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On the concentration of distribution of additive functions

P. ERDOS and 1. KATAI

1. We say that g(n) is addivive if glmn)=g{m)+g£(®) holds for every coprime
pairs s, n of positive integers. 1f. morsover, g{p"i=g(p)* for every prime power
5o then gln) is called strongly additive. By g Py, Pay 2o @G- @50 -0 we denote
ﬁ;:n'mﬂ numbers, ¢, &y, €a, ... are spitable positive constants. Pln) and #(n) dénote
the largest and the smallest prime factor of n. The symbol == is used instead of
¢; + { )is the counting function of the set indicated in brackets {.). For a distri-
bution function H(x) let ¢p,(r) denote its characteristic function. Let

Q) = @yulh) = sup(H(x+h—H(x))

be the continuity module — concentration — of H. We say that H satisfies a Lip-
schitz condition if @{h)==h as h--0,
We assume that gln) is strongly additive ‘and that

2.
& =

The theorem of Erd&s—Wintner [1] guarantess that the function g(n)—d4,,
where

(1.3) 4.= ZE%"L‘.

has a limit distribution, i.e. the relation
11.4) ';,,.r_#{" = Nlg{n)—A, = x} - F(x)

holds at every continuity point of F(x). where F(x) is a distribution function. If)
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moreover, Zelp)/p converges, then the values g(v) have a limit distribution too, i.e.

(1.5) +r {n=Nlg(n)=x} -G,

at every continuity point of the distnbution function G(x).
We have the relations

"{_.l i

(1.6) pp(r) = [[ “.] g (r J’“”]k
1 plwind

(L.7) *i‘?a{f}‘—"fg[l—;'l- P ]

From these forms we can see that both F and & can be represented as the distribu-
tion of the sum of infinitely many mutuoally independent random variables having
purely discrete distributions. By the well-known theorem of P. Lévy [2] & and F
are continuous if

(1.8) = ljp==, where Z, = {ple(p) = 0}.

PEZy

Furthermore, assuming the validity of (1.3) we have that F and G are of pure type,
either absolutely continuous or singular (see E, LukAcs [3]). To decide the question
if a distribution function were absolutely continuous or singular seems to be quite
difficult. The frst result upon this has been achieved by P. Erpds [4]; namely it
was proved that if g(p)=0(p~?), & being any positive constant, then G(x) is
singular., Recently JoGesa Basu [5] has proved that G(x) is abselutely continuous
if g{n) is penerated by g(pm=(logp)~" (0=wu=2). The main idea of the proof is
that ¢,(7) is square-integrable in (—=,e=), and so by using Plancherel’s theory
of Fourier integrals it must have an inverse in L2(—=, ==) that is the density fune-
tion of G(x).

It is known that a distribution function A satisfies Lipschitz condition if lgr {7}
is integrable in (—=, =), and so it is absolutely continucns. The method of Jogesh
Babu gives that (7 satisfies Lipschitz condition if g(p)=(log p)™" (0=a=1).

The aim of this paper is to investigate the singularity or absolute continuouity
of distribution functions for some classes of additive functions.

We shall prove the following theorems.

Theorem 1. Let g(n) be a strongly additive function,

(1.9) p@)= 3 20l
=y P
and suppose that the inequalities

(1.10) D% = 11,
(1.11) lelp)—glp =1/t If pr#Epp=1t
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hald, with suitable pesitive constants A and &, for every large t. Then

(1.12) (log1)~! <= Qg(1/r) = (logt)™*  (t —==),

where the constants involved by =z may depend on g.

pin)

This result was achieved by Tian [7] and P. Ernds [8] for log »

, and for

Theorem 2, Let g(n) be strongly addivive savisfyving (1.1). Then for the con-
centration QR of F(x) or G(x) (if it exists) we have

(1.13) 0(4D,) = @ (R=2),

¢ being an absolufe positive consiant, and

% 1a
(1.14) BR:[EE_(PJ'] :
p=& P
Remarks.
1) This assertion is non-trivial only if Dy log R—+0 (R-==), since OQi(1/1)=1/t
(t-===) for every H(x).

~ {log Ry~
) If gl{py=(ogp)~ (y=1 constant), then BD,=(14o(l)|—=—2
) If g(p)=(logp)~" (y ) M a(1)) Vo

and so
1
QG“)II:}:E"E"

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)~7?, then

1 oglogi)®
{1.15) ﬁ_ﬁgﬁnmﬂﬂ gr“% )
if y=1, while for y=1
2
(1.16) e R INERL L
Remarks.

1

1) We guess that Qﬁ[l,n’t]-ca:?ﬁ?- for y=1 but we are unable to prove it.

2) We alsp puess that G(x) is singular if O=g{p)=(logp)™7, y=2. This seems
not to be known even if g{p)=(logp) 7

3) By our method we could estimate the concentration for other functions if g(p)
is monotonic. The following assertion holds. Let t{u)=0 to monotonically
decreasing in (1, =), g(p)=1(p) for primes p. Let y(1), z(r) be defined by the
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refations 1 1(1))= 'H:} : t(z())=1/r. Suppose that for large 1, y(1)=t1",
2{1)=e""" (a=0 cunst_ant}, and that the integral

47 cos 1r(u)

y ulogu
is bounded as t—==. Then O.{f)==1/h. These conditions hold il g(p) decreases
regularly and

gp) _ o 8(P) _
=z = 2 =

Theorem 4. Fhere exists a monotenically decreasing function t{w) satisfyving
the conditions

it £(p) _
i

for which the distribution fimction F(x) of the strongly additive g(n) defined by g(p)=
=t(p) is singular.

2. Proof of Theorems 2 and 4. We shall prove Theorem 2 for F{x) only. The
proof is almost the same for G(x).

F(x) can be represented as the distribution function of ;; f,= 2 {,, where
PR

£, are mutually independent random variables with the distribution

P[é = g(p) 1——]] (&, =—2(p)p) = l—f

for the mean value M@, and variance DOy we have M#,=0, DO,=D,. Con-
sequently, by the Chebyshev inequality,

1
P{|0g| = ADg) = I_F'
So by
d= % g(p)
p=a P
we have

Fl—d-+ADg)— F(—d—AD,) = P{.J:,, = 'i{” (Yp = Ryl = ,w,,;]

H
log R

= [1—%] Fgﬂ(i— 1p) = (1—1/A%. (R=2),

By putting A=2 our assertion follows immediately.
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To prove Theorem 4 we define our g(p) as follows. Let R,=1, R, , be defined
q |
by Ri=logloglogloglog R;.,, A=exp(exp (exp R)), gl:p}=r it pelR;, Ry
[
Then

p=8 P P

glp) _ gp) _ I
F 22T e }Zx 5 ;a —loglog R, ., - :a:;—;

el

Let m run over the square-free integers all prime factor of which is less than R.
By Theorem 2, for fixed m the number of integers i with

n=mv= N, x(m) =R, g{u}—wn-dx,}e[—%. %]

m H ( ] .
: I .

{n_mu- N g{H]EU [Eim} Ag,— +g{m:’ A+ A }

Summing up for m we have

:a:-N_.T}'[l—l,"pl = %:&-N.

p=&; Fimi= By

So the intervals
L [gfm}—dn,—i, gfm}—Ax,+-5]
n )'i A

cover a positive percentage of integers. The whole length of these intervals is less
than ¢2*)/4,. This quantity tends to zero as [—e=. By this the theorem is proved.

3. Lemmas, Let 5°(4) be an arbitrary set of distinct square free integers m
having the following properties:

(1) A==n(m),

(2) if pilrny. palma, my=ma€#(A), then i;—'#

a

Let o(n) be a multiplicative function such that 0=g(p)=1+0(1/p*) (6=0 con-
stant). Moreover, let

m
(3.1 = 3 29
mesi4y M
Lemma l. For 2=4 we fave

(3.2) T(d)=

¢, being an absolute constant.

AlogA logd

2
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Proof. We split the elements of & (4) according to P(m)e[4™", 4™, Let
T,(A4) denote the part of the sum (3.1) corresponding to this interval. From (2)
we have

1
i) = - 320

where the sum extends over the square free n with A=x(m)=Pn)=4""". So

g(p)y logd
1+ . ]a@: (7

< 2(m) e

—

ﬁ [
m A-c_p-l_t‘f’hH'

Using this inequality for every hA=0 we have (3.2).

Remark. Since T{1)=14T(2), therefore by Lemma 1, 7(1) is bounded.
We shall use the following Esseen type inequality due to A. 8. Famniee [6]
which we guote as

Lemma 2. For an arbitrary distribution function H{x) we have

I I
(3.3) Qu( =C sup — [ |py ()] dr.
=1 L]
Lemma 3. Let y=0 be fixed,
3.4) §= > cos rilog p)=*
qup-crruv 4

Then § jx bounded as t—es |
Proaof. First of all we shall prove that

< cost(logn)~?,

E=
tlﬂgu;'”"' nlogn
is bounded as t—=. Indeed,
ﬂl.."r
cost(logu)~? | { T T J
E :n,f ulogu ﬂ'u{ = ,-é.,nlogn (log n)? _{log{n+]})’

gl ) gy
gt tl!’rﬂﬂg T_}l +3

To estimate the integral we substitute y=1/(log u)’, and we get immediately
that
i | ilosn”

el
“r cost(logu)"T . cosy ;. _
,;[ Tgudu_. - I-,-" T dy = O(1).

S0 it is enough to prove that §—F=0(1) as 1-=,




On the concentention of distribution of additive functions am

Let ¥9=M=e"": Ny=M+IN" (j=0,1, ..., [M™]), N=M", Ny=N,+N,
and consider the quantity

-3 -7
S(N,, N;) = cos t(log p) > cost(logn)™?

Ny p=Ng P Ny=n=Ny n IO' n

To estimate it we use the prime number theorem for short intervals in the form

» : N
(3.3 Ay, () = ._§I (Aln) 1) <oz M=u=Ny.
‘Since

| | ' logx+ 1 2(n—Ny)
N,logN, nlogn ,f Hioa P = = NiiogW,
for Ny=n=N,, therefore

(3.6) SN, N)= ¥ ”phﬂ'! ii’i’;‘f;ﬁ:}i

Ny p=Ny
where

. LNy, Na]"‘_ﬁ'{ﬂfﬂ]"—”ﬂﬁl‘(b&ﬂ"-
By using partial summation,

L(N;, Ny) = Ay, (N cos 7 (log No) ™"+ :__' Ay, () [nﬁs
Hence, by (3.6) we get

LN,

T
ogny " [lus[n+1})’]'

M1

t
(log Nﬂ‘ = {lusn]’ O log (n+ 1}]![]‘
Since t/(log n)" is monotonic and cosine Htﬁ'ﬁﬁ Lipschitz condition, the last sum
s majorated by
T T
logN, logN,’
Consequently,
1 My " 1
(log M)

Z SN« 3

— +
= = A speem P° M?

+m_:i;“ [IngM lngllnf]

By putting M=2"¢", k=0,1,2,..., upto M=¢"" we have S—E=0(1).
By this Lemma 3 has been proved.

4, Proof of Theorem 3, Let
gllos -7 |
o (%) ’?( p ]
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be the characteristic function of the limit distribution of g(n) defined by g(p)=
={log p)~*. First we observe that

eftliam—7__ 1|
(4.1} log le(r)| = Re 2‘ ——+t’J{I}.
F=-1. P
Lemma 3 and the relation
1

Z'-E = log log y+0(1)
gives that i

1 plriivg p) -
(4.2) log le(r)] ‘é——ngt-I—ﬂ“}-{-RE B

FE'IID F

Conseguently, f lin(t)| === for y=1. Let y=1. From (4.2) we have

(4.3) lp(r)| == o' (=),
where
pirilon g
(4.4) Vi) = [|+—-_-}, R=rt=2R
f.lﬂﬂ""
Let i (z)=in(7)-ik(1); where
V1= wﬁ[lﬂn'h}:ﬂ}"* Vi = (log Ry = p= RVE
So we have
iR
1
(4.5) J 00| de < 7 (B (R) + Bo(R)),
where
N
(4.6) B(R) = [ [@Pde (=12
¥

First we estimate B.(R). We have

bl =143 =

H:y[nll

where the summation is extended for the square-free m's satisfying (log R)i=
=x(m)=P(m)=R"", We have

|

ol = 1 ]
B,(R)=R+2 —-min [R. m] + m:n;"; min [R, —_'lg(m_:l —z )’

n runs over Lthe same set as m.
Let
(4.7) K{1/R)=sup = Iim.

gfm) £ |x, x+1/R)

Let x be fixed. We observe that the set of pr's standing in the right hand side satisfies
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the conditions of Lemma 1 with A={log R)*, p=1. Indeed, il |g(m,)—g(m)|=1/R,
Pafnty, pafmg, then

#(e)-+ )

= |glp)—e(pdl—lglm) —g(my)| =

E — _I- R ui
Ty e
and so ﬂ#ﬂ. So we have
F2 R
: loglog R
! e e
K(l/R) = Tog AT
Furthermore, the contribution of the pairs m, n for which |g(m)—g(n)|=R® is
majorated by
I 2 (log R)?
R pm"..?:-'!-“ e ”PJ =3 R
Consequently
1 R
(4.8) Ba{R}ﬂ:R+.E;[ 2 i { I,I’m}]+
e ) urni'*[ﬂ&'“:]
R
[y il {_ﬂﬁ: 14-11
Since [ (t)l=  JT 1+ 1/py=loglog R, therefore B,(R}==(loglog R}*R. So
=(log R
we have e

2R
f |ea ()| de == R (log log R
i

Applving this ineguality for R=T7/2" (h=1,2, ...) we pat
(loglog T2

Y — if y=1,

i
— | ipla)| dz =
r/

. 2
{]ug]ung} jog T =T

I |
|| From Lemma 2 our theorem immediately follows.
5. Proof of Theorem 1. First we prove the second inequality in (1.12). Let
glai = 2 alp)
mim pesy
J Since from (1.10)

2 el ¥ = ND(*M) = E

n=N
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we have

S ${n =N lgln =1y =2

For a natural number n let ¢(n) denote the product of those prime lactors
of # that are less than t*; let f(n)=nfe(n). From (5.1) we get that with the ex-
ception of at most N/t integers if n=N and g(m)e[x, x+ 1/r], then g(e(n))e[x—1/1,
x+1/t]. Let x and ¢ be fixed, and a, <a,=...-=a, be the sequence of those sguare-
free integers all prime divisors of which is less than ¢** and glajelx—=1/t, x+1/r],
Let E{a;) be the number of those n=N for which a;[e{n) and {aj, e(m))=a, holds.
By using the Eratosthenian sieve we have

(5.2) E(a)=1+0(1) 222 N‘”“” /AL [ '] (N ~=),
where p(m)= '[E: . Since fl_']:l,’l—l,n'p}fs:{lngu",

we have { -

(53 Qi < ~4——sp 3 2@

p
f lﬂg [ i) € [ — L, %+ 1) HJ

It has only remained to prove that

(5.4) Ho= 3 289

e |
agefz x+14] Q)

uniformly for x6({—es, =) a8 t-—+=,

We write every a; as me where P(m)=t’, »(r)=1", or v=1. So
g o} alm)
AT L S -
v U lgmycix—glih st 1i—gley)

The set of m’s satisfies the conditions of Lemma | (see (1.11)) so the inner
sum is bounded, and we have

m‘.PI] )
U"rﬁJa,Er=4[l+ p e

We shall prove that
[
15— i s — o
Gl =G ””_]ogf (r s

and by this the proof will be finished.
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Let P= [] p. It is obvious that

eulN
) HEN.§F1=1 L=(+e()N #-T!l't; (=ln= & rogr (Vo)

cq i an absolute constant. Furthermore,

Bols Sle@ 3 t=eN [ [1—i] 5 HON

=N (n, Pi=1 gty gm= N, {m, Fi=1 Pty B y=r if

By choosing ¢,=24, from (1.9) we have

It

5 ! - lg(p) oy N
=1 I =N [1 __] )
gt o vanona SNV EN HI=5) 270 = Tog:

This and (5.5) gives that

R L L
s 2Alogt  tlogt — logt’

F(lft)—F(-

By this the proof of our theorem is finished.
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