PRIME POLYNOMIAL SEQUENCES
S. D. COHEN, P. ERDOS anp M. B. NATHANSON

ABSTRACT

Let Fixy be a polynomial with integral coefficients of degree d = 2 such that Fin) = 1 for all
=l Let @ = {Fia)lin,. Then Fin) is called prime in &¢ if Fad s not the product of strictly
smaller terms of @y, Tt is proved that if Fixd is not of the form a(bx + ¢}, then almost all erms of
g are prime in .

Let & = {a,}7. , be a sequence of positive integers. Then g, € ¢ iz called camposire
in @ if 4, > 1 and &, can be written as a product of terms g, 0 with a; < g,. Ifg, > 1
and a, is not composite in ¢, then a, is called prime in ¢, In this note we consider
sequences of the form @ = {F(n}}7. |, where F(x) is a polynomial with integral
coefficients of degree d = 2 such that F(n) = | for all n = 1. We shall prove that if
F(x) is not of the form F(x) = a(by+c)", then almost all terms of the sequence @
are prime in @,

Notation. Let Fix) be a polynomial with integral coefficients. Let pgirr) denote
the number of solutions of the congruence Fin) = 0 (mod ar) with 1 = & < m, and
let 8p(m, x) denote the number of solutions of the congruence Fin) = 0 (mod ) with
I £n = x The polynomial F{x) is (r+ 1)-free if F{x) is not divisible by the (r+1}-st
power of any non-constant polynomial. We write f < g if | f(x)| < ¢|g{x)| for some
constant ¢ and all sufficiently large v.

Tueorem. Ler F(x) be a polynomial with integral cocfficients of degree d = 2 such
that Fim) = 1 for all n' =1 and such thar F{x) is {1+ 1)=free, where 1 £t d—1
Let 0y = {F(n3= ,, and let C{x) denote the number of F(n) in O with n < x which are
composite in @y, Then

C{x} ‘g x,|d+ 1)+ 214-1_1_ J._{;a-_.fifz.h fpdl e

ar every & = 0. dn particular, i F(x) is not a constant multiple of a linear polynomial,
¥ L
then
E‘.T} < x'l (1% e
Sfor every £ > 0,

We shall require the following result,

Lemma. Let Fix) be g (i + V)-free polynomial with integral cocfficients. Then

X
(i, x) <€ ( I+ —~) i
m

1
for every g = 0.

Proof. IF G{x) is a square-free polynomial with integral coefficients, then MNagell
i[3) and [4; p. 907y and Ore [T} have proved that, for any prime pand k = 1,

pa(pY) < d'D?
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where d' is the degree and D the discriminant of G{x). Let w{m) denote the number
of distinct primes dividing m, and let 7(m) denote the number of divisors of m. Then
24m = t(m) <€ m" for every £ > 0. Since pgim) i1s a multiplicative function of m, it
follows that

polnt) < (d°DAyrim = Jotm testd %)
,,{_T(m}m:u'nﬂ £ nrt.

MNow let F(x) be a (¢t+ 1)-free polynomial. We can assume that the coefficients of
F{x} are relatively prime. Let G(x) be the product of the irreducible polynomials
dividing F{x). Then G{x) divides Fix), and, since F(x) is {t+ 1)-free, Fix} divides
G(x). Let m, be the smallest divisor of m such that m|m,". Then m'* < m,. If
Fin) = 0 (mod m}, then G{n)' = 0 (mod m). But this implies that G(n) = 0 (mod m,’)
and so G(n) = 0(mod m, }. Therefore,

Beplm, x) < tglmy, x)

< [I+-x—) pelm,)
m,

< (l 4= ) e
mi
forevery e = ). This proves the lemma,
Proaf of the Theorem. Let F(x) be a (1+ 1)-free polynomial of degree d = 2. Fix
U < i< |I. Let C(x) denote the number of # < x such that
Fin) = Fiw ) (Fus) ... Fiu,),

where 1 cw; <= x*and 1 < Flu) < Fin) for i = 1,2, ..., 5. Let C;{x) denote the
number of # = x such that F{n) is divisible by some F{u) with ¥* < u < v and
| = Fiw) = Fin). Then

Cix) < Ci{x)+ Calx). (1)
We first estimate C,(x). Let ¥ < n < x, and suppose that
Fin) = Fiu,) Fluy) ... F(w),

where l<u, <wp<..gu,<x* and 1 < Fiu) < Fin),  Choose constants
0 < x < f§such that
an’ < Fin) < fn'

foralle = 1. Then Fin) = an’ = ax"forn > x", and so
Filu) oo Flu, o) = o’ < Fla,) o Flu,_ ) Flu) =m (2}

for some r=s Since 2" ' = Flu,) ... Flu,_,) = ax', it follows that r < ylogx
for some y = O and all x > x,. Moreover, m | F{n}. For fixed m of the form (2), the
number of n < x such that F(n) is divisible by m = F(u,) ... F(u,) is, by the lemma,

Bplm, x} < (I + J:“) mt < X"
m

for every & = 0.
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We must now estimate the number of m of the form (2). Since
Flu,) = fut < fix*d,
it follows from (2) that
w0 < o< g xMM
and so
(7T Il Ll | bl L

Given & = 0, choose & = 0 such that —ylog (1 —&) < &. There exists N{(§) =N > |
such that F{n) = (1—48)n” for all » = N. Suppose m = F(u,) ... F(w,), where

H = ~--ﬁﬂpﬁN{HP+lﬂruﬂur-

Let my = Flu)... Flu,)) and my, = Flu,,,)... F(y,). Then m=mym;. Since
F(u;) = 2, it follows that the number of possible integers m, is < (logx)¥ <
Moreover,

my > (=8P (upp o) = (=8 (g oo )

and so
(W1 oo 1) < (1=8)"" m,
< (1=3)" 70 %y,
<x'm
o
Conseguently,
Wit oo By P HIRDS, )

By a result of Oppenheim [5, 6] and Szekeres and Turdn [8], the number of products
of the form (3) is < x*"®®7¢ Therefore, the number of mtegers m of the form (2)
is < A HHIYE and so

Cl{x] & At e {4}

We shall now estimate C;(x). The number of F(n) with n < x which are divisible
by some F(u) with x* < u < ¥ D2 does not exceed

xid+ Ik Es ) il H 13 +3) x
B F(u), x) < 14+ x
,;2,4 r( @ x] u=-E-r* ( F{H}m)
_::x{d+:l}|"{l‘+ll+l+xl +& E F{u}""“

n=xd
@
R
xt=1
£+ INE+2) A=A 1)t

Moreover, Anderson, Cohen, and Stothers {1, 2} have proved that the number of
F(n) with n < x which are divisible by some F(u) with ¢ > xM*0+2) jg

= x{d+ A+ 11‘
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Therefore,
Cy(x) < ARty 1= ddi= bt (5)

Combining (1), (4). and (5), we obtain
C{x} < x(u!-l-l]_-{'s!+21+e+xl —j{d,'r—l}+r+r1+r.n'd+:r
The minimum of the right-hand side of this inequality occurs when

i = (dd) (1= (1/d)).

ﬂ'{x} % AN e r"MJﬂ—:,-’dnﬂ

This vields

This completes the proof of the theorem.
CoroLLARY. Let Fix) be a square-free quadratic polynomial, Then
Cixj € xt*e
Remarks. If F(x) = x*+bx+¢, then the polynomial identity
F(x} Fix+ 1) = F{x*+(b+1)x+¢)
implies that the number C{x) of composite numbers in & satisfies
xF = Clx) < 23

The exact order of magnitude of C(x) is unknown. One can conjecture that ift F(x)
is a polynomial of degree d = 2 that is not of the form a(bx + ). then C{x) < x{YD*e,
but this is unknown even ford = 2. On the other hand, it is not difficult to construet
menic polynomials Fix) for which C{x) = 0 lor all x. For example, let p be prime
and let F(x) = (x(x+1) ... (x+p—1))"'+p*for 1 <k <. Then F(n) = p*{mod p**)
for every m, but F(u,) ... F(x,) = 0 (mod p**) whenever ¢ = 2, and so no F(n) in &, is
composite in @ It is an open problem to determine those polynomials F(x) for
which the sequence @, = {F(n)};., contains infinitely many numbers composite
in ﬂ-";.
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