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1. Introduction

The set A of nonnegative integers is an asymptotic basis of

order h if every sufficiently large integer is the sum of h elements
of A. For example, the squares form an asymptotic basis of order 4
and the square-free numbers form an asymptotic basis of order 2. If
A is an asymptotic basis of order h, but no proper subset of A is

an asymptotic basis of order h, then A is a minimal asymptotic basis

of order h. Minimal asymptotic bases have been studied by Erdds,
Hirtter, Nathanson, and Stohr (4, 5, 7, 8, 10-12, 18, 19, 21, 23, 24].
It usually is difficult to determine if a given asymptotic basis con-
tains a minimal asymptotic basis. For example, it is not known if
there is a minimal asymptotic basis consisting only of squares. In

a previous paper [11], we proved that the set of square-free numbers
does contain a minimal asymptotic basis of order 2. In this paper we
prove the following more general result. Let A be an asymptotic

basis of order 2. Let r(n) denote the number of representations of
the integer n in the form n = aj * oAy, wheTre aj, a € A and aj < ap.
If r(n) > ¢ log n for some constant c > log-1(4/3) and all n > N,
then A contains a minimal asymptotic basis of order 2. Perhaps this
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theorem is best possible in the sense that there may exist-an abso-
lute constant C > 0 such that, if c¢ < C, then there exists a set A
of integers with r(n) > ¢ log n for n > N such that A does not con-
tain a minimal asymptotic basis of order 2. We are far from being
able to prove this. But we do prove that with Lebesgue measure on
the probability space of all sequences of nonnegative integers, almost
every sequence contains a minimal asymptotic basis of order 2.

We obtain these and other results about bases in the following
more general situation. Let U be an infinite set of positive inte-

gers. The set A is an asymptotic basis of order h for U if all but

finitely many numbers u € U can be written as the sum of h elements
of A. If A is an asymptotic basis of order h for U, but no proper

subset of A has this property, then A is a minimal asymptotic basis

of order h for U.

Tual to the concept of minimal basis is that of maximal nonbasis.

The set A of nonnegative integers is an asymptotic nonbasis of orderh

if there are infinitely many positive integers that cannot be written
as the sum of h elements of A. If A is an asymptotic nonbasis of
order h, but no proper superset of A is an asymptotic nonbasis of

order h, then A is a maximal asymptotic nonbasis of order h. In

other words, A 1is a maximal asymptotic nonbasis of order h, but,
for every nonnegative integer b £ A, the set A U {b} is an asymptotic
basis of order h. Maximal nonbases were introduced by Nathanson [21],
and they have been studied by Erdds, Deshouillers and Grekos, Henne-
feld, Nathanson, and Turjédnyi [3, 6-9, 11, 20-23, 26].

It is usually difficult to decide if a given asymptotic nonbasis
is contained in a maximal asymptotic nonbasis, or if a given sequence
of integers contains a maximal asymptotic monbasis. In this paper we
prove that if A is an asymptotic basis of order 2 such that A contains

arbitrarily long intervals and also r(n) > c log n for some constant
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c > log'l(4/3} and all n > N, then A contains a maximal asymptotic
nonbasis of order 2. Moreover, with Lebesgue measure on the space of
all sets of nonnegative integers, almost every set contains a maximal
asymptotic nonbasis of order 2.

Many natural sets of integers do not contain maximal asymptotic
nonbases. Indeed, any maximal asymptotic nonbasis of order 2 must
contain arbitrarily long finite arithmetic progressions. We showed
in [11] that there is no maximal asymptotic nonbasis of order 2 con-
sisting only of square-free numbers, but that there does exist a set
A* of square-free numbers with the property that A* is an asymptotic
nonbasis of order 2, but, for any square-free number b g A*, the set
A* U {b} is an asymptotic basis of order 2.

Let A and A* be sets of nonnegative integers. Then A* is an

asymptotic nonbasis of order h maximal with respect to A if A* is an

asymptotic nonbasis of order h, but, for every b € A\A*, the set
A* U {b} is an asymptotic basis of order h. We shall prove that if
A 1s an asymptotic basis of order 2 such that (i) r(n) > ¢ log n for
c > 103_1[4/3} and n > N, and (ii) for every finite set F € A there
exist infinitely many n such that n - a € A for all a € F, then A
contains a subset A* such that A* is an asymptotic nonbasis of order
Z maximal with respect to A.

As before, we obtain these and other results about maximal non-
bases in a more general setting. Let U be an infinite set of positive

Integers. The set A is an asymptotic nonbasis of order h for U if

there are infinitely many numbers belonging to U that cannot be
¥ritten as the sum of h elements of A. If A is an asymptotic non-
Basis of order h for U, but every proper superset of A is an asympto-
e basis of order h for U, then A is a maximal asymptotic nonbasis

order h for U. If A and A* are sets of nonnegative integers such

Wat s is an asymptotic nonbasis of order h for U, but A* U {b} is




g2

an asymptotic basis of order h for U for every b € A\A*, then A¥* is

an asymptotic nonbasis of order h for U maximal with respect to A.

In this paper we prove theorems only about asymptotic bases and
nonbases of order 2. It is an unsolved problem to obtain results for

bases and nonbases of orders h > 3.

Notation. Let |S| denote the cardinality of the finite set S.
Let [a,b] denote the interval of integers a <n < b. Llet L be a
positive integer. The set A of nonnegative integers contains an in-
terval of length L if [b, b + L - 1] ¢ A for some integer b > 0. The
set A contains a gap of length L if [b, b + L - 1] N A = @ for some

b > 0. The relative complement of B in A is denoted A\B.

2. Systems of Distinct Representatives

The critical device used in this paper is the following estimate

for simultaneous systems of distinct representatives.

5 T
LEMMA 1. Let s > 1 and t > 0. Let S = U S. and T = U T
- - i=1 1 k=1 K
be sets satisfying the following conditions:
(1a) |Si|‘= 1 or 2 and |Tk| =1lor 2 fori=1, ..., s and

k5 qy e B

A
=
A
-
A
-+
-

(1b) Si n Sj = '1‘k n Tl =f for 1 <i< j <sand 1 <

(1c) Si # Tk for all i and k.

Let #(S,T) denote the number of sets X € § such that

1d) [X| = s

]
—
-
n
-

(le) [Xxns;| =1 fori
(1f) XN T #8 for k=1, ..., t.
Then &(S,T) < 25(3/4)'. This estimate is best possible.

s
Proof. Let ¢(s,t) = 25(3/4]t. Suppose that S = U Si and
i=1
t
T=U Tk satisfy (la), (1b), (1lc). We shall show that
k=1
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¢(S8,T) < ¢(s,t). We can assume without loss of generality that
si NT#@ for i =1, 2, ..., s. The proof is by induction on t. If
t =0, then T = @ and

9(S,T) < 2° = 4(s,0)
for all s > 1.
Now assume that ¢(S,T) < ¢(s,t') whenever s > 1 and 0 < t' < t.
We shall prove the Lemma for t. If Tl Nns =g for some &, then

xn Tl = @ for all X < S, and so
$(S,T) = 0 < ¢(s,t).

If [T, N S| = 1 for some ¢, then T, N Sj = {b} for some unique j, and

b € X for every set X € S that satisfies (1d), (le), (1f). Let

X' = X\{b}. Then X = X" U {b}. Let S' = U Si and T' = kal Tk’

i#j
Then S' and T' satisfy conditions (la), (1b), (lc), and X' satisfies
(1d), (le), (1f) for S' and T'. Conversely, if X' satisfies (1d),
(l1e), (1f) for S'" and T', then X = X' U [b} satisfies (1d), (le), (1lf)

for S and T. The induction hypothesis implies that

6(S,T) = #(s',T") < 257 1(3/4)%" L

(S

< 25(3/4)% = ¢(s,t).

Finally, if |Tk ns|l>1for all k=1, ..., t, then condition
x
(la) implies that |T,| = 2 and T, < S, hence T = U T, © S. There
k i B ey RS
are two cases.

Case I. § =T. If |Si| =1 for all i =1, ..., s, then

9(S,T) = 1 < ¢(s,t). Suppose that [Sil 2 for some i, say, i = 1,

and that 51 = {a,b}. Then a € Tl and b € Tm’ and condition (1lc)

implies that & # m. Let T, = {a,d} and T_ = {b,c}. Then c € Sj for

2 m

some j # 1. Let X € S satisfy conditions (1d), (le), (1f). Then

a€Xorbe€X. Ifaé€X, thenb £ X, hence c € X since XnT, 0.
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i
X' € 8" and X' satisfies (1d), (le), (1f) for the sets 5' and T'.

Let X' = X\{S,C]. Let S' = Ui#l,j S. and T' = LJk#f.’m Tk- Then

Conversely, if X' ¢ S' satisfies (1d), (le), (1f) for S' and T', then
X = X' U {a,c} satisfies (1d), (le), (1f) for S and T. The induction
hypothesis implies that there are at most ¢(s - 2, t - 2) sets X c §
such that a € X and X satisfies (1d), (le), (1f). Similarly, there
are at most ¢(s - 2, t - 2) sets X ¢ S such that b € X and X satisfies

(1d), (le), (1f). Therefore,
5(S,T) < 2¢(s - 2, t - 2) = 2.257%(3/4)t"2
< 25(3/8)F = ¢(s,t).

Case II. S # T. Then Sj ¢ T for some j. But Sj nNnTG# @, hence

|S.| = 2 and |Sj nT| =1. Let Sj = {a,b}, where a € T, c T and b £T.

£
Let T£ = {a,c}. We divide the sets X c S satisfying (1d), (le), (1f)
into two classes: Either a € X or b € X. If b € X, then a £ X.

Since X N TE # ¢, it follows that ¢ € X. But c € Sm for some m # j.

Let S' = Ui#j,m Si and T' = Li#l Tk' Then X' X\ib,c} satisfies (1d),
(le), (1f) for the sets S' and T'. It follows that there are at most
¢(s - 2, t - 1) sets X such that b € X and X satisfies (1d), (le),
(1f) for S and T. Similarly, there are at most ¢(s - 1, t - 1) sets

X with a € X. Therefore,

®(5,T)

| A

6(s - 2, t - 1) + ¢(s -1, t - 1)

= 25‘2(3/4)t‘1 + 25'1(3/4)t‘]

25(3/4)F = ¢(s,t).

This proves that ¢(S,T) < ¢(s,t) for all s > 1 and t > 0.
This estimate is best possible. If s > 2t, there exist sets S

and T satisfying conditions (la), (1b), (1c) such that
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#(S,T) = ¢(s,t). Let a1, wees Bg, bl’ 8% 5 b5 be 2s distinct elements.
Let Si = {ai, bi} forsi = Loy a6 and lit Tk = {ak, at+k} for k =
; o.xy T Let 8§ = L S. and let T = U Tk' It is easy to see

i=1 *t k=1

that &(S,T) = 3%2572% = 4(s,t).

This completes the proof of Lemma 1.

Remark. It is an open combinatorial problem to find good esti-

mates for ¢(S,T) in Lemma 1 when condition (la) is replaced by the

condition 1 < |S;| < h and 1 < [Ty| < h for h > 3.
T(n)
LEMMA 2. Let n 3_N0 and let R(n) = U Ri(n) be a set of inte-
i=1

gers such that
(za) |R;(m)|

(2b) 1Ri(n}| = 1 for at most one 1i;

1]

1 or 2;

(2¢) Ri[n] n Rj(n) =f for 1 < i< j <r(n);

(2d) Ri(n) # Rk(m) for all 1 < i < r(n) and 1 < k < rv(m), m # n;

(Ze) r(n) > ¢ log n for some constant c > 10g‘1(4/3) and all

n > Nl‘

Then there exists a number N, such that for all n > N, there is a set
X{n) < R(n) such that

(2£) |X(m)| = r(n);

(2g) [X(mn) N Ri(n)] =1 for i=1, ..., v(n);

(2h) For every m > NZ’ m # n, there is a j < r(m) such that

X(n) 0 Rj(m] = g.

Proof. Choose 6 > 0 so that c log(4/3) = 1 + §. Choose N, > N1

S0 that

i 1 1
et A

m=N2 m

We shall apply Lemma 1 with S = R(n), s = r(n), T = R(m), and t =

r(m). Conditions (2a), (2c), (2d) indicate that the sets S and T
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satisfy (la), (1b), (lc). It follows from Lemma 1 that there are at
most 27 (M (3/5)T(M gets X(n) c R(n) that satisfy (2£) and (2g) but
violate (Zh). Therefore, the number of sets X(n) c R(n) that satisfy

(2f) and (2g) but violate (2h) for some m 3.”2 is at most

55 Zr(n)(%_]r(mJ EZr(n] g (%_)clogm

m=N2 m=N2
P T SIS 1
m=N, mclogiﬂ?Si
1
r(n) <«
2 %’ 1+6&
m-N2 m

< 2r(n}[l] - 2r[n)-l

By conditions (2a) and (2Zb), there are at least ZT(H)—1 sets
X(n) € R(n) satisfying (2f) and (2g). Therefore, there must exist
a set X(n) < R(n) satisfying (2f), (2g), and (2h). This completes

the proof of Lemma 2.

Remark. Lemma 2 is the crucial tool used to obtain the results
in this paper. The following is a typical application. Let A = {a;!}
be a strictly increasing sequence of positive integers. Let r(n)
denote the number of representations of n in the form n = aj +oap,
where aj, a, € A and aj < ay. Let R(n) be the union of the sets
Ri{n) = {aj, ak}, where aj, a, €A and aj + a3 =m. Notice that
[R;(m)| = 1 or 2, and that |R;(n)| = 1 only if R;(n) = {n/2}, where
n is even and n/2 € A. Clearly, R(n) = § if and only if n £ 2A. It
is easy to see that (2a)-(2d) automatically hold for any sequence A,
and that (2e) is true if A is an asymptotic basis of order 2 such
that every sufficiently large integer n has at least ¢ log n repre-
sentations for ¢ > log'1{4/3). Let X(n) c R(n) satisfy conditions

(2g) and (2h). If we delete the numbers in X(n) from A, then (2g)
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implies that we destroy every representation of n. Consequently,
n £ 2 (A\X(n)). But condition (2h) implies that no other number
m Z-NZ is destroyed, that is, m € 2 (A\X(n)) for all m > Ny, m # n.

This allows us to modify the sequence A in various ways.

3. Minimal Asymptotic Bases

THEOREM 1. Let A = {a;} be a strictly increasing sequence of
nonnegative integers. Let r(m) denote the number of representations
of m in the form m = aj + a, where aj, ay € A and aj < 3. Let
U = {un} be a strictly increasing sequence of positive integers. Let
A be an asymptotic basis of order 2 for U; that is, u, € 2A for ng;NO.
Suppose that r(un] > c log n for some constant c > 103'1(4/3] and all
n z_Nl. Suppose also that for every a, € A there are infinitely many
aj € A such that a; + aj € U. Then A contains a minimal asymptotic

basis of order 2 for U.

Proof. Choose § > 0 so that c log(4/3) = 1 + 3§. Let uy e u
and let a; < a; < ... <ar(un) < un/Z be the numbers a; €A such that

a; <u /2 and uy - a; € A. We set Ri(n] = {ai, u, - ai] and

r(u
R(n) = U

i=1

)
1 Ri(n). The sets R{n) satisfy conditions (2a)-(2e) of

Lemma 2. We shall construct inductively a decreasing sequence of
sets A D> Aj D Ay D ... such that A* = ] A, is a minimal asymptotic
n=1

basis for U.

First we construct Al‘ Let al* € A. Choose an integer n(1l) >N0

* = * i

such that Un (1) > 2a;* and Un(1) a;* € A. By Lemma 2, there exists
a set X(n(l)) c R(n(1)) satisfying conditions (2f), (2g), and (2h).
Since X(n(1)) N R;(n(1)) # ¢ for i = 1, 2, ""r(untl]) it follows
that un(l] £ 2 (A\X(n(1))). But for Nz sufficiently large and all
m > Nz, m # n(l), there is a j‘ir(um) such that X(n(1)) N Rj[m) =g,
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and so uy € 2 (A\X(n(1))). We set
Ay = (A\X(n(1))) U {ay*, Uiy C al*]-

= * - ®
Then Al c A and “n(l) € ZAl. Moreover, “n{l) a* 4 (“n(l) a, )
is the unique representation of “n(l) as a sum of two elements of Al.

Note that A\Al c [0, un(l)]‘

Suppose that we have determined integers n(l) < n(2) < ... <
n(k - 1) and sets A D Al 2A) 2 ... 2 Ak—l with the following proper-
ties:
(i) A\Ai c [0, un[i]] for A = Ll; By wewy K = 13
(ii) Ay nilo, un[i)] = Aja nfo, un[i)] for i =1, 2, ...,k-2;
(1i1) wu, € 2A; , for all m > Ny, m ¥ n(1); nf); wen g nlke=1);
(iv) For each i =1, ..., k - 1 there is a number ai* €Ay
such that un(i) = ai* € Ai and un(i} = ai* + {un(i) -ai*)

is the unique representation of un(i] as a sum of two
elements of A,.
Now we construct the number n(k) and the set Ay. Let rk_l[m] denote
the number of representations of m as a sum of two elements of A, .
Property (i) implies that rk_l(m} > r(m) - un(k-l]' Choose

W1 > Up(k-1) such that for u > w; we have

rp-1(uy) 2 r(uy) - Un(k-1)
1 + 368 "
> og log n un[k-l)
1 + 26
> Tog(4/3) log n.
Choose Wy > Zwl such that for u, > w, we have
. 1 + 2§ —
rk_l[un) ¥ 1&1 > l—ogm Iog n '|N1
1 + &
> o8 3 log n.



Let a, * € A, ; N [0, un{k—l]]' A further constraint on the
choice of ak* will appear later. Choose n(k) > n(k - 1) such that
Unh(k) > M1 + w, and Un(k) " a,* € Ay . Let X' be the set consisting
of all a € A, 0 [un{k] - W+ 1, un(k)} such that Uneky - 2 €A -
Observe that Un (k) " a,* € X' and that | x| < wy. Let ry ;(m) denote
the number of representations of m as the sum of two elements of

Ap_1\X'. Then for u > Un(k) -~ W1 e have

1 + 4§

ri_l(un) > rk_l[unj - Wy > Tog (3737 log n.
For w, < u_ < Uy (k) - W1 ve have
ré_l(un) = rk_l(un) > I%E%I%%T-log n.
Therefore,

1 1 + &
rk_l(un) > Tog(3/3) log n

for all U, > wy.

Let u > w; and let a; < ... < arﬁ-lfun < u,/2 be the elements
of Ak_l\x' such that a; < un/2 and up - oay € Ak_l\X'. Let Ri(n) =
rk-ltun)

{a., u_ - ai} and let R(n) = U

i U Ri(n}. Note that R(n(k)) c

i=1
[wi, Un(k) ~ wl]. The sets R(n) satisfy conditions (2a)-(2e) of
Lemma 2, where N0 = Nl is the least n such that u, > Wy, Therefore,
there exists a set X(n(k)) < R(n(k)) satisfying conditions (2f)-(Zh).
In particular, Un (k) £ Z(Ak_l\[x(n[k}) UX')), but u €

Z(Ak_l\(x(n(k)) U X')) for all n > Ny, n # n(i) for i = 1, 2, ..., k.

We set

Ak = (Ak_l\(X(n(k]) Uuxn) u {un(k] - ak*}.

Then U (k) € ZAk, and un(k} = ak* + (un(k) = ak*} is the unique

representation of Up(k) @S a sum of two elements of Ay -
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Thus, we have determined inductively an increasing sequence of
integers n(1) < n(2) < ... and a decreasing sequence of sets
Ay 2 A, o ... and a sequence of integers {ak*}kzl such that a * € A*
= Aj for all k, and the unique representation of un(k) as a sum
j=1
* 3 - ® = =
of two elements of A* is un(k) a*+ ("n(k) ay ). Moreover,
u, € 2A* for all n > NZ' Thus, A* is an asymptotic basis of order 2
for U.
Recall that at the k-th step of the construction it was neces-
: = A%
sary to choose an integer ak* € Ak—l nfo, un[k—l]] A*(N [0, “n(k-l)]‘
Now we impose the crucial constraint. Choose each integer a* € A¥*
infinitely often as a number ak*. That is, if a* € A*, then a*-= ak*
for infinitely many k. Then there will be infinitely many numbers k
% = n¥) § 3 i £
such that a* + (un(k) a*) is the unique representation of un(k) as
a sum of two elements of A*. This implies that, for any a* € A%,
there are infinitely many numbers Un (k) such that Un (k) £ 2(A*\{a*}).

Therefore, A* is a minimal asymptotic basis of order 2 for U. This

completes the proof of Theorem 1.

THEOREM 2. Let A be an asymptotic basis of order 2 such that
r(n) > ¢ log n for some constant c > 103-1(4/3) and all n > Nl. Then

A contains a minimal asymptotic basis of order 2.

Proof. Let U be the set of all positive integers. Then the
assertion follows immediately from Theorem 1. Note that if a; €A,

then a; + aj € U for all aj € A.

THEOREM 3. With Lebesgue measure on the probability space of
all sequences of positive integers, a random sequence contains a

minimal asymptotic basis of order 2 with probability 1.

Proof. By the method of Erdds-Rényi [13, 17], there is a proba-

bility measure p on the space of all strictly increasing sequences of
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positive integers such that, if B(n) denotes the set of all sequences
containing n, then p[BEn]) = 1/2 for all n. The law of large numbers
implies that r(n) ~ n/8 for almost all sequences. Since n/8 > clogn
for any ¢ > log'1(4/3} and all sufficiently large n, the result fol-

lows from Theorem 2.

THEOREM 4. The sequence of square-free numbers contains a mini-

mal asymptotic basis of order 2.

Proof. A simple sieve argument [2, 14, 15] shows that there are
at least cn representations of n as a sum of two square-free numbers

for some ¢ > 0 and all n > N;. The result follows from Theorem 2.

THEOREM 5. Let A consist of all numbers of the form p or pq,
where p and q are odd primes. Then A contains a minimal asymptotic

basis of order Z for the set of positive even integers,

Proof. Chen [1, 16] proved that there are at least cn/logzn
representations of 2n as a sum of two elements of A. The result fol-

lows from Theorem 1.

Remark. If every sufficiently large even integer is the sum of
two primes in at least cn/logzn different ways, that is, if the strong
form of Goldbach's conjecture is true, then there is a subset of the

primes that is a minimal asymptotic basis of order 2 for the even

numbers.

4, Maximal Asymptotic Nonbases

THEOREM 6. Let A = {ai} be an asymptotic basis of order 2 for
U= {u,}. Letr(u,)denote the number of representations of u_  in the
form up = 3y + a,, where a5, a € A and a; < ap. Suppose that

r(u ) >c log n for some constant c > log 1(4/3) and all n > N
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Suppose also that for every L > 1 there are infinitely many n such
that [un = L un] c A. Then A contains a maximal asymptotic nonbasis

of order 2 for U.

Proof. Repeating the proof of Theorem 1, we can construct in-
ductively an increasing sequence of numbers {un(k)]:=1 c U and a de-

creasing sequence of sets AD A; 2 Ay 2 ... such that A* = (] AL
n=1

will be a maximal asymptotic nonbasis of order 2 for U. The essential
difference is the following. Suppose that the number Un (k-1) € U and
the set A, , have been determined. Let L = U (k-1)" Choose Un (k)
sufficiently large that Us (%) > 21.,111“(_1:l and Ak—l contains the inter-
val [un(k) - un(k-l]’ un(k)]‘ Apply Lemma 2 to destroy all represen-
tations of Up (k) @s @ sum of two elements of A} ;. This produces the
set Ak. This set has the property that if b £ Ak and b € [0, un[k-l)L

then Un(k) " b € Ak' Let A* = F&=1 Ak. LE u, €U and n > Ny then

_— . .
u, € 2A* if and only if u, is not one of the numbers UK Thus,

A* is an asymptotic nonbasis of order 2 for U. But if b £ A*, then
un(k} - b € A* for all sufficiently large k. This means that A* is a
maximal asymptotic nonbasis of order 2 for U. This concludes the

proof of Theorem 6.

THEOREM 7. Let A be an asymptotic basis of order 2 that contains
arbitrarily long intervals. Suppose that r(n) > ¢ log n for some
constant c > 103'1{4/3). Then A contains a maximal asymptotic non-

basis of order 2.

Proof. This follows immediately from Theorem 6 with U equal to

the set of all positive integers.

THEOREM 8. Let U be an infinite set of positive integers. With

Lebesgue measure on the probability space of all sequences of positive
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integers, a random sequence contains a maximal asymptotic nonbasis of

order 2 for U with probability 1.

Proof. Using the method of Erdds-Rényi [13, 17], we let the num-
ber n belong to a random sequence with probability 1/2. The law of
large numbers implies that r(n) ~ n/8 for almost all sequences, and
the Borel-Cantelli lemma implies that for any L > 1 almost all se-
quences contain infinitely many intervals of the form [ul_l - L, u_]

n

with u, € U. The tesult follows from Theorem 6.

THEOREM 9. Let A = {ai} be an asymptotic basis of order 2 for
U= {u,}. Suppose that r(uy) > ¢ log n for some constant c¢ >
log'1(4/3] and all n > N;. Suppose also that for any finite subset
F ¢ A there are infinitely many e € U such that u, - a € A for all
a € F. Then A contains a subset A* that is an asymptotic nonbasis

of order 2 for U maximal with respect to A.

Proof. The proof is similar to that of Theorem 6. We construct
inductively an increasing sequence of numbers {un[k)}§=1 c U and a

decreasing sequence of sets A D A; D A, o ... such that A* = N A

n=1 oI

has the desired properties. Suppose that un(k—l] € U and Ak-l c A
have been determined. Let F = A\Ay ;- Then F is a finite subset of
A. Choose Un (k) sufficiently large such that Un(k) " 2 € A, for
all a € F. Now construct the set Ay as in the proof of Theorem 6.
Then U (%) £ 2A1, but Un(k) "2 €A, for all a € A such that a £ A,

* = = 3 1 1
and a < Un(x-1)" The set A FL=1 A, is an asymptotic nonbasis of

order 2 for U that is maximal with respect to A. This completes the

proof of Theorem 9.

THEOREM 10. Let A = {a;} be an asymptotic basis of order 2 such

that, for any finite set F c A, there are infinitely many integers n
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such that n - a € A for all a € F. Suppose that r(n) > c log n for
some constant c > 103'1(4/3) and all n > Nl. Then A contains a sub-
set A* that is an asymptotic nonbasis of order 2 maximal with respect

to A.
Proof. This follows at once from Theorem 9.

THEOREM 11. There exists a sequence of square-free integers that
is an asymptotic nonbasis of order 2 maximal with respect to the set

of all square-free numbers.

Proof. Simple sieve arguments [11] show that the sequence of
square-free numbers satisfies both conditions of Theorem 10. The re-

sult follows immediately.

THEOREM 12. Let A be a sequence of integers containing a gap of
length L. If A contains a maximal asymptotic nonbasis of order 2 for
an infinite set U, then A contains infinitely many intervals of

length L.

Proof. Let A* be the subset of A that is a maximal asymptotic
nonbasis of order 2 for U. Let {un(k}}§=1 be the infinite subset of
U such that Un (k) £ 2A*., Since A has a gap of length L, there is an
integer b > 0 such that [b, b+L-1]/MA = f. Since A* is maximal, it
follows that for each i = 0, 1, ..., L - 1 there is an integer Ki
such that Un(k) " b - i € A* for all k > K;. Let K* = max{K; | i =0,

5 : - * * i =
Ly wones 1}. Then Un (k) b i € A* for all k > K* and i By Iis
..., L - 1. Thus, A* contains the interval [“n(k) = b = L% 1,

Un) T b] for all k > K*. This concludes the proof of Theorem 12.
THEOREM 13. The sequence of square-free numbers does not contain

a maximal asymptotic nonbasis of order 2.

Proof. Every interval of length 4 contains a multiple of 4,
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hence the sequence of square-free numbers contains no interval of
length 4. But the sequence of square-free does contain gaps of length

4. The result follows from Theorem 12.

THEOREM 14. Let A be a sequence of integers containing arbi-
trarily long gaps. If A contains a maximal asymptotic nonbasis of
order 2 for an infinite set U, then A contains arbitrarily long inter-

vals.
Proof. This follows from Theorem 12.

THEOREM 15. Let A be a sequence of integers of lower asymptotic
density zero. If A contains a maximal asymptotic nonbasis of order 2

for an infinite set U, then A contains arbitrarily long intervals.

Proof. 1If A has lower asymptotic density zero, then A contains

arbitrarily long gaps. The result follows from Theorem 14.

Remark. It is not necessary that a maximal asymptotic nonbasis
of order 2 contain arbitrarily long intervals. For example, the set
of all even integers contains no interval of length 2. But it is
true that a maximal asymptotic nonbasis of order 2 for an infinite

set U must contain arbitrarily long finite arithmetic progressions.

THEOREM 16. Let A be a maximal asymptotic nonbasis of order 2
for the infinite set U. Then A contains arbitrarily long finite

arithmetic progressions.

Proof. 1If the lower asymptotic density of A is zero, the result
follows from Theorem 15. If the lower asymptotic density of A is
positive, the result follows from Szemerédi's theorem [25]. This

concludes the proof.
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