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THE NONEXISTENCE OF CERTAIN INVARIANT MEASURES

PAUL ERDOS AND R. DANIEL MAULDIN

ABSTRACT. It is shown that there does not exist an uncountable group G and
a nontrivial, a-finite, countably additive measure defined on all subsets of G
which is left-invariant .

The purpose of this note is to resolve a point left unclear in a recent paper
of F. Terpe [1] and its review [2] . In [1], F. Terpe shows that the existence of a
certain "maximal" integral is equivalent to the existence of a nontrival
countably additive a-finite measure m, defined on all subsets of the interval
I = [0, 1) and invariant under translation mod 1 . In his review [2] of this
paper, J . C. Oxtoby points out that the proof given there for the nonexistence
of such a measure tacitly presupposes that the a-field 2' x 2' of subsets of
I x I generated by generalized rectangles is invariant under the shear map S,
where S (x, y) = (x + y, y) and addition is mod 1, and that by a theorem of
Iwanik [3] this instance of Weil's measurability condition is satisfied if and
only if all subsets of I x I belong to 2' x 2'. Thus, Terpe's reasoning
actually established the nonexistence of m, only under the hypothesis
2"' = 2' x 2'. Finally, Oxtoby points out in his review that 2' x, = 2' x 2'
is implied by CH, but that CH makes the group argument unnecessary .
Oxtoby ends his review by stating that the situation is unclear without CH .

We give a short argument below to show that no such hypothesis is needed .

THEOREM . Suppose G is an uncountable group and tt is a a-finite countably
additive left-invariant measure defined on all subsets of G . Then It is trivial .

PROOF . Let M be a subgroup of G of cardinality m l . Let R be the family of
all right cosets of M and let A be a subset of G which intersects each set in R

in exactly one point .
Let 'C = { mA : m e M} . Then X is a family of Kl disjoint sets covering G

and if Hl and H 2 belong to 'C, then H 2 is a left translate of H 1 .

Let { K„ } ° 1 be a sequence of sets of finite measure covering G . For each n,

the sets of the form K„ n H, where H E X form a decomposition of K„ and
therefore there are not uncountably many H's with tt(K„ n H) > 0 .

Thus, there is a set Ho in 'JC with tt(K„ n Ho) = 0 for each n . Therefore,
µ(H) = 0 for all H E'C . This implies that N1 is a real-valued measurable
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cardinal . But, assuming the axiom of choice (which we are in this paper), it is
known that K I is not measurable [4] .
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