Comment, Math, Helvetici 51 (1976) 171-182 Birkhiiuser Verlag, Basel

Partitions of the Natural Numbers into Infinitely
Oscillating Bases and Nonbases

Paul. Erpos anp MELvyn B. NATHANSON

Abstract. The set A of nonnegative integers is o basis if every sufficiently large integer x can
be written in the form x=a+a' with a,a'e A [f A Is not a basis, then it is o nonbasis. We
construct a partition of the nawral numbers into 8 basis A and a nonbasis B such that, as
random elementy are moved one at a tme from A w B, from B o A, from A to B,..., the
set A oscillates from basis to nonbasis to basis. . and the set B oscillates simultaneoosty from
nonbasis 1o basis to nonbasis, . .

1. Introduction

Let A be an infinite subset of the natural numbers N={0, 1,2,...}.
Then A is an asymptotic basis of order 2, or, simply, a basis, if every suffi-
ciently large number can be written in the form a+a, where a, e A If
the set A is not a basis, then it is called an asymptotic nonbasis of order 2,
or, simply, a nonbasis.

The set A is a minimal basis if A is a basis, but, for any ac A, the set
ANla) is a nonbasis. Similarly, the set A 8 a maximal nonbasis if A is a
nonbasis, but, for any natural number b A, the set A LUH{b} is a basis. Mini-
mal bases and maximal nonbases were introduced by Stohr [5] and Nathan-
son [4], and studied further by Hirtter [3] and Erdds and Nathanson [1. 2].

Minimal bases and maximal nonbases are examples of sets which oscillate
once from basis to nonbasis or from nonbasis to basis by the deletion from
or addition to the set of a single element. There also exist sets which
exhibit two oscillations, Erdds and MNathanson [2] have constructed a basiz A
such that, for any ae A, the set A%{a} is a nonbasis, and, for any
hEAN{a), the set (AN\{al)LH{b} is apain a basis, They also constructed a
nonbasis A such that, for any b£A, the set AU{b} is a basis, and, for any
aeAlL[b), the set (AU{bYN {a} is again a nonbasis. But no example had
been constructed of a set which would oscillate infinitely often from basis 1o
npnbasis o basie to nonbasis . . . by successive deletions from and additions
to the set of single elements, Such a set can be precisely described in the
following way. Let A be an infinite set of natural numbers, and let § and
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T be finite sets such that S=A and Te N\ A. Then A is an infinitely oscil-
lating basis if (A\S)UT is a basis if and only if |S|=|T]. Similarly, let B
be an infinite set of natural numbers, and let § and T be finite sets such
that T= B and S= N B. Then B is an infinitely oscillating nonbasis if (BU
SINT is a nonbasis if and only if |8|=|T|. Clearly, if A is an infinitely os-
cillating basis, then A\ {a} is an infinitely oscillating nonbasis for any aec A.
Similarly, if B is an infinitely oscillating nonbasis, then BU{a} is an in-
finitely oscillating basis for any ag B.

Nathanson [4] asked if there existed a partition of the natural numbers
into a minimal basis A and a maximal nonbasis B. This partition would
have the property that A is a basis and B is a nonbasis, but, if any ele-
ment ae A is moved to B, then A\{a} becomes a nonbasis and BU{a)
becomes a basis. One can ask, further, for such a partition with the addi-
tional property that if any element be BU{a} is moved to A'\{a}, then
(BUfa})\{b} becomes a nonbasis and (A\{a})U{b} becomes a basis again.
Indeed, one could wish for a partition of I into a basis A and a nonbasis
B such that, as random elements are moved one at a time from one set of
the partition to the other, the set which is a basis becomes a nonbasis and
the set which is a nonbasis becomes a basis. This is equivalent to requiring
a partition of the natural numbers into two sets, one of which is an in-
finitely oscillating basis and the other an infinitely oscillating nonbasis. The
purpose of this paper is to construct such a partition. In particular, this
proves the existence of infinitely oscillating bases,

THEOREM. There exists a partition of the ngmral numbers I inte two
disjoint sets A and B such that A iy an infinitely oscillating basis and B is
an infinitely oscillating nonbasis,

2. A Critical Lemma

The following notation will be used consistently in this paper. If A is a
set of numbers, then the sumset 2A={a+a'|a a'e Al By [M N] we de-
note the inteérval of integers x=M M+1...., N Let N.>=2N..., where
MNe=2ne+1 and ne=2ms is even. The interval [Ny_+1, N.] will be di-
vided into the following three subintervals:

=[N+ 1L, m)e  B=[n+1, Ne— N — 1] I =[Ni— Ni—1, Ni .

By A and B (resp. Al and BI, AY and BY) we denote subsets of I{
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iresp. I%, I'f) which partition the interval Ii (resp. I, I%). Let
L=LU =[N+, No —Nea—1]

and let Ax=ALUAL and By =BiUB{. Then the sets A, and B; partition
the interval & and the sets Ay UAY and B. U BT partition the interval
[Nk_| +1, NJ.;J.

The cardinality of the finite set A is denoted |A|.

LEMMA 1. Let xe[2P+2. P+Q+1]. Then the number of subsets A of
[P+1, Q] such that x22A is less than

far y—2
VAN
(2) * )

Proof. Let Ac[P+1, Q] with x£2A. Suppose x=2x'+1 is odd. We di-
vide [P+1, Q] into the interval [x— P, Q] and the x'— P pairs {r. x—r} with
r=P+1,P+2,...,x". Then A can contain any of the 29 % ™*! guhsets of
[x—P, @]. On the other hand, A can contain at most one element from
each pair {r.x—r}, and so there arc three choices for the distribution of
each pair {r,x—r} in A (either re A, x—r£A, or réA, x—reA, or réA,
x—re&A), Therefore, the number of ways to choose A is exactly

: y oy (V32
3] F-zf."---[: -1 =3(x—1P—II._2ﬂ—P4]—|x—..PI{- (_) 1{)—!—'-!-1_

Similarly, if x=2x" is even, we divide [P+1,0Q] into the interval
[x—P, QJ, the singleton {x}, and the x'=P—1 pairs {r,x—r}, where r=
P+1,P+2....,x'—1. Clearly, x'g A, and the number of ways to choose A
is exactly

P A Qa—Pi1 _ als-2P-2izaa-psi-t—2P _ (¥ T a_pin
3 2 s el | Lol ? 2 :

LEMMA 2. Let xe[P+Q+1,20). Then the number of subseis A of
[P+1, Q] such that x&2 A is less than

AN T
Sy TgeR
(3)
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Proof. Let Ac[P+1, Q] with x£2A, Suppose x=2x"+1 is odd. We di-
vide [P+1,Q] into the interval [P+1., x—O-1] and the Q-—x' pairs
{x—rr} where r=x"+1, x'+2,..., Q. Then the number of ways to choose
A is exactly

x—x
-

0—Tgr-0-1=F _ 3E20—4+I:J220 P- !--E:O--;l{_(ﬂ)

QP
7 .

Similarly, if x=2x" is even, we divide [P+1, Q] into the interval [P+
I, x—0O—1}, the singleton {x}, and the O—x' pairs {x—r r}, where r=
x'+1,x'+2...., Q. Then the number of ways to choose A is exactly

e T o
JO-#ig Q1 _ 4(10-3H25 Q-P—1-20-k) o (1"__% xzo P
5 .

LEMMA 3. Let d=1. Then the number of subsets A of [P+ 1, 0] such
that
acA and a=Q-d implies a+deA i

does not exceed

Q=P 4
( P +2).

Similarly, the number of subsets A of [P+ 1. Q] such thar
aeA and a=P+1+d implies a—deA i

doves not exceed

(%5
d

Proof. The interval [P+1, Q] can be partitioned into d disjoint arithmetic
progressions with difference d, each of length at most (Q— P)/d+ 1. Suppose
that A<[P+1, Q] satisfies (%) (resp. (**)). Then A is the disjoint union of
terminal (resp. initial) segments of the d arithmetic progressions, and each
of these segments is determined by its initial (resp. terminal) element, which
can be chosen in at most (Q—P)/d+2 ways. Since there are d progressions,
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the number of A<[P+1,J] which satisfy (%) (resp. (*™*)) is at most
(QO—P)fd+2)~

LEMMA 4, There exists a constani ¢ such that, given a nonnegative in-
teger Ni—1, then for all sufficiently large Ni=2ne+1 there is a partition of
the interval L =[N+ 1, N — Ny — 1] imto two sets Ax and By such that

(i) Neg2A, UZB:
(i) [Me+ 12N —2Nie1—2—¢]=2A, M 2B

Furthermore, if Ne_y s sufficiently greater than j\';;_h and if there is a par-
tition of the interval L1 =[Nu2+1, Nioi—Nia—1] into two sets Awy and
Bi-1 such thar

(fi) N1 €2AxU2Bs_,
(iv) [Nk—i +1, 2Nk —ZNJ.;_Q—E—C]C 2A.1MN2Bi—,

then there is a parition of I into sets Ar and By which satisfy (i), (ii). and
also

(v} [Nk—j +1, N ]e 20A U A N2{Be W Be—y).

Proof. Let us call a partition fi = Ax U By permissible if Ni#2Ax U2B. Since
I is symmetric with respect to Ni/2, then x € Ay if and only if Ny —x€ By, Let
B=[Ni-1+ 1, m] and Ii=[ne+1, Nk — Ni-1 — 1], Let Ak=AxN I}, Ak=Ax N IY,
Bi=Bi N 1L, and Bi= By N Ii. Then x€ A% if and only if Ny —x € B}, and xe Bi
if and only if N. —x e AL Clearly, if i = Ay U By is & permissible partition, then
each one of the four sets A% A, B, Bl uniquely determines the other three.
Since Al can be any subset of IL.=[Ny1+1, nc], it follows that there are exactly
2% M7 permissible partitions of I,. We shall prove that for any & =0 there exists
a constant ¢ such that, for all sufficiently large N, the number of permissible
partitions of I. which alse satisfy condition (ii) is greater than (1—g)2" ™,
Moreover, for this constant ¢, if Ni—y is sufficiently greater than Ni.: and if there
exists a partition T—1 = Ax_ U By, which satisfies conditions (iii}) and (iv), then
the number of permissible partitions of [. which satisfy both conditions (ii) and (v)
is greater than (1—g)2™ ™,

Let £>0, let ¢'=¢/18, and choose the constant ¢ =2 so that

B s

t=ch 2
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Let Ny =2m+1, where my=2m and me=2Ni_+c+1 and also
DI =t i e
=T

The proof is in seven steps.
I Let xe[Ni+¢=1, m+ Ny =Ni—]. By Lemma 1, the number of subsets
Al of II=[m+1, Ni —Ni-1—1] such that x&£2AL is less than

Therefore, the number of Al=If such that x#2AY for some x¢€
[Ne+e—=1, m+ Ni = Ni—1] is less than

e NN ‘\'I'B' x=2, s J} i :
iy '\'Nl-I'.:z"q_N--."'l' (_—.-.) < ¥ "n'*\.--_
|-—N.zt¢-|(2) 2 er 2 2F2

Since each set A} © I{ completely determines a permissible partition [, =
Ay U By, we conclude that the number of permissible partitions with x&2A,
for some x€[Ni+c—1, m+ Ni—Ni—1] is less than 22" ™y,

1. Let xelm+Ne—Nioy,2Ni—2Ni_1—=2~¢]. By Lemma 2, the number
of AL< i such that x#2 AL is less than

y i e P

3

(\;3) AN 2N, —2-x

Therefore, the number of Afc=IT such that x#2AL for some Xx&
[t + N = Niem1, 2Nk —2Ni-1 —2—¢] is less than

IN, 3N, —3-u Ny =N, _ =2

=~l .:H' I..:..‘ Ni:‘.-
m"‘;:_m_l (l’?-) 2N =N .2..1

It follows that the number of permissible partitions L = AsU Bi such that
x#2A: for some xe[m+Ne—Ne-1.2ZMi—2Ni-i—2-¢] 5 less than
g2 N,

1. Let xe[Nu+1, Nu+c—2]. Then x=Ni+d for some de[l,c—2] Let
I = Ay LBy be a permissible partition such that x#2A. Let Ay =ALU AL
and let ae AL with a=m +1+d. Then x—acli=ALlUBL But ae Al and

\Ifl3 ! ¢ =Ny
(T) < '™ u
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x#2A; imply x—ae Af. Therefore, x—a e BL. Sinece Ly = Ay U By is a permissi-
ble partition, N —(x—a)=a—d e A% That is, Ak=[ne+1, Ne—Ni—:— 1], and if
ae Al and a=m +1+d, then a—de AL By Lemma 3, the number of such sets
AL does not exceed

- of
(”“TN"“H) <{m+2)".
Therefore, the number of permissible partitions I, = Al B, such that
x£2A, for some x &[N+ 1. Ny+¢—2] is less than

e=3

¥ o+ 2t <2 N,

d=1

Combining the results of I-1II, we conclude that the number of permissi-
ble  partitions L=A:UB: such that xe2A, for some x&
[Ne+1, 2Ny —2Ng1—2—c] is less than 42" - Similarly, the number of
permissible  partitions L =A.UBi. such that x#2B, for some xe
[Ne+1,2N,—2Ny1—2—¢] is less than 4£'2% N Therefore, condition (1)
fails to hold for less than Be2™ ™M-r< 2™ ™ permissible partitions of .
This proves the first part of Lemma 4.

IV. Let xe[2ZNi-i+e me+Neei+1]. By Lemma 1, the number of subsets
Aj of Ii=[Ny—+ 1, m] such that x£2A] is less than

(ﬂ)x_ZNL rzrr‘ —.NL_r-a-I.

2
Therefore, the number of Ar=Ii such that x£2A; for some x=
[2Nk-1 +¢, g + Ny.y+1] is less than

PNk g b 2N i L ¢
(%3) En.—Nk_‘+l=2n.—N*_l+! E (?) {ZE’E"M NI.-|I
= <

a=ING e
Then the number of permissible partitions [ = A, U B such that x£2A; for
some x€[2Ne—i+c e+ N+ 1] is less than 2&'2% e,

V. Let xe[m+ N1+ 1, Nc—e¢—1]. By Lemma 2, the number of A,=1}
such that x €2A; is less than

doy —x £ MNy—1—x
(%) 2"1;_Nt |=(:‘:;§) E"L_Nq E

A
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Therefore, the number of AlcTi such that x£2AL for some xE
[re+ N1+ 1, Nu —e— 1] is less than

2

.55

Ni—1—x
) ?_.“L_NJ.-|=2"L_- i

m-:\l: i (ﬁ)r ot

Pl T N | =
Therefore, the number of permissible partitions I, =AU B such that
x#2A, forsome xe[n, +Ni_;+1, N. —¢—1] is less than 2™ N,

V1. Let xe[Ne—¢, Nu—1]. Then x=N.—d for some de[l,c] Let
I.=A,UB, be a permissible partition such that x£2A. Let A=A LUAL
and let ae AL with a=m—d Then x—aeli=A{UB. But ac A; and
xE2A, imply x—ae Al Therefore, x —ae B, Since I, = Au U By is a permissi-
ble partition, Ni.—(x—al=a+de AL That is, Ais[Ne+1, m], and it ae
Ai and a=m —d, then at+de Al By Lemma 3, the number of such sets
Al does not exceed

= i
(’"‘—N““+2) <(m+2)%
d
Therefore, the number of permissible partitions fh =AU By such that
x22A; for some xe[Ni—c Nix—1] is less than

g

E {Hk"'zjd{Erzﬂ"_N"'.
1

da=

VIL. Let x€[2Ny—2N, s~ 1-6 2N +c—1]. Now we suppose that
there is a partition of the interval L =[Ni-2+ 1, Nio1— Ni—2—1] into two
sets Ax— and Be— that satisfy conditions (iil) and (iv), and that N._,=
2+ 1, where He—y =2y 15 even, and me_ =2Ne_a+e+1, and

2N 2+2c+1
—T e,

Eml N

Then J=[ny-1—mu—1+ 1, iy + 1] =[me—+ L. 3meq]= Loy, and J is sym-
metric with respect to Ny /2. By condition (iii) we have Ni 224 U2B:_q,
and so J contains exactly mu. elements of Ay and my—, elements of By-i.
Moreover, if ae J, then x —a € [, since x—a=x=m and

X=a=(2Ny_1—2Nia—1—e)—-3nm—i=Nioi —2MNia—c+mag=N + 1.
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Let fi=AysU By be a permissible partition such that x22(4. U A ). If
a is one of the my elements of JM Ay, then x—acfi But x—agAl
since x22(AxlU Av—1). Therefore;, AL is a subset of a set with np—Ne-1—
mg—y elements, and so AL can be chosen in at most 2™ ™M ways,
Therefore, the number of permissible partitions L=AcUB: with
x22(AxU A1) is at most 2™ Moo and the number of permissible par-
titions I, = Az U By with xe€2(Ax U A y) for SOMme XE
[ZNki—2Ny—a— 1 — &, 2N, 1+ ¢— 1] is at most

2N a+2e+1

Iy

szﬂ:..;|_+ 21‘+T_:|2"'- Maogomi =

:‘!u“_”" ' C:Er.’n- -.'\'L_ 1

Combining the results of IV-VII, we conclude that the number of per-
missible partitions fi = Al By such that x£2(AclJ A for some xe
[Nkt =2Nj-3—1—¢ Ny —1] is less than 5&2™ ™, Similarly, the number
of permissible partitions [, = Ay U B, such that x#2(B,UB. ) for some xe
[2Nii—2Ni—a—1—¢, Ni—1] is less than Se'2™ Moo Combining this with
condition (iv), we conclude that

IN;-__l-l- 1, Ny — ]IIIIZIA;‘U A IN2{By U By )

for all but at most 10g2™ ™ permissible partitions of .. Putting together
the results of I-VII, we see that conditions (i) and (v) fail to hold for less
than 18g'2™ ™1 =g2%"Mo permissible partitions I, = Ay U B, This finishes
the proof of Lemma .

CRITICAL LEMMA. There exists an increasing sequence 0= Np=N;<
Ny o 0n and disjoint Sels Ay aid By with Ayl B =
[Nici+1, Nu— N —1]=1L for all k=1 such thai, if A*=U3i-, A. and
B¥= U= By, then

(i)Y Nyzg2ZA*U2B® for all k, and

(11} If Fix any finite set of integers, then
xe2{A™\ FIN2(B*\ F)
for all sufficiently large x# Ni.

Proof. By Lemma 4, there exists an integer N >0 and disjoint sets A
and By with [1.Ni—1]=AUB; such that N g2A,0U2ZB; and
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[Ni+1.2Ni=2=¢]=24 n2B. Again by Lemma 4 there exists Na=>N; and
disjoint sets A> and B: with [N,+1, No>—N,—1]= A;U B; such that condi-
tions (i), (i}, and (v) of Lemma 4 are satisfied for k=2. We proceed by
induction to construct an infinite sequence of integers 0= No< N < Na=<:--
and disjoint sets Ar and B such that I, = Ay U By and conditions (i), (ii),
and (v} of Lemma 4 are satisfied Now set A*=Ui-1 A. and B*=
Ug-y Be. It follows from condition (i) of Lemma 4 and the shape of the
intervals [, that Nug2A*N2B* for all k.

Let F be any finite set of integers. Then Fc[i, N.] for sufficiently large
po Let x>Nyoy and x#£ N for all k. Then xe[Ni-i+1, Ne—1] for some
k=p+2, and s0 x&2{A:UAe_1)N2(Bx U Be-y): But AyUAy_y= A®\ F and
BiUB=B*\F since k—1=p+1, and so x€2{A*\ FiN2(B*\ F). This
proves the Critical Lemma.

3. Proof of the Theorem

Let O0=Ny==N=<N:;=<--+ be an increasing sequence of integers, and let
Ai and By be a partition of the interval I=[Ny-i+1, N —Ni-1—1] such
that A= U%= Ay and B™= Uf§-, Bi satisfy the conclusions of the Critical
Lemma. We shall construct a partition of the natural numbers into an in-
finitely oscillating basis A and an infinitely oscillating nonbasis B with A¥c=
A and B¥*<B.

Set TE=[Ni—Ni-1, Ni] for k=1, In particular, I'Y=[N;, NJ]={N}. We
shall construct partitions of the intervals It into disjoint sets A% and BY
Let AY={Ni} and BY=d¢. Suppose that partitions I''=AYUBT have
been determined for all j=k—1. We construct AY and BY.

Let p be an integer such that

k=32 kE—2
I=p=1i+ LIIA,-|=I+ Y |8y
1= =1

Suppose that k is even. Choose S< U= (4;UATIU{0} with |S|=p, and
choose T<UMT(BUBY with [TI=p—1. Let ae U] (A;UADU{OL I
a8, put Nh—acAY. If agS, put Nu—aeBY. Let he U (BUBY. I
be TUBy.1, put Nu—be BY. If bgTUB,_, put Ny—be AY. Since the sets
{0}, A, AT, By BY for j=1,2,..., k=1 are disjoint and partition [0, Ni_],

and since the numbers in IV are precisely those of the form Ni—x for xe
[0, N1, it follows that the sets A% and BT partition the interval T4,
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We can count the number of representations of N Clearly, N. has ex-
actly |S|=p representations of the form Ni=a+a' with ad'e
Ufor (AL ATIU{0}, namely, those with ae 8 and a'=Ni—a Also, N has
exactly |TU Bi.a|=p—1+m-—1— Ni2 representations in the form Ne=b+b'
with b, b'e Uj—, (B; U BY), namely, those with be TU By and b'= N, —bh.

Now suppose that k is odd, Choose T%< Uj={ (B,UBY)U{0} with |T*|=
p. and choose SYcUST(4UAY  with [§¥=p—1. Let be
UiElBUBHU0L If beT?, put Nu—beBY. If beT¥ put Nui—be AL
Let as U] (AUAY. f aeS¥U A, put Ni—ae Al If agS%U A,
put Ny —ae BY. This determines a partition I'f=A%U BY such that Ni has
exactly |T”l=p representations as a sum of two elements of
U (BUBTU0} and N. has exactly |S$¥*UAwa|=p—1+m-1—Ni-z
representations as a sum of two elements of Uf- (A U A",

We can now partition the natural numbers into two disjoint sets A and
B, where

0

A= f{muﬂ.mu{n}: A*U( A'E)U{D}
k=1 k=1

B=1J
k=1

(B LB =8B U(IULB'E).

The sets AY and BY are constructed inductively in such a way that, for
every p=1, every pair of sets § T (where S=A and |S|=p, and T< PR
and |[T|=p—1) is used to construct partitions I¥'= AU BY for infinitely
many even integers k, and every pair of sets T%, 8§ (where TF = BU{0}
and |T¥|=p, and 5= A\ {0} and |5¥|=p—1) is used to construct partitions
Ii= AY U BY for infinitely many odd integers k.

We shall prove that A is an infinitely oscillating basis. Let § be a finite
subset of A, say, |§|=p Since A*< A, it follows from the Critical Lemma
that all sufficiently large x# N, can be written in the form x=a+a' with
a, a'e A\S. If k is odd, then N, has at least |Ay_|=ny_;— Ny-; represen-
tations in the form Ni=a+a’ with a, a'€ A, Since ne..—Ni2=p for large
k. it follows that Ne e 2(AN 5) for all sufficiently large odd integers k.

Let Te B=N4A with |T]=p—1. Let k be an even integer such that
SUT=[0, Ne2). Let § be the set of those ae U (AU AYIU{0} such
that Ny—ae A%, Then Ngg2(A\S) if and only if §8'=8 If §'=8 and
§'#8, then |§'|=p—1. From the construction of AT it follows that A% con-
taing all but at most p—2 of the integers of the form Ny—b with be
U7 (B;U BY). Therefore, if Te US{ (B;UBTY) and if |T|=p—1, then Ny&
Z{ANSLUT).
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Suppose that §' =8 Let T be the set of those be U7 (B, U BY) such
that Ny~ beAY, Then |T'|=p-1 by the construction of AY, and N, e
AANSIUT if and only it T'#T. However, since the pair of sets §, T
was used to construct the partition IT=A%UBY for infinitely many even in-
tegers kit will happen for infinitely many even k that S=8" and T=T,
and so Npg 200A N\ §) U T). Therefore, (A\ S} T is a nonbasis if |T]< |5}

On the other hand, if [T|=p=|§|, then T'#T and Nye2({A S)UT).
Therefore, (ANSIUT is a basis if |§|/=|T). This proves that A is an in-
finitely oscillating basis.

Since the sets A and BU{0} were constructed by the same method, it
follows that BU{} is also an infinitely oscillating basis. But O£ B, and so B
is an infinitely oscillating nonbasis, This proves the Theorem.
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