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For a finite graph G = (V, E}, the point covering number oo(G) and the line
covering number a,(G) are defined as follows (e.g., [3]):

'30((;) = min{
2,(G) = min{

X|: X < V and every e € E contains some x € X},
Y|: ¥ < E and every ve Vis contained in some ye Y},

We shall assume G has no isolated points so that these quantities are well defined.
During his talk at this meeting, F. Harary mentioned the following two conjectures
of J. Kabell and himself [1]:

(i) min ao(Gloy(G)=n — 1,

n+ 1
2
where G ranges over all graphs with n points. He further noted that equality holds in

(i} for the star K, ,-, and in (i) for the complete graph K,,.

In this note we settle these conjectures. Int particular, we show that (i} is true. and
{1}, while not completely true, is nearly true. The srnallest counterexample to (ii} is
the graph 2K consisting of two disjoint triangles. Note that

22K 3 )y (2K3) = 16, og(K )y (Ke) = 15.

However (i)as valid if p is odd or if G is required to be connected We alse consider
the corresponding questions for hypergraphs.

(it} max #{Gl;(G) = (n - l}[

TrieokeMm 1. For any graph G with n = 3:
(Y 2,{G¥e.(G) = n — |, with equality only for G = K,

T

! L ,_.— --1 for n odd.
[11“' l.;}f‘:J \l'?“;} <
3 ﬁz

{ =g - for neven.
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Equality in (ii') holds only for K, when »n is odd or n = 4 and only for K, + K,,
with a, b odd and a + b = n, when n is even and at least 6.

Proof: First note that
n

since each edge of G covers just two points of G. Now, assume ao(G)a;(G) < n — L. If
#o(G) = 2, then, by (1), 26(G)x(G) = n, which contradicts the hypothesis. Hence, we
must have «,(G) = 1, i.e., all edges of G contain a common point. This is exactly the
definition of K, ,-,; since

“o(Kl.nva}“i(K:.a-s)= n—1

then (i') is proved.
To prove (ii'), assume thai G satisfies

201G )1 (G) = @)

Let E' = {e,, e,, ..., €, denote a maximum set of disjoint edges of G. Thus, by a
theorem of Gallai [2],

“(G)=n—x (3)

Also, #o(G) < 2x, since the 2x endpoints of the ¢, & E' form a covering of all the edges
of G (by the maximality of £'). Thus

ao(G)y (G) < 2x{n -~ x). (4)

Note also that 2x < n must always hold.

First, suppose n is odd. The right-hand side of {4) is maximized only by choosing
x=(n—1)/2 or x=(n+ 1)/2 and the Jarger value is forbidden: by the previous
remark. For x = (n — 1)/2, {4) iinplies

2o(G )t (G) = (n - ”(?Lii)
By (3), 2,(G)=n—x=(n-+ 1}2 and so ap(G)=n— L. However, this implies
G = K,. Since

ao(KaJor (Ko = (n — 1)(“_‘2-“ ‘] _ f'iz:;!

then (1i') is proved for n odd.
Now, suppose n > 6 1s even. If we try to use the value x = n/2, then because
2o(G) < n ~ 1, we have

(Gl (G) < (n— 1){n—x)=(n— 1); < El : 4
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since n = 6. Thus, the maximum possible value of the right-hand side of (4) occurs for
the (unique) value x = (n/2) — 1 and yields

n* — 4

aotc‘)altcysz(g - 1)(3 - 1)= -

n*—4

; 5)

and so, 2o(G)aty(G) =
Therefore,

al(G)=n—x=g+l,

(6)
ao{G) =n—2

Write ¢; = {a;, b;}, 1 <'i<(n/2)—1 and let the remaining two points of G bhe
denoted by x; and x;.

(a) {xy, x2j is not an edge of G by the maximality assumption on E'.

(b) Every a, and every b, is connected to at least one of the x,'s. For if a,, say, is
not connected to x,; or x3, then ¥ — {a,, x,, x5} covers all edges of G and has only
n — 3 points, which contradicts (6).

(c) {ai, x4} 15 an edge of G if and only if {b;, x,} is an edge of G. For suppose not,
eg, {ay, x,} € E, {by, x,} ¢ E. By (b), {by. x,} € E; thus,

E ~ {als bl} Y {ﬂ], xl} b {bh xZ}

is a set of n/2 disjoint edges of G, which contradicts the maximality of E'.

(d) x, is connected to {a;, b} if and only if x, is not connected to {a;, b;}. For
suppose x; and x, are both connected to {a;, b;}. Then just as in (c), we can replace
{a;. b;} by two disjoint edges, forming n/2 disjoint edges in G.

For 1 =1, 2, let C, denote the set of points v such that {x,, v} is an edge of G.

(e) Ifvy & Cy, vz € C, then {v,, vy} is not an edge of G. Suppose not, i.e., suppose
{1, U2} is an edge of G. Let wy, w, be the vertices adjacent to vy, v; in E'. If the edges
of E' containing vy and v, are removed from E’ and the edges {x,, w;}, {x,, w,} and
{v;, va} are added, then we have a set of n/2 disjoint edges in G, which is impossible.

Thus, G consists of two connected components C, v {x,} and C; v {x,}.

{f) If x; is connected to {a;, b;} and {ay, by} then both points in {a,, b} are
connected to both points in {a,, b,}. For suppose (without loss of generality) that
{a;, a} is not an edge of G. Then

'xO(Ci Y {xl}) = j(-‘xl —~

where | C;| denotes the number of points in C;. But this implies

2
%(G) = ¥ %(C; v ix})sn—3
i=1
which contradicts (6).
Therefore, we conclude that G is made up of two components which are (disjoint)
complete graphs. each of odd order. It is easily checked that in this case

20(G)y(G) = ot

and (ii’) holds for even n > 6.



For the final case n=4, the bound in (4) (choosing x = 2) implies
oo(G)xy(G) < 8. It is easily seen that this implies xo(G)x;(G) < 6, which can only
occur when ap(G) = 3, 2,(G) = 2, i.e, G must be K. This completes the proof of the
theorem. [J

We note here that if we require that G be connected, then it can be shown, using
similar arguments, that the original conjecture {ii) is valid with K, always being the
unique graph achieving max ay(G)x,(G).

AN EXTENSION TO HYPERGRAPHS

We now consider an r-uniform hypergraph H = (V, E), where, as usual, E con-
sists of certain r-element subsets of ¥ for some fixed r = 2. We define ao(H) and o, (H)
in the obvious way, i.e., ao(H) denotes the minimum number of points of H hitting all
edges of H and a;(H) denotes the minimum number of edges of H hitting all points of
H. Also, we assume H has no isolated points.

THeoreM 2. For any r-uniform hypergraph H on n points,

:"_I_:__; = J:‘:‘:'(H)‘)tl(‘l"” = 4—{}1—“ n? (7)

Proof: Observe that ay(H) = n/r. Hence, if 2g(H) > 2 then

ao(H)ay (H) > 2 - f >§

1

On the other hand, if ap(H) = 1 then all edges e € E contain a commion point, and so

n-—-1
’I;(H) = ;_-—_i
. n-1
ie, ol HYs (H) = =
which is the left-hand side of (7).
To prove the right-hand side of {7), let E" = {e,, .... ¢,} denote a maximum set of
disjoint edges of E. Then
(H)<x+n—~re=n-{r-)x (8)

since the n — rx points not in E’ can be covered by at most n — rx additional edges;
also,

ap(H) < rx 9
since by the maximality of E’, the rx points of E' hit every edge of E; therefore,
ao(H)a (H) < rx(n— (r — 1)x) (10)

The right-hand side of (10) is maximized by taking

n

J'CT__?{."—]“)




which yields
r 2
This completes the proof of (7) and the theorem is proved. [

The lower bound in THEOREM 2 can be achieved whenever n = I(mod r — 1) by
taking V tobe {0, 1,2, ..., n— 1} and E = {ey, €;, ..., €u—1yr—1)} Eiven by

=0 uilr—D)i-N+L{r—-1)i-1)+2, ..., (r— 1)

for lgiﬁf‘_l
r—1

We have not analyzed the fine structure of the exact upper bound for ao(H ) (H).
The bound of THEGREM: 2 is asymptotically best possible. This can be seen by con-
sidering the hypergraph H, formed as shown in the figure. The top part of H,

.« n points

.2_.::—5 + n polnts

consists of a complete r-uniform hypergraph on r/(2r — 2} n points (ic. all r-
element subsets are edges). [n addition, there are n{r — 2)/(2r — 2) additional edges.
each formed by adjoining 2 new point x; to a fixed (r — 1)-element subset X above.
Thus,

2g(Hog) ~ h

&

2r—2
n

11[”0}”;

r pa
and so, ag{Ho ) (Ho) ~ =T n?
It would be interesting to characterize those hypergraphs H which achieve the maxi-
mum and minimum values of ag(H)x,(H).
The authors wish to thank S. B. Maurer for the careful reading he gave to an
earlier version of this note.
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