
When the Cartesian
Product of Directed
Cycles is
Hamiltonian

ABSTRACT

The cartesian product of two hamiltonian graphs is always hamiltonian .
For directed graphs, the analogous statement is false . We show that the
cartesian product C, x C„ 2 of directed cycles is hamiltonian if and only if
the greatest common divisor (g .c .d .) d of n, and n 2 is at least two and
there exist positive integers d,, d 2 so that d, + d2 = d and g.c.d . (n,, d,) =
g .c.d. (n 2, d2 ) = 1 . We also discuss some number-theoretic problems
motivated by this result .

1 . INTRODUCTION

Let G, = (V,, E,) and G2 = (V2 , E,) he graphs . The cartesian product (see
p. 22 of [1]) of G, and G 2 , denoted G, x G 2 , is the graph G = (V, E)
where V = V, x V2 and

and
E _ {{(is,, v,), (u2, v2)}

	

u,=u2
or u, = v 2 and
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A graph G = ( V, E) is hamiltonian if there exists a listing v,, v 2	V" of
the vertex set V so that {v ;, v, ., ,} E E for i = 1, 2, . . . , n -1 and {v,,, v,} E

E. It is elementary to show that if G, and G 2 are hamiltonian, so is
G,xG2 .
Now let G, = ( V,, E,) and G 2 = ( V2 , E2 ) he directed graphs, i .e, E, and
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E Z are sets of ordered pairs of V, and V 2 , respectively . The cartesian
product G, X GZ is the directed graph G = (V, E) where V = V, X VZ, and

E _ 1((u', vi), (UZ, v2)) or
U,= u2 and (v,, v 2) E EZ
v, = v 2 and (u,, UZ) E E,

A directed graph G = (V, E) is said to be hamiltonian if there exists a
listing v, v 2 , . . . , vn of V so that (v,, v, + ,) E E for i _ 1, 2, . . ., n- I and
(vn , v,) E E. As we shall see, the cartesian product of hamiltonian directed
graphs need not be hamiltonian .

2 . DIRECTED CYCLES

For an integer n ? 2, let C„ be the directed graph with vertex set
{0, 1,2, . . .,n-11 and edge set {(i, i+1): i=0, 1, 2, . . . , n-1 (mod n)} .
In this section we will determine when the cartesian product C, x C,,, of
directed cycles is hamiltonian . We begin by developing some necessary
conditions. We suppose that v,, v 2 , . . . , v,,,,,2 is a hamiltonian cycle in
C,,, X Cnz . Without loss of generality we may assume that v, _ (0, 0) .

For an integer n ? 2, we denote by Z„ the cyclic group of order n . We
use the symbols {0, 1, 2, . . . , n -1} for the elements of Z„ with the
operation being addition modulo n . We denote the direct sum of Z,,, and
Znz by Z„,®Z„Z and adopt the natural convention of using group notation
for the elements of C-1 x Cnz . In particular note that for each i =
1, 2, . . . , n,n 2 , either v;+, =v;+(1,0) or v,-,,=v, +(0, 1) .
We let V denote the vertex set of Cn, X Cnz and then set

V,={v, : v,+,=v,+(1,0)} and V2 ={v, : v, .,, =v,+(0, 1)} .

Note that V, and VZ are nonempty and their union is V .

Lemma 1, v E V, if and only if v + (1, n 2 -1) E V, .

Proof. For each vertex u c V, there are exactly two vertices u,, u 2 E V
for which (u,, u) E E and (u2 , u) a E, i .e .,

u=u,+(1,0)=u2+(0, 1) .

Now suppose v c V, and let v=v, ; then v,+, = v, + (1, 0) . If
v+(1, n2 -1)E V2 and v+(1, n 2 -1)=v;, then i1 j but v„,=vi+ , . This
contradicts the assumption that v,, v 2 , . . . , Vn , nz is a hamiltonian cycle in
Cn , x Cnz , i .e ., each vertex appears exactly one time in this list .
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On the other hand, if v+(1, n 2 -1)E V, and v r= V2 , then v+(1, 0) does
not appear in the list since v+(1,0)=v,+, and v ;=v+ (1, n2 -1) require
v + (1, n2 -1) E V2 whereas v, = v requires v E V, . 1

Let (a, b) c Z„ ® Z, and let ((a, b)) denote the subgroup generated by
(a, b) . Then the order of ((a, b)) is the least common multiple of the
integers O(a) and O(b) which are the orders of a and b in Z, and Z„Z ,
respectively . Let H=((1, n2-1))=((n,-1, 1)) . Then JH J =
l .c.m . (n,, n2) = n,n 2/d where d = g.c.d . (n,, n 2 ) . [l .c.m.-least common
multiple ; g:c.d.-greatest common divisor .]

It follows from Lemma 1 that V, and V2 are both the union of distinct
cosecs of H. Since they are nonempty and disjoint,we see that the greatest
common divisor d of n, and n2 must be at least two . However, as we shall
see, the condition that d be at least two is not sufficient .

Lemma 2, v, E V, if and only if v,+, E V, .

Proof. Note that for each i, there exist e,, e2 so that e, + ez = d and
v, +,, = v, + (e,, ez) . We now show that {(e,, e 2 ) : e, + e, = d } c H . It suffices
to show that (d, O) E H. Choose integers q, and q2 which satisfy the
Diophantine equation n, q, + n,q2 = -d . Then

(n,q,+d)(1, n2-1)=(-n2g2)(1, n2 - 1)

_ (n,q,+ d, - n2g2n2+ n2g2)
_ (d, 0) . 1

Now let v,, + , = v, + ( d,, d 2) . Then d, + d2 = d and d,, d2 > 0 since
neither V, nor V2 is empty .

Lemma 3. The order of ((d,, d 2)) in Zn,(DZ,,, is n,11,/d.

Proof. Let t = order ((d,, d2)) . It follows from Lemma 2 that v, *U _
v, + k(d,, d 2 ) . Since v, + t(d,, d 2 ) = v, and we visit exactly d vertices
between v, and v,+a, we see that td = n, n2 , i .e ., t = n, n 2/d. 1

Lemma 4 . g.c .d . (n,, d,) = g.c .d . (n 2i d 2 ) = 1 .

Proof. Suppose that there exists a prime p so that p I d, and p I n, . Let
t, = 0(d,) and t 2 = O(d 2 ) in Z,,, and Z„ Z, respectively . Let us also suppose
that p I d2 . Then p I d and pn2 . Then the order of ((d,, d 2 )) in Z_„ ® Z, is
l .c.m . (t,, t2 ) . Since d, • ( n,/p)= (d,/p) • n, and t, is the least integer for
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which n, I d,t,, we see that t, I (n,/p) ; similarly t2 I (njp) . Therefore

I.c.m . (t,, t2) l .c.m . (n,/p, n2/p) _ ( n, n2)/(pd) < (n, n2)/d

contradicting Lemma 3 .
On the other hand, suppose that p .I d2 . Then p X d and p .1' n 2 . Then

t, I (n,/p) and t2 l n 2 and

n,n2 n,n2l .c.m . (t,, t2) l .c.m . (n,/p, n2) = pd	 <	d ,

again contradicting Lemma 3 .
We conclude that g .c.d. (n,, d,) = 1 and dually we have g .c .d . (n 2 , d2) _

1 .

	

1

We are now ready to present the principal result of the paper .

Theorem 1 . The Cartesian product C,,, X C„2 of directed cycles is hamil-
tonian if and only if d = g.c .d .(n,, %)? 2 and there exist positive integers
d,, d2 so that d, + d2 = d and g.c.d .(n,, d,) = g.c .d.(n 2 , d 2 ) = 1 .

Proof. The necessity has been established by the preceding Lemmas .
Sufficiency is established by constructing the hamiltonian cycle in the
obvious fashion . Let v, _ (0, 0) and v ,+ , _ ( d,, d2 ) . Then choose any
directed path v,, v 2 , . . . , vd , vd+, between (0, 0) = v, and (d,, d2 ) = v,,, ;
e .g ., let v 2 = (1, 0), v, _ (2, 0)	vd,+, - (d,, 0), vd,+2 = ( d,, 1), vd,+3 _
(d,, 2), . . . . Then construct the remaining part of the cycle using (as
required by Lemma 4) the rule v;+d = v; +(d,, d,) . It is straightforward to
verify that the construction produces a hamiltonian cycle (see [2] for
details) .

Example 1 . C4„ x C, fi is hamiltonian . In this case d=8 and we may
choose either (3, 5) or (7, 1) for (d,, d2 ) . Note that there are then (3)+( ;)
different hamiltonian cycles .

Example 2 . Let n, = 2 4 . 5 • 11 and n 2 = 24 • 3 • 7 • 13. Then C, x C, is
not hamiltonian . This is the smallest example where d ? 2 but the product
is not hamiltonian since it is relatively easy to show that if g .c .d (n,, n 2) _
d and 2 d 15, then suitable d, and d2 can always be found .



Klerlein [3] has shown that the Cayley color graph of the direct product
of cyclic groups using the standard presentation is the Cartesian product of
directed cycles of appropriate orders . Theorem 1 can then be applied to
determine when this Cayley color graph is hamiltonian .

3. SOME NUMBER THEORETIC RESULTS

Following [2], we say that an integer d is prime partitionable if there exist
n,, n 2 with d = g.c .d. (n,, n2), so that for every d, , d2 > 0 with d, + d 2 = d
either g .c .d . (n,, d,),' 1 or g .c .d . (n 2 , d 2 )/ l . The first ten prime partiona-
ble numbers are 16, 22, 34, 36, 46, 52, 56, 64, 66, and 70 . Note that all
these values are even . In [2] it is asked whether infinitely many prime
partionable number exist and whether there are any odd prime partiona-
ble numbers. We settle these questions in the affirmative .

Theorem 2. There exist infinitely many prime partionable numbers .

Proof. It follows from a theorem of Motohashi [4] that there exist
infinitely many primes pairs p,, p2 with p, > 3 and p2 = 2p, + 1 . To see that
for such primes, d = p, +p2 is always prime partionable, let it, = d • p, • p2

and n2 be the product of d with all the primes other than p, and p, which
are less than d. 1
We also found several odd prime partionable numbers by computer

search for solutions to Diophantine equations . These values are d = 15,
395 ; d = 397, 197 ; d = 1,6.55,547 ; d = 2,107,997 ; and d = 2,969,667 .

Example 3. For the value d = 15, 395 let n, = dp, P2p3 where p, = 197,
p2 = 317, and P3 = 359 . Then let n 2 be the product of d with all primes
other than p,, p2 , and P3 which are less than d. Then observe that
d-p, _ 48 p2 ; d-p 2 = 42 p3 ; d-p 3 = 84 p, ; and d-1 = 86 p, . Furthermore
each of the terms p;, p2, p ;, p,p2 , p,p3 , and p,p3 is larger than d. Thus d
is prime partionable and C„, X C112 is not hamiltonian .
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