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Kneser made the following pretty conjecture: Let |S| = 2n+k and define a

graph Gn,k as follows: It’s vertices are the
(
2n+k

n

)
n-tuples of S. Two vertices

are joined iff the corresponding n-sets are disjoint. Denote by K(G) the

chromatic number of G. Kneser conjectured K(Gn,k) = k + 2. 1 K(Gn,k) ≤

k + 2 is immediate but the opposite inequality seems to present great and

unexpected difficulties. Szemerédi proved (unpublished) that K(Gn,k) tends

to infinity uniformly in k. Hajnal and I and no doubt many others tried to

attack this problem by the following extension of our theorem with Ko and

Rado. Let |S| = n = 2k + 1, Ai ⊂ S, Bj ⊂ S, 1 ≤ i ≤ t1, 1 ≤ j ≤ t2,

the sets A1, . . . ; B1, . . . are all distinct, Ai1 ∩ Ai2 , 1 ≤ i1 < i2 ≤ t1 and

Bj1 ∩Bj2 , 1 ≤ j1 < j2 ≤ t2, are all non-empty. Is it true that

1The solution is in (The remarks of the Editor):
1. Juliusz Reichbach: Coloring and Kneser-Erdős Conjecture, Creation in Mathematics,
10, 1977
2. A. Schrijver: Vertex-critical subgraphs of Kneser-graphs, (Prepublication), Amsterdam,
Mathematisch Centrum, Feb. 1978.
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(6) t1 + t2 ≤
(

n−1
k−1

)
+

(
n−2
k−1

)
?

Equality in (6) if all the A’s contain 1 and all the B’s contain 2 elements.

Kneser’s conjecture can be extended to r-graphs. Let |S| = rn + k. The

vertices of our r-graph are the n-tuples of S. The edges are the sets

Ai1 , . . . , Air ; |Aij | = k, 1 ≤ j ≤ r,

and any two of the r k-sets are disjoint. - Then the chromatic number of this

r r-graph should be k + 2.

B. Grunbaum asked the following geometric question:

Let there be given n points in the plane, join any two of them by a line. What

are the possible number of lines one gets? The number of lines is clearly at

most
(

n
2

)
and it can never be

(
n
2

)
− 1 and

(
n
2

)
− 3. I showed that there is an

absolute constant c so that every cn
3
? < t <

(
n
2

)
− 3 can occur as the number

of lines determined by an n-set. It follows from a result of Kelly and Moser

that the order of magnitude cn
3
? is best possible but the exact value of c is

not known.

In this connection the following combinatorial problem in of interest:

Let |S| = n and define Ir as a set of integers with the following property:

t ∈ Ir iff there in a family of subsets Ak ⊂ S, 1 ≤ k ≤ t so that every

r-tuple of S is contained in one and only one of the A’s. Let us first in-
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vestigate the r = 2. Clearly all integers in I2 are ≤
(

r
2

)
, 1 ∈ I2,

(
n
2

)
− 1

and
(

n
2

)
− 3 not in I2. A theorem of de Bruijn and myself states that no

integer 1 < t < n is in I2. Trivially n ∈ I2 and also
(

n
2

)
− 2 ∈ I2. I showed

without much difficulty that there are absolute constants c1 and c2 so that

every integer n + c1n
c2 < t <

(
n
2

)
− 3 is in I2. It seems likely that c2 =???.

If n = p2 +p = 1 (i.e. if there is a finite geometry) it is easy to see that every

p2 + 2p + c
√

p = n + 2
√

n + c < t <
(

n
2

)
− 3 belongs to I2.

On the other hand A. Bruen recently proved that if n = k then t ∈ I2 if

k2 < t < k2 + k.

It seems that the results of A. Bruen and Bridges will involve that there is

an absolute constant c > o so that for every n there is a t not in I2 which is

> n + c
√

n.

It was observed by Hanani that the smallest nontrivial value of I3 is cn
3
2 and

it follows from the existence of Möbius (or inversive) planes that I3 contains

all integers t, (1 + c(???)n
3
2 < t ≤

(
n
3

)
except the integers

(
n
3

)
− i where i is

not of the form
∑
j≥4

aj

((
j
3

)
− 1

)
, aj ≥ 0.

For r > 3 it is much more difficult to get sharp results for Ir. It is easy to see

that if t > 1, t ∈ Ir, then t > cn
r
2 . This follows from the fact that not may

of the sets Ak can be larger than (1+ε)r
1
2 n

1
2 , for otherwise |Ai∩Aj| > r (see

e.g. Hylten-Cavallus, On a combinatorial problem, Colloq. Math. 6, 1958,

59-65). But it seems hard to prove that Ir contains an integer 1 < t < cn
r
2 .
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The problem is to find c1n
r
2 sets Ak of size of the order of magnitude n

1
2 so

that every r-tuple of our set |S| = n should be contained in one and only one

of the Ak’s. Such construction is known for r = 2 and r = 3, but it is open

for r > 3.

Before closing this chapter I state one of the many unsolved problems in our

survey paper with Kleitman: - Let |S| = n , Ai ⊂ S , 1 ≤ i ≤ t; assume that

for no three distinct A’s, Ai ∩ Aj = Ak or Ai ∪ Aj = Ak. We conjectured

that for even n max t =
(

n
[n
1
]

)
+ 1. Clements observed that this conjecture, if

true, is best possible.
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The last part of the printed research in the next number of this journal.

And afterwards every number of our journal ”Creation in Mathematics” will

contain a whole research of the regarded author.

———————–
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