMA 2 . Let n > N0 and let R(n)

gers such that

(2a)

	

IRi(n)j = 1 or 2 ;

(2b)

	

JRi(n)I = 1 for at most one

(2c)

	

R. (n) A R . (n) _ 0 for 1 < i

(2d) Ri (n) ~ Rk (m) for all 1

(2e) r(n) > c log n for some

n > N 1 .

Then there exists a number N 2 such

1	 1 	<>-
1+őm=N2 m

h

the

for h > 3 .

r(n)
U

	

Ri(n) be a set of inte-
i=1

i ;

< j < r (n) ;

< i < r(n) and 1 < k < r(m) , m # n ;

constant c > log - 1 (4/3) and all

that for all n > N 0 there is a

X(n) c R(n) such that

(2f)

	

IX(n)j = r(n) ;

(2g)

	

IX(n) A Ri (n)I = 1 for i = 1, . . ., r(n) ;

(2h) For every m > N 2 , m ~ n, there is a j < r(m) such that

X(n) Cl R j (m) _ 0 .

Proof . Choose d > 0 so that c log(4/3) = 1 + S . Choose N 2 > N l

so that

We shall apply Lemma 1 with S = R(n), s = r(n), T = R(m), and t =

r(m) . Conditions (2a), (2c), (2d) indicate that the sets S and T

set
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satisfy (la), (lb), (lc) . It follows from Lemma 1 that there are at

most 2r(n)(3/4)r(m) sets X(n) c R(n) that satisfy (2f) and (2g) but

violate (2h) . Therefore, the number of sets X(n) c R(n) that satisfy

(2f) and (2g) but violate (2h) for some m > N 2 is at most

E
2
r (n) ( 3~r(m) < 2 r (n) _7 ( 3~c log m

m=N2

	

m=N2 4

2
r (n)

z
~

	

1
m=N2 ml+ö

< 2r(n)(1) = 2r(n)-1

2 r (n)	 1
c log (4/3)m=N 2 m

By conditions (2a) and (2b), there are at least 2r(n)-1 sets

X(n) c R(n) satisfying (2f) and (2g) . Therefore, there must exist

a set X(n) c R(n) satisfying (2f), (2g), and (2h) . This completes

the proof of Lemma 2 .

Remark . Lemma 2 is the crucial tool used to obtain the results

in this paper . The following is a typical application . Let A = {a i )

be a strictly increasing sequence of positive integers . Let r(n)

denote the number of representations of n in the form n = a~ + a k ,

where aj , ak E A and a. < ak . Let R(n) be the union of the sets

Ri (n) _ {aj , ak), where a j , a k E A and a~ + ak = n . Notice that

JR i (n)j = 1 or 2, and that JRi (n)I = 1 only if Ri (n) _ {n/2), where

n is even and n/2 E A . Clearly, R(n) _ 0 if and only if n f 2A . It

is easy to see that (2a)-(2d) automatically hold for any sequence A,

and that (2e) is true if A is an asymptotic

that every sufficiently large
I

sentations for c > log(4/3) . Let X(n)

basis of order 2 such

integer n has at least c log n repre-

c R(n) satisfy conditions

(2g) and (2h) . If we delete the numbers in X(n) from A, then (2g)
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implies that we destroy every representation of n . Consequently,

n f 2 (A\X(n)) . But condition (2h) implies that no other number

m > N 2 is destroyed, that is, m E 2 (A\X(n)) for all m > N 2 , m # n .

This allows us to modify the sequence A in various ways .

3 . Minimal Asymptotic Bases

THEOREM 1 . Let A = {ai} be a strictly increasing sequence of

nonnegative integers . Let r(m) denote the number of representations

of m in the form m = aj + ak , where aj , ak

U = fun} be a strictly increasing sequence

E A and aj < ak . Let

of positive integers . Let

that is, un E 2A for n> N0 .

C > log - 1 (4/3) and all

A be an asymptotic basis of order 2 for U ;

Suppose that r(un ) > c log n for some constant

n > N1 . Suppose also that for every a i E A there are infinitely many

aj E A such that a i + aj E U . Then A contains a minimal asymptotic

basis of order 2 for U .

Proof . Choose S > 0 so that c log(4/3) = 1 + 36 . Let un E U

and let a l < a 2 <

	

< ar(u ) < un /2 be the numbers a i E A such that
n

ai < un/2 and un

	

a i E A . We set Ri (n) _ {ai , un

	

ail and

r(un )
R(n) = U

	

Ri(n) . The sets R(n) satisfy conditions (2a)-(2e) of
i=1

Lemma 2 . We shall construct inductively a decreasing sequence of

sets A

	

A 1 z) A2 D . . . such that A* _ (1 An is a minimal asymptotic
n=1

basis for U .

First we construct A 1 . Let a l * E A . Choose an integer n(l) > N 0

such that un(1) > 2al * and un(l) - al * E A

	

By Lemma 2, there exists

a set X(n(1)) c R(n(1)) satisfying conditions (2f), (2g), and (2h) .

Since X(n(1)) A Ri (n(1)) # 0 for i = 1, 2, . . .,r(un(l)) it follows

that un(l) 2 (A\X(n(1))) . But for N 2 sufficiently large and all

d > N2 , m

	

n(1), there is a j < r(um) such that X(n(1)) n Ri (m) _ 0,
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Al - (A\X(n(1))) U {al*, un(1) - al

Then A, c A and un(1) E 2A 1 . Moreover, un(1) = a l * +

is the unique representation of un(1) as a sum of two

Note that A\A 1 c [0, un(1) ] '
Suppose that we have determined integers n(1) < n(2) < .

n(k - 1) and sets A z) A1 z) A2

	

Ak-1 with the following proper-

ties :

(i)

	

A\Ai c [0, un(i) ] for i = 1, 2, . . ., k - 1 ;

(ii)

	

Ai n [0, un(i) ] = Ai + , n [0, un(i) ] for i = 1, 2, . . .,k-2 ;

(iii) um E 2Ak-1 for all m > N 2 , m ~ n(1), n(2),

	

n(k-1) ;

(iv) For each i = 1, . . ., k - 1 there is a number a i * E A i

such that un(i) - ai * E Ai and un(i) = a i * + (un(i) - a i *)
is the unique representation of un(i) as a sum of two

elements of

	

Ail
Now we construct the number n(k) and the set A1, . Let rk-1 (m) denote

the number of representations of m as a sum of two elements of Ak-1

Property (i) implies that rk-1 (m) > r(m) - un(k-1)' Choose

w l > un(k-1) such that for un > w l we have

rk-l(un) > r(un) - un(k 1)

Choose w2 > 2w1 such that for un > w2

l+36
> log(4/3) log n - un(k-1)

	 1 + 26
> log(4/3) log n .

we have

	 1 + 26
rk-1 (un)

	

wl > log(4/3) log n - wk-l ( un)

	 1 + S
> log(4/3j log n .

(un(1) - al*)

elements of A 1 ,



Let ak * E Ak-1 A [0, un(k-1)]' A further constraint on the

choice of ak* will appear later . Choose n(k) > n(k - 1) such that

un(k) > wl + w2 and un(k) - ak * E Ak-l . Let X' be the set consisting

of all a E Ak-1 n [un(k) - wl + 1, un(k) I such that un(k)

	

a E Ak-1'

observe that un(k) - a k * E X' and that jX'j < w1 . Let rk 1 (m) denote

the number of representations of m as the sum of two elements of

Ak _ 1 \X' . Then for un > un(k)

	

wl

For w l < un < un(k) - wl we have

Therefore,

for all un > wl .

Let un > wl and let al < . . . < ar e

	

u

	

< un /2 be the elements
k-1 ( n )

of Ak-1 \X' such that a i < un/2 and un - ai E Ak-1 \X

{ai , un - ai} and let R(n) = Urk 1(un) Ri (n) . Note that R(n(k)) c_
i 1

[wi l un (k) - w l ] •

rk-1 (un ) > rk-1 (un)

rk-1 (un )

	

rk-1 (un)

ss

we have

	 1 + ő
w l > log(4J3) log n .

	 1 + 26
> log(4/3) log n .

	 1 + ö
rk-1 (un ) > log(4/3) log n

Let Ri (n) _

The sets R(n) satisfy conditions (2a)-(2e) of

Lemma 2, where NO = N 1 is the least n such that un > wl . Therefore,

there exists a set X(n(k)) c R(n(k)) satisfying conditions (2f)-(2h) .

In particular, un(k) A 2(Ak-1\(X(n(k)) U X')), but un E

2(Ak-1\(X(n(k)) U X')) for all n > N 2 , n # n(i) for i = 1, 2,

	

k .

We set

Ak = (Ak-1\(X(n(k)) U X')) U {u n(k) - ak*} .

Then un(k) E 2A k, and un(k) = ak* + (un(k) - ak*) is the unique

representation of un(k) as a sum of two elements of Ak .
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Thus, we have determined inductively an increasing sequence of

integers n(1) < n(2) < . ., and a decreasing sequence of sets

Al

	

A2

	

and a sequence of integers {a k * } k=1 such that ak * E A*

(1

	

Aj for all k, and the unique representation of un(k) as a sum
j=1

of two elements of A* is un(k) = a k * + (un(k) - ak *) . Moreover,

un E 2A* for all n > N 2 . Thus, A* is an asymptotic basis of order 2

for U .

Recall that at the k-th step of the construction it was neces-

sary to choose an integer a k* E Ak-1 A [0, un(k-1)]= A*' [0, un(k-1) ] '

Now we impose the crucial constraint . Choose each integer a* E A*

infinitely often as a number a k* . That is, if a* E A*, then a*= a k*

for infinitely many k . Then there will be infinitely nany numbers k

such that a* + (un(k) - a*) is the unique representation of un(k) as

a sum of two elements of A* . This implies that, for any ax E A*,

there are infinitely many numbers u n(k) such that un(k) ~ 2(A*\{a*}) .

Therefore, A* is a minimal asymptotic basis of order 2 for U . This

completes the proof of Theorem 1 .

THEOREM 2 . Let A be an asymptotic basis of order 2 such that

r(n) > c log n for some constant c > log - 1 (4/3) and all n > N1 . Then

A contains a minimal asymptotic basis of order 2 .

Proof . Let U be the set of all positive integers . Then the

assertion follows immediately from Theorem i . Note that if a i E A,

then a i + aj E U for all aj E A .

THEOREM 3 . With Lebesgue measure on the probability space of

all sequences of positive integers, a random sequence contains a

minimal asymptotic basis of order 2 with probability 1 .

Proof . By the method of Erdös-Rényi [13, 17], there is a proba-

bility measure u on the space of all strictly increasing sequences of
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positive integers such that, if B (n) denotes the set of all sequences

containing n, then p(B (n) ) = 1/2 for all n . The law of large numbers

implies that r(n) - n/8 for almost all sequences . Since n/8 > clog n

for any c > log - 1 (4/3) and all sufficiently large n, the result fol-

lows from Theorem 2 .

THEOREM 4 . The sequence of square-free numbers contains a mini-

mal asymptotic basis of order 2 .

Proof . A simple sieve argument [2, 14, 15] shows that there are

at least cn representations of n as a sum of two square-free numbers

for some c > 0 and all n > N1 . The result follows from Theorem 2 .

THEOREM 5 . Let A consist of all numbers of the form p or pq,

where p and q are odd primes . Then A contains a minimal asymptotic

basis of order 2 for the set of positive even integers .

Proof . Chen [1, 16] proved that there are at least cn/log 2 n

representations of 2n as a sum of two elements of A . The result fol-

lows from Theorem 1 .

Remark . If every sufficiently large even integer is the sum of

two primes in at least cn/log2n different ways, that is, if the strong

form of Goldbach's conjecture is true, then there is a subset of the

primes that is a minimal asymptotic basis of order 2 for the even

numbers .

4 . Maximal Asymptotic Nonbases

THEOREM 6 . Let A = {ai) be an asymptotic basis of order 2 for

U = {un 1 . Let r(un) denote the number of representations of un in the

form un = aj + ak , where aj , ak E A and aj < ak . Suppose that

r(un) >c log n for some constant c > log -1 (4/3) and all n > N 1 .



will be a maximal

difference is the

the set Ak-l have

sufficiently large that

val [un(k)

	

un(k-1)'

following .

tations of un(k) as a

set Ak . This set has

then un(k) - b E Ak . Let

A* is an asymptotic nonbasis

102

Suppose also that for every L > 1 there are infinitely many n such

that [un - L, un ] c A . Then A contains a maximal asymptotic nonbasis

of order 2 for U .

Proof . Repeating the proof of Theorem 1, we can construct in-

ductively an increasing sequence of numbers {un(k))k=1 c U and a de-

creasing sequence of sets A z) Al z) A2

asymptotic nonbasis of order 2 for U . The essential

Suppose that the number un(k-1) E U and

been determined . Let L = un(k-1)' Choose un(k)
Ak-1 contains the inter-

to destroy all represen-

un(k) > 2un(k-1) and

un(k) ] . Apply Lemma 2

sum

the

such that A* _ C1

	

An
n=1

of two elements of A k-l_. This produces the

property that if b 4 Ak and b E [0, un(k-1)

A* = n

	

Ak . If un E U and n > K 2 , then
k=1

un E 2A* if and only if un is not one of the numbers u n(k) . Thus,

of order 2 for U . But if b f A*, then

un(k) - b E A* for all sufficiently large k . This means that A* is a

maximal asymptotic nonbasis of order 2 for U . This concludes the

proof of Theorem 6 .

THEOREM 7 . Let A be an asymptotic basis of order 2 that contains

arbitrarily long intervals . Suppose that r(n) > c log n for some

constant c > log 1 (4/3) . Then A contains a maximal asymptotic non-

basis of order 2 .

Proof . This follows immediately from Theorem 6 with U equal to

the set of all positive integers .

THEOREM 8 . Let U be an infinite set of positive integers . With

Lebesgue measure on the probability space of all sequences of positive

],



integers, a random sequence contains

order 2 for U with probability 1 .

Proof .

ber n belong

103

a maximal asymptotic nonbasis of

Using the method of Erdös-Rényi [13, 17], we let the num-

to a random sequence with probability 1/2 . The law of

large numbers implies that r(n) ..- n/8 for almost all sequences, and

the Borel-Cantelli lemma implies that for

quences contain infinitely many intervals

with un E U . The result follows from Theorem 6 .

THEOREM 9 . Let A = {aiI be an asymptotic basis of order

U = fun 1 . Suppose that r(u n) > c log n forr some constant c >

log - 1 (4/3) and all n > N1 . Suppose also that for any finite

F c A there are infinitely many un E U such that un - a E A for all

a E F . Then A contains a subset A* that is an asymptotic nonbasis

of order 2 for U maximal with respect to A .

any L > 1 almost all se-

of the form [un - L, un ]

2 for

subset

Proof . The proof is similar to that of Theorem 6 . We construct

inductively an increasing sequence of numbers fu n(k) } k=1 c U and a

decreasing sequence of sets A

	

Al D A2 D . . . such that A* _ A

	

An
n=1

has the desired properties . Suppose that un(k-1) E U and Ak-1 c A

have been determined . Let F = A\Ak-l . Then F is a finite subset of

A . Choose un(k) sufficiently large such that un(k) - a E Ak-1 for

all a E F . Now construct the set A k as in the proof of Theorem 6 .

Then un(k) ¢ 2Ak , but un(k) - a E Ak

	

for all a E A such that a 4 Ak-1
and a < un(k-1) • The set A* _ (1

	

An is an asymptotic nonbasis of
n=1

order 2 for U that is maximal with respect to A .

proof of Theorem 9 .

This completes the

THEOREM 10 . Let A = {a i } be an asymptotic basis of order 2 such

that, for any finite set F c A, there are infinitely many integers n



such that n - a E A for all a E F . Suppose that r(n) > c log n for

some constant c > log -1 (4/3) and all n > Nl . Then A contains a sub-

set A* that is an asymptotic

to A .

1 04

Proof . This follows at once from Theorem 9 .

THEOREM 11 . There exists a sequence of square-free integersthat

is an asymptotic nonbasis of order 2 maximal with respect to the set

of all square-free numbers .

Proof . Simple sieve arguments [11] show that the sequence of

square-free numbers satisfies both conditions of Theorem 10 .

suli follows immediately .

nonbasis of order 2 maximal with respect

The re-

THEOREM 12 . Let A be a sequence of integers containing a gap of

length L . If A contains a maximal asymptotic nonbasis of order 2 for

an infinite set U, then A contains infinitely many intervals of

length L .

Proof . Let A* be the subset of A that is a maximal asymptotic

nonbasis of order 2 for U . Let {un(k))k=1 be the infinite subset of

U such that uIR(k) ~ 2A* . Since A has a gap of length L, there is an

integer b > 0 such that [b, b + L- 1](1A = 0 . Since A* is maximal, it

follows that for each í = 0, 1, . . ., L - 1 there is an integer Ki

such that u n(k) - b - í E A* for all k > Ki . Let K* = max{Ki

	

i = 0,

1,

	

L - 1) . Then un(k) - b - i E A* for all k > K* and i = 0, 1,

L - 1 . Thus, A* contains the interval [un(k) - b - L + 1,

un(k) - b] for all k > K* . This concludes the

a maximal asymptotic nonbasis of order 2 .

proof of Theorem 12 .

THEOREM 13 . The sequence of square-free numbers does not contain

Proof . Every interval of length 4 contains a multiple of 4,
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hence the sequence of square-free numbers contains no interval of

length 4 . But the sequence of square-free does contain gaps of length

4 . The result follows from Theorem 12 .

THEOREM 14 . Let A be a sequence of integers containing arbi-

trarily long gaps . If A contains a maximal asymptotic nonbasis of

order 2 for an infinite set U, then A contains arbitrarily long inter-

vals .

Proof . This follows from Theorem 12 .

THEOREM 15 . Let A be a sequence of integers of lower asymptotic

density zero . If A contains a maximal asymptotic nonbasis of order 2

for an infinite set U, then A contains arbitrarily long intervals .

Proof . If A has lower asymptotic density zero, then A contains

arbitrarily long gaps . The result follows from Theorem 14 .

Remark . It is not necessary that a maximal asymptotic nonbasis

of order 2 contain arbitrarily long intervals . For example, the set

of all even integers contains no interval of length 2 . But it is

true that a maximal asymptotic nonbasis of order 2 for an infinite

set U must contain arbitrarily long finite arithmetic progressions .

THEOREM 16 . Let A be a maximal asymptotic nonbasis of order 2

for the infinite set U . Then A contains arbitrarily long finite

arithmetic progressions .

Proof . If the lower asymptotic density of A is zero, the result

follows from Theorem 1S . If the lower asymptotic density of A is

positive, the result follows from Szemer6di's theorem [25] . This

concludes the proof .
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