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Partitions of the Natural Numbers into Infinitely
Oscillating Bases and Nonbases

PAUL ERDOS AND MELVYN B . NATHANSON

Abstract. The set A of nonnegative integers is a basis if every sufficiently large integer x can
be written in the form x = a + a' with a, a' e A. If A is not a basis, then it is a nonbasis . We
construct a partition of the natural numbers into a basis A and a nonbasis B such that, as
random elements are moved one at a time from A to B, from B to A, from A to B_ ., the
set A oscillates from basis to nonbasis to basis . . . and the set B oscillates simultaneously from
nonbasis to basis to nonbasis . . . .

1. Introduction

Let A be an infinite subset of the natural numbers W = {0, 1, 2, . . .} .
Then A is an asymptotic basis of order 2, or, simply, a basis, if every suffi-
ciently large number can be written in the form a + a1, where a1, a; E A. If
the set A is not a basis, then it is called an asymptotic nonbasis of order 2,
or, simply, a nonbasis.

The set A is a minimal basis if A is a basis, but, for any a c A, the set
A \ {a} is a nonbasis. Similarly, the set A is a maximal nonbasis if A is a
nonbasis, but, for any natural number b e A, the set A U {b} is a basis . Mini-
mal bases and maximal nonbases were introduced by Stöhr [5] and Nathan-
son [4], and studied further by Hdrtter [3] and Erdös and Nathanson [1, 2] .

Minimal bases and maximal nonbases are examples of sets which oscillate
once from basis to nonbasis or from nonbasis to basis by the deletion from
or addition to the set of a single element. There also exist sets which
exhibit two oscillations . Erdös and Nathanson [2] have constructed a basis A
such that, for any a E A, the set A \ {a} is a nonbasis, and, for any
b j~A \ { a}, the set (A \ {a}) U {b} is again a basis. They also constructed a
nonbasis A such that, for any b f~ A, the set A U {b} is a basis, and, for any
a e A U {b}, the set (A U {b}) \ {a} is again a nonbasis. But no example had
been constructed of a set which would oscillate infinitely often from basis to
nonbasis to basis to nonbasis . . . by successive deletions from and additions
to the set of single elements . Such a set can be precisely described in the
following way. Let A be an infinite set of natural numbers, and let S and
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T be finite sets such that S- A and T- N \ A. Then A is an infinitely oscil-
lating basis if (A \ S) U T is a basis if and only if I Sl <_ I T1 . Similarly, let B
be an infinite set of natural numbers, and let S and T be finite sets such
that T- B and S- N \ B . Then B is an infinitely oscillating nonbasis if (B U
S) \ T is a nonbasis if and only if I S 1 < I T1 . Clearly, if A is an infinitely os-
cillating basis, then A \ fal is an infinitely oscillating nonbasis for any a c A.
Similarly, if B is an infinitely oscillating nonbasis, then B U f a} is an in-
finitely oscillating basis for any a B.

Nathanson [4] asked if there existed a partition of the natural numbers
into a minimal basis A and a maximal nonbasis B. This partition would
have the property that A is a basis and B is a nonbasis, but, if any ele-
ment a E A is moved to B, then A \ fa} becomes a nonbasis and B U fa}
becomes a basis. One can ask, further, for such a partition with the addi-
tional property that if any element b E B U fa} is moved to A \ fa}, then
(B U f a})\ fb} becomes a nonbasis and (A\ f a}) U f b} becomes a basis again .
Indeed, one could wish for a partition of N into a basis A and a nonbasis
B such that, as random elements are moved one at a time from one set of
the partition to the other, the set which is a basis becomes a nonbasis and
the set which is a nonbasis becomes a basis. This is equivalent to requiring
a partition of the natural numbers into two sets, one of which is an in-
finitely oscillating basis and the other an infinitely oscillating nonbasis . The
purpose of this paper is to construct such a partition . In particular, this
proves the existence of infinitely oscillating bases .

THEOREM . There exists a partition of the natural numbers N into two
disjoint sets A and B such that A is an infinitely oscillating basis and B is
an infinitely oscillating nonbasis .

2. A Critical Lemma

The following notation will be used consistently in this paper . If A is a
set of numbers, then the sumset 2A = f a+ a' I a, a' E A}. By [M, N] we de-
note the interval of integers x = M, M+ 1, . . . , N. Let Nk > 2Nk-1, where
Nk = 2nk + 1 and nk = 2 mk is even. The interval [Nk-, + 1, Nk] will be di-
vided into the following three subintervals :

Ik = [Nk-1+ 1 , nk],

	

Ik- [nk+1, Nk - Nk-1 - 1],

	

I'k= [Nk - Nk-1, Nk] .

By Ak and Bk (resp . A'k and Bk, AT and BT) we denote subsets of Ik



Ik = IkUI'k= [Nk-, +1,Nk - Nk-, - 1]
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"'

	

k(resp . Ik, Ik which partition the interval Ik (resp . Ik" , I') . Let

and let Ak = A k' U A 'k' and Bk = B k' U B 'k' . Then the sets Ak and Bk partition
the interval Ik and the sets Ak U AT' and Bk U BT partition the interval
[Nk- 1 +1, Nk] .

The cardinality of the finite set A is denoted JAI .

LEMMA 1 . Let x E [2P+2, P+ Q+ 1]. Then the number of subsets A of

[P+1, Q] such that x 2A is less than

-,/3)x-2p

2
2 Q-P"

Proof. Let A - [P+ 1, Q] with x 2A. Suppose x = 2x'+ 1 is odd . We di-
vide [P+ 1, Q] into the interval [x - P, Q] and the x'- P pairs Jr, x - r} with
r=P+1,,P+2, . . . , x' . Then A can contain any of the 2Q-(x-P)+ ' subsets of
[x - P, Q] . On the other hand, A can contain at most one element from
each pair f r, x - r}, and so there are three choices for the distribution of
each pair f r, x - r} in A (either r E A, x - rV A, or r A, x - rE A, or r A,
x - r A) . Therefore, the number of ways to choose A is exactly

3"-P2Q-(x-P)+i _ 3(x-2P-i)/2 2Q-P+i -(x-2P) < ( 31x-2P 2Q-P+i_

	

22

Similarly, if x = 2x' is even, we divide [P+ 1, Q] into the interval
[x - P, Q], the singleton f x'}, and the x'-P-1 pairs f r, x - r}, where r =
P+ 1, P+2, . . . , x'-1 . Clearly, x' e A, and the number of ways to choose A
is exactly

3"-P-i20-(x-P)+i _ 3(x-2P-2)/220 -P+i-(x-2P)G
\ /3J

x-2P2Q-P+r
2

LEMMA 2 . Let x E [P+ Q+ 1, 2Q]. Then the number of subsets A of
[P+ 1, Q] such that x V 2A is less than

\

23\ 20-x
2 0-P .
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Proof. Let A - [P+ 1, Q] with x 2 A. Suppose x = 2x' + 1 is odd . We di-
vide [P+ 1, Q] into the interval [P+ l, x - Q -1] and the Q - x' pairs
{x - r, r} where r = x'+ 1, x'+ 2, . . . , Q. Then the number of ways to choose
A is exactly

3Q-x -2z-Q-~-P = 3(20—+0/22Q-P-1-(zQ-) < ~,/3)2Q-X20-P .
2

Similarly, if x = 2x' is even, we divide [P+ 1, Q] into the interval [P+
1,x-Q-1], the singleton {x'}, and the Q-x' pairs {x-r, r}, where r=
x'+1, x'+2, . . . , Q. Then the number of ways to choose A is exactly

(30-'2`0_'_p=

	

-,/3 20—2Q--P ._

	

2
)

LEMMA 3. Let d > 1 . Then the number of subsets A of [P+ 1, Q] such
that

a EA and a< 0-d implies a+ d E A

does not exceed

\

Q-P+2)d

d

Similarly, the number of subsets A of [P+ 1, Q] such that

aEA and a>-P+1+d implies a-dEA

does not exceed

~Q

-P+2)d

d

(*)

Proof. The interval [P+ 1, Q] can be partitioned into d disjoint arithmetic
progressions with difference d, each of length at most (Q-P)/d+1 . Suppose
that A - [P+ 1, Q] satisfies (*) (resp . (**)) . Then A is the disjoint union of
terminal (resp . initial) segments of the d arithmetic progressions, and each
of these segments is determined by its initial (resp . terminal) element, which
can be chosen in at most (Q - P)/d + 2 ways . Since there are d progressions,



the number of A - [P+ 1, Q] which satisfy (*) (resp . (**)) is at most
((Q-P)/d+2)d .

LEMMA 4. There exists a constant c such that, given a nonnegative in-
teger Nk-1, then for all sufficiently large Nk = 2 nk + 1 there is a partition of
the interval Ik = [Nk-1 + 1, Nk - Nk-1 -1] into two sets Ak and Bk such that

(i) Nk0 2Ak U 2Bk

(ii) [Nk+1,2Nk - 2Nk 1 - 2 - c]C2Akn2Bk .
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Furthermore, if Nk-1 is sufficiently greater than Nk-z, and if there is a par-
tition of the interval Ik-1=[Nk-z+1, Nk-1 - Nk z - 1] into two sets Ak-1 and
Bk-1 such that

(in) Nk-1 0 2Ak-] U 2Bk-1

(iv) [Nk-i+1,2Nk_1 - 2Nk-z - 2- c](--2Ak-in2Bk-i

then there is a partition of Ik into sets Ak and Bk which satisfy (i), (ü), and
also

(v) [Nk-1 + 1, Nk-i] - 2(Ak U Ak-i) n 2(Bk U Bk-i ) .

Proof. Let us call a partition Ik = Ak U Bk permissible if NkL 2Ak U 2Bk . Since
Ik is symmetric with respect to Nk/2, then x c Ak if and only if Nk -x E Bk . Let
Ik = [Nk-I +1, nk] and Ik = [nk+1, Nk - Nk-1 - 1] . Let Ak=Ak nIk,A 'k nI 'k,
Bk= Bk n Ik, and Bk= Bk n R. Then x c Ak if and only if Nk -x c Bk, and x E Bk
if and only if Nk - x c Ak . Clearly, if Ik = Ak U Bk is a permissible partition, then
each one of the four sets Ak, Ak, Bk, Bk uniquely determines the other three .
Since Ak can be any subset of Ilk = [Nk-i + 1, nk], it follows that there are exactly
2nkNk1 permissible partitions of Ik . We shall prove that for any e >0 there exists
a constant c such that, for all sufficiently large Nk, the number of permissible
partitions of Ik which also satisfy condition (ü) is greater than (1- s)2 nkNk -, .

Moreover, for this constant c, if Nk-1 is sufficiently greater than Nk-z and if there
exists a partition Ik-1= Ak-1 U Bk-1 which satisfies conditions (iii) and (iv), then
the number of permissible partitions of Ik which satisfy both conditions (ii) and (v)
is greater than (1- e)2nkNk-

Let e > 0, let e' = e/18, and choose the constant c ? 2 so that

y( 2) < e' .
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c
(nk+2)d < E'2^k -Nk- 1

d=1

The proof is in seven steps .
I. Let x e [Nk + c -1, nk + Nk - Nk-1] . By Lemma 1, the number of subsets

Ak of Ik=[nk+1, Nk - Nk_1 - 1] such that x 2Ak is less than

~,/3) x -2n,

2
2nk-Nk r +1
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Let Nk = 2 nk + 1, where nk = 2 Mk and Mk> 2 Nk-1 + c + 1 and also

Therefore, the number of Ak- Ik such that x 2Ak for some x E
[Nk + c -1, nk + Nk - Nk_1] is less than

nk+Nk Nk

	

x-2nk

	

Nk-Nk-7-n //~

3/

\\ t
y

	

2ttk-Nk +1 - 2nk-Nk ~+1

	

\

	

< 2E'2nk Nk
x=Nk+c-1 2

	

t-e

	

2

Since each set Ak - Ik completely determines a permissible partition Ik =

Ak U Bk, we conclude that the, number of permissible partitions with x0 2Ak

for some x E [Nk + c -1, nk + Nk - Nk-1] is less than 2 E'2nk -Nk

IL Let x E [nk + Nk - Nk-1, 2Nk - 2Nk 1- 2 - c]. By Lemma 2, the number
of Ak- Ik such that x e 2Ak is less than

~J312Nk-2Nk _-2-x

l

	

2nk Nk-i

2

Therefore, the number of Ak- Ik such that x 2Ak for some x E

[nk+Nk-Nk_1, 2Nk-2Nk-1 -2-c] is less than

2Nk-2Nk-i-2-c (1/3) 2N,-2Nk i - 2- x
G n k -N

x =nk +Nk -Nk-i 2
n k -Nk-l

Nk-Nk 1-,-2

	

\
/~3 , t < E'2nk Nk 1

2

It follows that the number of permissible partitions Ik = Ak U Bk such that
x 0- 2Ak for some x E [nk + Nk - Nk-1, 2Nk - 2Nk-1 - 2 - c] is less than
E '2nk-N,, .

III. Let x c [Nk + 1, Nk + c - 2] . Then x = Nk + d for some d e [1, c - 2] . Let
Ik = Ak U Bk be a permissible partition such that x Vz 2Ak . Let Ak = A k U A k,

and let a e A'k' with a> nk + 1+ d. Then x- a E Ik = A k' U B k' . But a E Ak and



x 2Ak imply x - a 0 Ak . Therefore, x - a e Bk. Since Ik = Ak U Bk is a permissi-
ble partition, Nk - (x - a) = a - d c A 'k' . That is, Ak [nk + 1, Nk - Nk-1 - 1], and if
a E Ak and a nk + 1 + d, then a - d c A 'k' . By Lemma 3, the number of such sets
Ak does not exceed

nk - Nk-1 1 d
d

	

+2) <(nk+2) d .

Therefore, the number of permissible partitions Ik = Ak U Bk such that
xe 2Ak for some x c [Nk + 1, Nk + c - 2] is less than

c-2
(nk+2) d < £'2"kNk- ' .

d=1

Combining the results of I-III, we conclude that the number of permissi-
ble partitions Ik = Ak U Bk such that x 2Ak for some x E
[Nk+1,2Nk-2Nk_ 1 -2-c] is less than 4£'2nk-Nk-1 . Similarly, the number of
permissible partitions Ik = Ak U Bk such that x 2Bk for some x E
[Nk + 1, 2Nk -2Nk-1-2- c] is less than 4£'2nk

-Nk-1
. Therefore, condition (ü)

fails to hold for less than 8e'2 "k-N-1 < £ 2 nk-Nk-I permissible partitions of Ik .
This proves the first part of Lemma 4.

IV. Let x E [2Nk - 1 + c, Ilk + Nk- 1 + 1] . By Lemma 1, the number of subsets
Ak of Ik=[Nk-1 +1, nk] such that x 2Ak is less than

~J3) x-2Nk

-,
J

	

2nk Nk
2

1

Therefore, the number of A k C Ik such that x e 2Ak for some x E
[2Nk 1+c, nk+Nk_ 1 +1] is less than

nk+Nk-1+1 / /3 x-2N, 1
(..1

	

2 nk-Nk , +1 = 2nk-Nk 1+1
x=2Nk_ 1+c 2

Then the number of permissible partitions Ik = Ak U Bk such that x 2Ak for
some x c [2Nk_1 + c, nk + Nk_ 1 + 1] is less than 2 £ '2nk-Nk-1

V. Let x c [ nk + Nk , + 1, Nk - c -1] . By Lemma 2, the number of A k- Ik
such that xV2Ak is less than

J3 2n,- x

	

_ ,/3 Nk-1—
2

2
~

	

2nk -Nk 1 - ~
2

~

	

nk-Nk 1
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"k N~k̀- 1+1

LJ=c

	

-)
G

2
£'2nk

(2
- Nk-I
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Therefore, the number of Ak~ Ik such that x 2Ak for some x E
[nk + Nk-1 + 1, Nk - c -1] is less than

Nk-C-1

	

V3 Nk - 1- X

	

14kNk_-I V3 c
2nk-Nk-1 =2 n,- Nk . . .l

	

) `£~2 nk_Nk
x=nk+Nk_i +l 2

	

t=c

	

2

Therefore, the number of permissible partitions Ik = Ak U Bk such that
x L 2Ak for some x c [n k + Nk-1 + l, Nk - c -1] is less than £'2nk N

VI . Let x E [Nk - c, Nk - l] . Then x = Nk - d for some d E [l, c]. Let
Ik = Ak U Bk be a permissible partition such that x V 2Ak . Let Ak = Ak U Ak,
and let a E A k' with a nk - d . Then x- a c I 'k'= Ak U B 'k' . But a c Aí, and
x 2Ak imply x - a Ak. Therefore, x - a E Bk. Since Ik = Ak U Bk is a permissi-
ble partition, Nk - (x- a) = a+ d E Ak . That is, Akc [Nk_, + l, nk], and if a E
A k' and a nk - d, then a + d E A k . By Lemma 3, the number of such sets
A k' does not exceed

nk - Nk -,

	

d

d

	

+2 <(nk+2)d .

Therefore, the number of permissible partitions Ik = Ak U Bk such that
x 2Ak for some x c [Nk - c, Nk -1] is less than

( n k +2)d < E'2',-N,-, .
d=1
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VII . Let xc[2Nk_,-2Nk-z -l-c,2Nk- 1 +c-l] . Now we suppose that
there is a partition of the interval Ik-1 =[Nk-z +l, N,-1-Nk-a-1] into two
sets Ak_, and Bk-1 that satisfy conditions (iii) and (iv), and that Nk- i =
2nk _, + 1, where nk_1= 2 mk-1 is even, and Mk-12 Nk_z + c + 1, and

2Nk-a +2c+1
2-,-

<E

Then J = [nk-i - Mk-1 + 1, nk-1 + Mk-l]-[Mk-1+1, 31 nk-1] C Ik-,, and J is sym-
metric with respect to Nk-i/2 . By condition (iii) we have Nk--, kz 2Ak-1 U 2Bk_1,
and so J contains exactly Mk-, elements of Ak-1 and Ink-1 elements of Bk_, .
Moreover, if a E J, then x - a E Ik, since x - a - x - nk and

x - a?(2Nk-, -2Nk-z-1 - c)-3mk_ .=Nk-i - 2Nk-z-c+mk-1?Nk-i+l.
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Let Ik = Ak U Bk be a permissible partition such that x L- 2(Ak U Ak- 1 ) . If
a is one of the Mk-, elements of in Ak_1, then x - a c lk. But x - a L Ak
since xf~2(AkUAk-1) . Therefore, Ak is a subset of a set with nk - Nk_1 -
mk-, elements, and so Ak can be chosen in at most 2nk-Nk-1-mk-, ways .
Therefore, the number of permissible partitions Ik = Ak U Bk with
x jt2(Ak U A k- 1 ) is at most 2nk-N_-mk-I and the number of permissible par-
titions

	

Ik - Ak U Bk

	

with

	

x V 2(Ak U Ak- 1 )

	

for

	

some

	

x E
[2Nk_,-2Nk-2-I-c, 2Nk_,+c-1] is at most

(2Nk-2+2c+I)2n N - -n,

	

2Nk-2 +2c + 1 2nk-Nkl- <e'2nkNk

	

k l

	

k--1 =		 k l
2mk I

Combining the results of IV-VII, we conclude that the number of per-
missible partitions Ik = Ak U Bk such that x 2(Ak U Ak-1) for some x E

[2Nk-i - 2Nk_2-1 - c, Nk - I] is less than 5e'2nk-Nk- . Similarly, the number
of permissible partitions Ik = Ak U Bk such that x 2(Bk U Bk-1) for some x E

[2Nk_ 1 -2Nk_2-I-c, Nk -1] is less than 5a'2nk-Nk Combining this with
condition (iv), we conclude that

[Nk- 1 + 1, Nk -1] - 2(Ak U Ak-1 ) ÍÍ 2(Bk U Bk-1)

for all but at most 10s'2nk-N_ permissible partitions of Ik. Putting together
the results of I-VII, we see that conditions (ü) and (v) fail to hold for less
than 18e'2nk

_Nk
= E2nk-Nk-1 permissible partitions Ik = Ak U Bk . This finishes

the proof of Lemma 4 .

CRITICAL LEMMA . There exists an
N2 < • • • and disjoint sets Ak
[Nk-1+1,Nk - Nk-1 - 1] = Ik for all k>_1
B* = U k=1 Bk, then

(i) Nk 2A* U 2B* for all k, and

(ü) If F is any finite set of integers, then

increasing sequence 0 = No < N, <
and

	

Bk

	

With

	

Ak U Bk =
such that, if A* = U k-, Ak and

xE2(A* \F)n2(B * \F)

for all sufficiently large xO Nk.

Proof. By Lemma 4, there exists an integer N, >0 and disjoint sets A,
and B, with [1, N1 - I] = A, U B, such that N, o 2A, U 2B, and
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[N, + l, 2N, -2 - c] - 2A, n 2B, . Again by Lemma 4 there exists N2 > N, and
disjoint sets Az and Bz with [N, + l, Nz -N,-1] = Az U Bz such that condi-
tions (i), (ü), and (v) of Lemma 4 are satisfied for k = 2 . We proceed by
induction to construct an infinite sequence of integers 0 = No < N, < Nz <
and disjoint sets Ak and Bk such that Ik = Ak U Bk and conditions (i), (ü),
and (v) of Lemma 4 are satisfied. Now set A* = U k-1 Ak and B* _
U k=, Bk. It follows from condition (i) of Lemma 4 and the shape of the
intervals Ik that Nk V 2A* n 2B* for all k.

Let F be any finite set of integers . Then Fc [0, NJ for sufficiently large
p. Let x > Np+, and x X Nk for all k . Then x E [Nk_, + 1, Nk -1 ] for some
k >_ p +2, and so x E 2(Ak U Ak-,) n 2(Bk U Bk-,) . But Ak U Ak-i - A* \ F and
BkUBk-,-B* \F since k-l?p+l, and so xE2(A*\F)f12(B * \F) . This
proves the Critical Lemma .

3 . Proof of the Theorem

Let 0 = No < N, < Nz < . . . be an increasing sequence of integers, and let
Ak and Bk be a partition of the interval Ik = [Nk_, + 1, Nk - Nk-, -1] such
that A* = U k=, Ak and B* = U k=, Bk satisfy the conclusions of the Critical
Lemma, We shall construct a partition of the natural numbers into an in-
finitely oscillating basis A and an infinitely oscillating nonbasis B with A*
A and B* - B .

Set I'k = [Nk - Nk_,, Nk] for k > L In particular, T1 = [N,, N1] _ {N1 } . We
shall construct partitions of the intervals I'k into disjoint sets AT and B'k .
Let A, - N, and B, - (~ . Suppose that partitions I ; -A ; U B ; have
been determined for all j < k-1 . We construct AT' and B'k .

Let p be an integer such that

k-2

	

k-2
1~p-1+

	

JAi l=1+

	

IBi l .
j=1

	

j=1

Suppose that k is even . Choose S - U ;-i (A; U A';) U {0} with I SI = p, and
choose T - U,-, (B; U B') with I TI = p-1 . Let a E U ;-i (A; U A";') U {0} . If
a c S, put Nk - a c AT" . If a V_ S, put Nk - a c BT' . Let b c U ; (B; U B' ) . If
b E T U Bk-1, put Nk - b E B'k . If b T U Bk_,, put Nk - b E A'k . Since the sets
{0}, A;, A'„ B;, B'; for j =1, 2, . . . , k-I are disjoint and partition [0, Nk-1],
and since the numbers in I'k are precisely those of the form Nk - x for x(-=
[0, Nk- 1 ], it follows that the sets AT' and BT' partition the interval rk .
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We can count the number of representations of Nk . Clearly, Nk has ex-
actly JSJ= p representations of the form Nk = a + a' with a, a' c
U ; (A; U A"') U {0}, namely, those with a e S and a'= Nk - a. Also, Nk has=1

	

i
exactly T U Bk __ t I = p - 1 + nk-1 -Nk 2 representations in the form Nk = b + b'
with b, b ' e U k 1 (B; U B';), namely, those with b e TU Bk-1 and b'= Nk - b.

Now suppose that k is odd . Choose T* C U ;-i (B; U B';') U {0} with rJ _
P,

	

and choose

	

S# U i-1 (A; U A';)

	

with JS# J = p- L

	

Let

	

b E

U j-1 (B; U B' ;) U {0} . If b E T#, put Nk - b E B'k. If bv r, put Nk - b E A'k .
Let a(=- U i (A; U A'; ) . If a E S# U Ak_t , put Nk - a E A'k. If aO S# U Ak_t ,
put N1, - a c B'k . This determines a partition I k = AT U B'k such that Nk has
exactly I T*I = p representations as a sum of two elements of
Uk 1(B;UB')U{0} and Nk has exactly JS# UAk-1J=p - l+nk-1 - Nk-2

representations as a sum of two elements of Uki (A; U A7) .
We can now partition the natural numbers into two disjoint sets A and

B, where

A= ~(AkuA'k)U{o} =A*U( u A'k)u{o}
k=1

	

k=1

B= U (BkUB'k)=B* U( U B'k) .
k=1

	

k=1

The sets AT' and BT' are constructed inductively in such a way that, for
every p > 1, every pair of sets S, T (where S - A and SJ= p, and Tc- B
and ITI= p - 1) is used to construct partitions I'k = Ak U Bk for infinitely
many even integers k, and every pair of sets T*, S* (where T* - B U {0}
and IV I = p, and S#-A\101 and S# J = p - I) is used to construct partitions
I'k = AT' U BT' for infinitely many odd integers k.

We shall prove that A is an infinitely oscillating basis . Let S be a finite
subset of A, say, ISI=p. Since A * A, it follows from the Critical Lemma
that all sufficiently large x X Nk can be written in the form x = a + a' with
a, a' E A\ S. If k is odd, then Nk has at least A k- 1 J= n k - 1 - Nk- 2 represen-
tations in the form Nk = a + a' with a, a' c A. Since nk I - Nk 2 > p for large
k, it follows that Nk c 2(A \ S) for all sufficiently large odd integers k.

Let T - B = N\ A with TJ = p - l . Let k be an even integer such that
S U T [0, Nk-2] . Let S' be the set of those a c U ;-1 (A; U A') U {0} such
that Nk - a e ATk . Then Nk o 2(A \ S) if and only if S' S. If S' S and
S' X S, then ~S'J < p-1 . From the construction of AT' it follows that AT' con-
tains all but at most p-2 of the integers of the form Nk - b with b E
U ;-i (B; U RD . Therefore, if Tc U j-1 (B; U B;') and if I T J = p-1, then Nk e
2((A \ S) U T) .
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Suppose that S' - S . Let T' be the set of those b c U ;-i (B; U B') such
that N, - b AT . Then I T'j = p-1 by the construction of AT, and N< E
2((A \ S) U T) if and only if T' T. However, since the pair of sets S, T
was used to construct the partition Tk= AT U BT for infinitely many even in-
tegers k, it will happen for infinitely many even k that S=S' and T = T',
and so NkV- 2((A \ S) U T) . Therefore, (A \ S) U T is a nonbasis if T < j S .

On the other hand, if Tj p = J SJ, then T' T and Nk E 2((A S) U T) .
Therefore, (A \ S) U T is a basis if Sj <_ J TJ . This proves that A is an in-
finitely oscillating basis .

Since the sets A and B U {0} were constructed by the same method, it
follows that B U {0} is also an infinitely oscillating basis . But 0 >iZ B, and so B
is an infinitely oscillating nonbasis . This proves the Theorem .
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