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. INTRODUCTION

In [1] two of us investigated the problem of determining those cardinals
x, B, v, 8, A for which the following statement, abbreviated (3, 5. a. A, y),
holds: “Whenever ¥ is an n-dimensional vector space over a field of A
elements, and the d-dimensional subspaces of V are partitioned into y
classes, there is some S-dimensiomal subspace of V all of whose d-dimen-
sional subspaces are in the same class.”

In this paper, we investipate the related question of which cardinals
o, B, v, and & make the following statement valid; “Whenever F is an
a-dimensional vector space over GF(2) and V = |),., A, , there are some
U = [F] (the set of S-element subseis of F') and some ¢ < y such that if
1==t<dand We[U}, then 3 WeA,.” This statement will be abbre-
viated {ay -+ (). (We could of course ask the same question with a
field of A elements replacing GF(2). However, we have no interesting
results when A £ 2.) Note that the statement (o> — (f)) only makes
sense 1if 8 = w,

The statement <a> — (8! has a simple set-theoretic formulation in
terms of the symmetric difference, 4, of two sets. We will use the notation
A A, = (4714 A4, . We also take a cardinal to be the least ordinal
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280 CATES ET AL,

of a given equipotence class, In particular, we wrile w for the first infinite
cardinal, {x; — (.2 is equivalent to the statement “Whenever [x]" —
| o A, there are some B € [[4]°~]® and some o <<y such that, if | =1 < §
and {C,}!_, = [B], then 4! ,C,e 4, .” (The equivalence can be seen by
taking ¥V ={xe{0, [}*: [{nexixin) =1} < «} and associating each
element x of ¥ with x%{1}). In this case, x + v i5 associated with
ML Ay i)

Under the assumption of the generalized continuum hypothesis and
the nonexistence of inaccessible cardinals greater than e, we have been
able to determine the validity of <a> — (832 for given B, 6, and y for all
except at most finitely many values of a.

Section 2 consists of the development of the necessary results and
counterexamples, The main theorems and some questions are presented
in Section 3.

2. DEVELOPMENT OF RESULTS

Throughout this paper, we assume that the results about <u» — {7
are not vacuous. Thus, we assume that 2 =S = w, S =+ 1, I =4,
B=unifa=wand f= 2 if & = w. We also note the following trivial
implications;

Lemma 21, feta <o’ B < By <+, andd < &,
(@) If{ad—= <800 , then (o' — (B3
(b) If <o — <BLY, then (o) — (B .
(¢) If {or — (B3, then oy — (B33,
(d) If <oy — (B8 | then (o) — (B8

The following lemma relates the statement (1, 8, a; 2, %) and
oy — (B2

Lemma 2.2,

(a) If1 =P8 <wand(l, B, x 2, 9), then {0y — g5

(b) If B = w and (1, B, o, 2, y), then (o) — (B35 .

(€ If2 <8 <wand {ay —<f05 then (1, B, o, 2, 9).

(d) IfB = w and Cod — (B3 . then (1, B, &, 2, ).

&) If2 =B <wandy = w, then {a> — {3 and (1,8, «, 2, ¥)
are equivalent.

) WA Z=wand v = w, then {a) — {52 and $(1, B, o, 2, %) are
equitalent.

Proof. 1f § is a set of vectors from some vector space, we let {5
denote the subspace generated by 5. We denote <{v}> by (v,
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fa) Let ¥ be an n-dimensional vector space over GF(2) and let
¥ = |)oends .« For each o < 9, let B, ={{v>: v e 4,\{0}}. Then there are
some f-dimensional subspace U of ¥ and some ¢ <= y such that whenever
pe UL (b e B, . Let W be s basis for U then W e [FFand,if | <1 <
B4 land He [W], then 3 Hel\{0)saF He d;.

The proof of (b) is obtained from the proof of {a) by replacing g + 1
wilh .

(¢} Let ¥ be an n-dimensional vector space over GF(2) and let
esine PN = Lley Ba e Let Ag=10} and for o<y let 4., =
{pe V\0Y : (uh e B, (I o5 a limit ordinal, let 4, = #.) Then there arce
some W e [V] and some o < 3 + 1 such that one has ¥ H = 4, whenever
HC Wand H+# @, Let U =W Note that ¢ 5= 0 since # = 2. Con-
sequently, if HC W and H = @ then 3 H = 0. Thus, W is a set of
linearly independent vectors, and hence the dimension of U/ is f. That the
I-dimensional subspaces of U are contained in B,_, is trivial,

{d) The proof of (d) is similar to the proof of (¢).
{e) follows from (a) and (c), and (f) follows from (b) and (d).

As a consequence of Lemma 2.2 we have from [1] the following results,

Lemma 2.3,

(a) I B<ew 6 <w and y < w, then there is some least integer
N(B, y, 8) such that <N(B, y. &) — i

(B) Iy < ew, then {w) — Swil.

(c) If B < w and the gencralized contimuum fypothesis is assumed,
then for each ordinal o, (875 — (BE

id) If 2= B <w and the generalized contimuum hypothesis s
assumed, then for each ordingl o, Roa .0 = "

Proof. In addition to Lemma 2.2 we need only note:

(a) That 1, A, N, 2, ¥) holds for some N follows from [2,
Corollary 2]. Thus N — <f:2"! holds hence (N> —= <f{ holds, so there
isa smallest N for which it holds.

{b) That i1, e, e, 2, ) holds follows from [4, Corallary 3.5].

(c) That {1, 5. 855, 2, 8,) holds is Lemma 2.16 of [1].

(d) That ~y(l, B Rossy . 2, 8,) holds is 2.14 of [1]. Since 8= 2,
Lemma 2.2(c) applies.

The following lemma establishes part of the relationship between
¢oy —= 3% and the arrow relation of [2]. Recall that « — (£)2 if and only
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if whenever [«]' = .-, A . there are some 8 £ [x]! and some ¢ <y such
that [B]" C A, . In the following we use the convention that, if f = w; then

!

Lemma 24, LetA=2"ifn <wandlet \ = if o = w If A= (B,
then {a) — {f — 133,

Progf. Assume A—(f)}. Let ¥ be an oa-dimensional vector over
GF(2) and note that | 1| =X Let ¥ = |Jue, A, For each o <4, let
B, ={lx yle VP : x4+ yed )} Then [FP = ()= B, Since A — (B,
there are some W e [FF and some o << psuch that [WEC B, . Pickae W
and let U={a +b:b=Wijal). Then e [F]P-Land U'C A, . Also if
fa 4+ ba-+ele[UPR, then since b+ ceced,, la+ 8+ lg+eled,.
Thus (> —= {8 — 13 holds.

Lemma 2.6 is preliminary to a partial converse te Lemma 2.4. We will
make use of the fellowing notation,

DersaTION 2.5 Let & = w, let Fe[w]™ and let Gelx]" where
max F < p, Then BIG, F) ={ve G |l Gy <} eFkL

Thus, for example;, 'If F=10,3}, &= {, ¥l and
By <y Sy < pg, Lhen BUG, F) = {u,, vk

The following lemma allows us to assume that we have vectors which
all have the same overlapping patiern.

Lemma 2.6, Let g be a regular infinite cardinal and let B = a. Let
p =< waind let e [[a]") such that, for all U and Vin v, | UAV | = p. Then
there are some Je [w]"3, Fe [ p]*® and W*¥ e [0 such that, whenever U
and V are distinct members of €%, U V = [ and either BUUAV, F) = L1J
or B(UAV, F) = VJ.

Proof. Since ® = [[«]"F and for every U and V¥ in w, U4V e [a]?, we
have immediately the existence of J in [«]** such that, for every U and ¥
ne rnpFE=J

For Uefa]" and § -< g, let S{U, j) be that element of [/ with j prede-
cessors. By transfinite induction iterated pf2 times, we may choose
' e [v) and order &' = | W,},.s so that whenever p < ¢ < Sand f < p,
one has S, , §) < S(W, , 7). We can further assume that there is some
H e [ p]"7* such that, for each o < B, B(W, , H) = J.

We now claim that we can choose ©* = {V, }.psothat, ife <7 < p <f
and i < j < pand {i,j} N H = 2, then S(V,,i) < S(V.,j) if and only
if S(V, i) = S{¥,. 7). Since [ p\H]* is finite, it suffices to produce for any
given {i,j} € [ p\HJ, a monotonic function f: — 8 so that whenever
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g < 7 < p = B one has S(Wa. i} < S(Wy. . f) if and only if
S(W oty o 1) < SIW iy o J)

To this end. let {4, i} € [ p B with { == j. There are two cases to consider.
In Case 1, for each o <= f there is some # = e such that S(W, j) <
S(W, . i) In this case, let f(0) =0 and assume that (=) has been defined,
for each o < 7, so that whenever o <<p < v one has S(W,.;,7) <
S(W . , ). Let g = sup{ flo): o < 7}. By the regularity of 2, 5 < f. Let
¥ = n such that S(W,, ,j) <S(W,.i). Let f(r) = ». Now if ¢ < =, then
S{W i o) = S(W,..0) < S(W, , )= S(W;, 1), In Case 3, there is some
o < B such that, for every v = o, 8(W,. i) < S(W,,j) (since for + = o,
W.n W,=J=B(W,, Hyand since i ¢ H and j & H, we have S(W,, i) &
S(W, . 1) In this case, for each » < g, let f(y) = o + v, Thus, if
w <7< f one has S(Wy,), i) = H(Wos , [} <S(W, . j) < Woir, S} =
S(Wyt - 7). Consequently, the claim is established.

In particular, we have if ¢ << ¢ < B and {i, 7} € [ p\HP, then S(F, , i) <
S(¥.,j)if and only if S(V,, i) <8(Fy,j) Let F={i <p : S(F AV, . 1)
€ Vl. Now, if & <+ < 8, one has B(V, 4V, , F) = V,\J, as desired.

LEmMa 2.7, Let 8 be g regular infinite cardingl and let y = w, then
Loy — <3 if and only if o — (B .

Proof. The necessity is Lemma 2.4. Assume (a> — (8] and let
[x]* = ), R.. For éach even p << w, order [a]™* = {E{p, v)},z. and
write [ p]#% = {F( p, t}}ieita) - where, of course, j( p) = (,):). For each even
p and for each set {0 S 9. let Al p, 05, 73 4oy Titgi) = (U € [2]™
for each ¢ < j(p), (v, 9} € R, where B(U, F(p, 1)) = E(p,v) and
U\B(U, F( p, 1)) = E(p, 7}

Now we may order {A(p, og v Taig—g )i p 5 even and {oean
ph U {[af? ¢ pisodd) = { B}y Now [a]" = U, 8, . So, by assumption,
there are some @ € [[a]==}f and some p < y such that © < B, and, if
[E, Fle W] then EAFe B, . B, # [a]" for any odd p since, if | E| =
| F| = | EAF| = p,then | E 1 F| = p{2. Thus there are some even p and
some { o] iy such that .IBJJ = A p, 04,0y 15 ai{v!—l.}-

Hence, given U and Vin ¥, we have | UV | = p. By Lemma 2.6 there
are Je[x]* Fe[p]*™ and w*e[W] such that, whenever {U, F}e
[w*P, one has U n ¥ = J and either B{UAV, F) = U\J or B(UAV, F) =
VI Now F = Fi p, ) for some ¢ < fi p).

Let X = {v < o: There is some I/ € @* such that &\J = E(p, v)}, Then
X £ [oP. We claim that [¥F C R, . To this end, let {», 7} € [X] and pick
{7 and ¥ in ©* such that L1\J = E(p, ¥) and V'\J = E(p, ). Without loss
of generality, B(UAV, F) = U\J. Consequently, (UAV)\BUAV, F) = V\J.
But UAV e AP 0g . Osimi—y) and B(UAV, F) = E(p.v) and (UAV),
B(UAV, Fy) = E(p, ), s0{w, 1} € R, as desired,
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As a consequence of Lemma 2.7, we have from [2] the following results.

Lemma 2.8, Assume the generalized continuum hyvpothesis. Let v > w
and et B < a

(a) If y" < w then {ay — B3
(b) Iff = wandyt = athen () (B}

Froof. (a) Assume yt =< n. By [2,theorem 1], x—(8)%. Thus by
Lemma 2.4, we have (o) —<f — 135 . If § = w thisis (o — (B3 If
< w, then in fact (o) — (w0 (a) — (B33,

(b) Assume § = wand y* = a. By [2, Theorem 1] a - (w)? . Thus,
by Lemma 2.7 we have that <{a) -+ {w:}. Since f = w, we have
{ay # B

The following result is needed to obtain the fact that (> — (8.2 fails if
fis an infinite successor and ¢ = .

Lemma 2.9, Let f be a regular cardinal, B = w. If (B — (83, then
B—(B).

Progf. Let [B]® = [E(p)},<n. Assume (F) — (B3 and let [A] =
Ueer 42 . For gach Ue[B]=, let BU)={el:|heling <Y<
| e Uiy = v} (Thus B{L) is the first half of U73f | T | 15 even.) For
each o<y, let B, ={U:{r, v} 4, where B(L') = E(v)and U"B(L) =
E(n)}.

By assumption, there are € £ [[B]<“F and ¢ < y such that @ C B_ and,
if {U, ¥} e[, then UdVe B, . Since 8 > w and B is regular, we may
assume that there is some p < w such that ¥ C [5]".

We may choose a subfamily ©* £ [¥] and a set J such that if
{U, Fie[0*], then U'n ¥ =J, Ordering 9* by the first member of
U we in fact obtain @' [W*]* so that if {U, V} e [@']% then either
max(LJ) < min(}WJ) or max{¥'\J) < min(l"J). Let X = {v: There is
some L' = @' such that E{v) = UL Now, if {i. 7} & [XF, then we have 7
and ¥ in ®' such that U'\J = E(v) and V'\J = E(x). Without loss of pene-
rality, max {"J < min ¥\J. Since | U'\J | = | F\J |, we have B(U4Y) =
U\ = E{v) and (UAV) B(UAV) = V\J = E(y). Since UAVeR,,
{v, n} € A, . Thus [XC A, .

Lemma 2,10, Assume the generalized contimaen hypothesis and ler
be an infinite nonlimit cardinal, then (B = ¢F:%,

Proof. By [2, Theorem 1], we have that £ -+ (5)3. Since f is a nonlimit
B is regular so by Lemma 2.9, (8 - (833,
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The following lemma is needed to prove that <8 + (8.3 for nonregular
limit cardinals, Its proof uses methods of [2].

Lemma 211, Let X and p be cardinals such that A = p+= = 2%, Then
there extsts a collection of pairwise disfoint sets {0}, ., such that [A]™ =
Vo (% amd, for every A € [[A]=]* and every B [[A]1*=] and every o < p,
there are some v & A and x & B such that y \J x e (¥, .

Proof. Let [[AJ] = (#,},, (with &, — [1]). For each o <, let
0 = &. Let p = A and assume that, for each % < p, we have chosen
{€%, olaeq Such that;

(1Y Foreach o<p, &2 Uy Fa -

{2) Foreach = < %, if | J#, C 5 and if x = [A]" such that max x = 4,
then there exists { ».},. © &, such that, fore < p. ., Yxedd,, .

(3) U'ur.:.u W 'f“?-:' '-| ’? + 1
4 He<sr<p then@, il =
‘,_5} If o < j-!-ﬂ'l'l-d X E Ir«F’fn\:- HIUT"C'H LA Thf:l'l.‘?‘]l E X,

All conditions are eamly verified when 5 = 0. If p << p, then there is no
7 <C p such that [J&#, C p. Consequently, we may let (¥, .= @& for each
o == pand p < e In this case (1), (3), and (4) are clearly satisfied and (2)
and (3) are satisfied vacuously.

We now assume p ,fp. Let {x = [AFF* : max x = p} = {5}, and let
(@, 7= pand U#_Cp} = {C,}.o. (with repetition as necessary to fll
out the list). Since aﬂ = [p.]W, the latter set is nonempty. Order
X W= b 2w Foreach v < p:- we choose inductively
Vo6, EC SO that y, o Ux €{¥, . Ux, 15 <7} This can he
done since [{y. .. VX, 1mp< 'r}l = | | = whnlc Hyux,
yeEC.}| =p. (Note that |x, | <w and if pUXx =3p"Ux,_ then
ydy' € X )

Foreach o< pplet 0 = L @My Wox o8 <pand s << gl
Conditien (1} is trivially satisfied. Since, for ecach £ << p and o < p,
€ C paund max x, = p we have conditions (3) and (5) satisfied. To verify
condition (2) note that if | )& Cp and x = [A]= such that maxx = p,
then #, = C; and x = x, for some £ and «. Then { y,.;, 20 < p} 15 a8
required by condition (2). Finally, condition (4) is satisfied by the con-
struction of { ¥, ot o << p, & < p, ¢ <= p} and the fact that condition (4)
held at previous levels.

Now, for edch o such that 0 <o <p let &, = | oy %, .. Let @, =
AT e T and note that @, 2 \),-: @, . - Then {61 . 15 a collection
of pairwise disjoint sets and [A]* = )., €%, . Now let 4 & [[A]]; let
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Be[[A1], and ¢ < p. Now A = &#_ for some +. Pick p’ = pu such that
7 = p" and sup | J#, < p'. Since | B | = A, thete is some x € B such that
max x = p'. Let p = max x, Then | )%, C p and max x = p 5o, by condi-
tion 2, there is some ¥, € &, = Asuch thaty, W xe (¥, .

Lemma 2.12. Ler A and p be cardinals such that A = p+ = 2% Then
there are disjoint sets #, and &, | such that [N]== = &, 0 @, , and whenever
B & [[A]*] there is ix,. %y, ¥y, 3it © B such that x, W y, € @, and
Uy e,

Proof. Let {02}, be as guaranteed by Lemma 2.11 and let &, = ¥,
and #; = UUpcocu (0, . Let A € [B]* and pick {x,. x} T Band { ¥, 11 C 4
as guaranteed by Lemma 2.11.

LemMa 2.13. Let A and P be cardinals such that & < A = cf(f) < f
and let ()., be cofinal in B. Let A e [[B]=F. Then there are some BC f
and some {V }..0 © A such that [{v << A: There is some o = A such that
(K AB) o [l i) 5= &) = A and whenever & < ¢ << X one has
V. ¥V,= B.

Proaf. Since of(B) = w, we may assume that there is some 1 < e such
that 4 C [B]'. We may choose inductively { W_}., such that l{» = \: There
is some o < A such that W, N [il,, ¢hy) == @) = A (We use the fact
that, for v < &, |[%.)' | = | ¢, | .) Then, since A is regular, we may find B
and {¥,l.ei C{W, )z, such that ¥, n V.= Bwhen o <=7 < 8.

Lemma 2.14.  Let B be a cardinal such that of() < B and cf{f) = p+ =
2= for some cardinal g, then <8 ++ {853 .

Proof, Let A = cf(ff) and let {i,},., be cofinal in #. Let &, and &, be
as guaranteed by Lemma 2.12, For i <2, let 4; ={Fe[fl™:{vr < A
Vo, d.) = a4}, then [f]=® = 4,V 4,. Suppose there are
some i << 2 and e [[B]=*] such that ¥ € A; and, whenever { V, Wi [v],
FAW e A, .

Choose {F,}zs © © and B as guaranteed by Lemma 2.13. Let, for each
o< MK, =dr <& B a0 (VAB) s os) By Lemma 2:13
v == A : » & K, for some o}| = A Since each K, is finite, we have
K, : & < A} = A Thus, by Lemma 2,12, there are o and + less than A
such that K, w K. ¢ & . Bt K, VK, ={vr < A: [, , b)) N (Fd¥F,) =
i}, thus VAV, ¢ 4, , which is a contradiction.

In the presence of the generalized continuum hypothesis and the absence
of inaccessible cardinals bigger than w, Lemmas 2.10 and 2.14 show that
(B — (B>} fails except possibly when cf(f) = w. If =, then by
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Lemma 2.3 we have <8 — (g for y = . The following lemma esta-
blishes that <85 — ¢8>2 holds if y < w = cf(8) < 8.

LemMMA 2,15, Let y < w and lei # = cf(8) = w, then {fy —» {552

Proaf. Let {w;},-., be a set of cardinals cofinal in 3, and assume that
g =, when <5 Let [B]* =1).d.. Using [2, Lemma 3], in &
fashion similar to the proof of [2, Lemma 3B], we obtain disjoint sets
{8, with the following properties:

(1) Foreach ¢ <w; |8, | =p

(2) U SiCB.

(3) {4}, 18 supercanonical in {§;},., , for sets of size 2vt! or less.
That is if r =2+ and A€ [|), 5] and Be[l).. 851 and {: 4 N
S B =g s bndy With by <2l <Toee <2y and Al B S, == @} =
{8 5 By ey Bk, WILH 8y <8y << o= <Tay,, and for each £ with 0 =S p,
|AnS, | =|BNS, |, then A and B are in the same cell of {4}, .

In particular, we have that if r = 27, A & [Uiee S5 B € [Uicw S5
for each t <, | A 8| (0,2} and | BN, | e{0,2}, and ||t <w:
AnS = gl =i <ew:BNS; = g}, then 4 and B are in the same
cell of {4}, . By the pigeon hole principle, there exist j = r = y and
o <y such that, whenever A € [Urew 8124 and, for each t < w,
| Ay S, |ei0:2) and [{t <w:ANS, & 2} e{2,27), then Ac4,.

Write, for each ¢ < w, 8y = {d(t, p}},-,, . For each t < w, and each p
such that 1 < p < p , let

B(t,p) ={d(p,0):p <2 tert+ 21 <p<it+ 2}
Uidip, Dip<2lort L 21 <p<it4 2 —2%
Uldip.p)it+ 20— =<p<t+2}

Let W= {B(h-2%p):h <w and 1 <p << uped Then || =8, and,
forh < wand psuch that | << p < py.e, We have |{t < : Blh- 2%, g}
8 5= @} = 2. Thus, since for each ki < w and 1 < p < gy and each
t<too | Blh-2"p) 8| €0, 2} we have @ C A, . Now let {Blh - 27, p),
Blg- 25, viielelr If h=q then » = p and [{f << w:(BH-
e dBlg -2 vy S 2 o} =2 Ifh = g then [{t < : (Blh- 27, p)
AB(g - 27, ) 08, 7= @} = 20 In either case, for every £ <, |(B{f
27, p) AB(g - 27, v)) 1 Sy | £{0, 2}. Thus B(h - 2%, p) 4B(g - 2%, ¥) € 4, , as
desired.

This result completés our available information about {ay— (833,
The following result of Schur [6] (see ‘also [7]) will be useful for
Lemma 2.17. Note that [rle] = 3_q rlfil.
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Lemma 2,160 (Schur) Let 0 <r<<ew. If {1,2,.,[lell = L) cd.,
then there are some x and ¥ such that {x, v, x + y1C A«

Lemma 217, Lér 2 <<y << w, let =¥, let H{y) = 2[yle] — 1. Then
Wppppr — <IE.-': .

Proof. Let a = 8,5 Let ¥ be an a-dimensional vector space over
GF(2), and let ¥V =\|J,ou4,. For cach o<y let 8, ={De[F]™:
T Ded) Write ¥ ={p} .. .

Let P=II"" 3. For each seP. let C, = it iy s il JE
[FJ oy iy <2 eee ety and, for every q = n’y} T L
D ey By} € By} Then [V = ) €, . By [2, Theorem 1], we have
a— (B where n = "4, (This pr.}rtinn of [2, Theorem 1] is due
independently to Kurepa [5].) Consequently, noting that | P | = n, there
are some U e [F]? and some 5= P such that [U]**C ¢, . Note that, if
g =ty + 1. then [UPL A, . (To see this, let {v, v, ...t} [UF
with 1‘]1 < Mo < g PICK myay =St <X Wynype s With m, =S 9500« Then
{0 5 By, i Payis l}Ef_“ SO {t, .« .:IJEH, 4 et for g9 D=
fg: 1 =g = [yle] and Tm = g}; Then {1, 2, [»lell=lls:D. 50 by
Schur's theorem (Lemma 2.16), we may find x, v and o < 4, such that
fyx +} C Dyand sl i betz =y — &

Let Fe [U] and let U F = | )yep 5, where; for each p =< §8,| 5, ==
and {5} .4 15 a4 pairwise disjoint collection. Let T={} F+4+ ¥ §,:
p<fl Mow | T|=@. If e T, then for some p, u =3 (Fuw 5) and
|[FUg,|=x+z=2ywhie s, =0 Thatis, FU S, B soued,.

Wext let {w.de[TP Then a4+ o =3 8+ X5 =% (5U8) for
some p << < B, Now | §, w8, | = Zx, while s, = o, Thus, §, W 5. B,
o u—+ved,.

Finally, let {u, v, wie [T Then v+ v+ w=3 (FUJ WS, USE)
for some p<p<v<f Now |FUS,US US| =2y 2x while
Sy =0 Thus, FU S, WS W S.eB. sou+t+weds.

Lemma 2.18. For any cardinal « (with o == w), {x> = {w’)

Proof. [a]™ = U,z [2. Suppose we have some @& [[«]™]” and
some o = w such that, whenever (U, ¥, W} e [w]* we have {{7, T4V,
UAVAW] C [aF, Since for any {U, ¥} e [¢], we have | UAV | = o and
| | = o, we have some J such that | 7| = /2 and, for any {U, ¥} e [¢],
U ¥ = J. But then letting U, ¥ and # be any three members of ¥ we
have | UAVAW | = 20, a contradiction,

Our final lemma stands in contrast to Lemma 2,17, establishing that if
{aly — {33 holds, then B = w.
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Lemma 2.19.  For any cardinal o (With oo = 8y}, <al -+ (801

Proof. Let Ay= Uiz lUscu [a]®%850) and Jet 4 = Uca Vi<
[a]* enity (Thus, for B € [a]™, Be A, if and only if | # | has an even
number of factors of 2.) Suppose we have o = 2 and ¥ & [[x]*]%, such
that, whenever (T, U, ¥, W} e [v]* we have {T. TAU, TAUAYV,
TAUAVAWL C 4, . Without loss of generality there is some r < w such
that @< [a]!. There are ¢ e []®, and Je[a]™ such that, whenever
{0, FIe @', we have Uy = J. Now let {T. U, ¥, Wle[e]* and let
j=\|J|.Then | TAL| = Xt — j) and | TAUAVAW | = 4t — f). Thus,
TAU € A, if and only if TAUAVAW € A, , a contradiction,

3. Tae Main THEOREM

As previously remarked, we have, under the assumption of the
generalized continnum hypothesis and the nonexistence of inaccessible
cardinals (that is regular limit cardinals) bigger than w, been able to
determine the validity of {a> — (8! for all but possibly finitely many
values of wn, given any f8, v, and &. The exclusions of the hypothesis of
Theorem 3.1 describe these unknown values, except for the case 8, y, and
& are all finite. In this case, the value of N(f, y, 8) is not known, although
crude bounds can be determined from [3]. Recall that we have assumed
p=ld==fg+liff<ed=wiffzwf=2*ifa < and
B = wif e = o

TueoresM 3.1, Assume the generalized continuum  hyvpothesis  and
assumme that there do not exist inaceessible cardinals greater than w. Excélude
the possibility thar any of the conditions (a), (b) or (c) holds:

(@) S<wB<wy=§K,and¥, ., <c=R7};

b) =4 y<wf==~8=c(f) = ada <8

{C} E e 4, b < L, 'CHIH_, = Ly |E o “n » 'a‘nd Hu ot RlH-J'i'P:l'
(N(B, v, 8) and t(y) are as in Lenvmas 2.3(a) and 2,17 respectively).

Then {op = <B:2 holds if and only if one of the following 10 statements
holds.

Ay y=1L

(2 §=2gndB=1.

(3 6=2cza,y<oadf <o
(4) d=2,0=w,yv<cla) and f = o3
(5) =33 <o o>=w adyt <o
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16) S=3,,ﬁ=a:}m,rf{a}=m,andy-:::w;
(7 =4 v<w B==8, andn =K, 4.;
(8) B<ey<a o=NGESyp
9 B=wy==8  ondn=8 8.

(10) B = w andy < w,

Proof. That each of statements (1) through (4) is sufficient for
{ad —= <2 15 trivial, That each of the statements (5). (6), (7), (8), (9), and
(10) imply {a>— 8> follows from Lemmas 2.8(a), 2.15, 2.17. 2.3(a),
2.3(c), and 2.3(h), respectively.

MNow assume that each of the statements (1) through (10) fails: and
(o — (5 holds, Since statement (1) fails we have y = 2.

We claim next that & = 3. Suppose instead that 5§ — 2, and note that,
since (2) fails. f = 2 If & = o we must have, by the pigeon hole principle;
p = 2* and hence, since (8) fails, that « = N(f.9, 8). But this contradicts
the choice of N(B, y, &) as the least value for which {N(8, v, 8)r — 8]
held. Thus « = w. But then, since § = 2 and (a> — {83 holds, we must
have trivially either (3) or (4) holding. This contradiction establishes that
Giz= A

We claim next that £ = w. Indeed, suppose £ <= w. Then we have,
since (9) fails, either » < w or both ¥ =&, and o < #,..a... Suppose
p =&, and « = 8} Then by exclusion (a), we have v = 8., . Since
& == 3, we have, by Lemma 2,3(d), that {8, 5.0 =8 — 12, And, since
f =8 — 1, we have o> -+ (%), a contradiction. Thus we have y < w,
Since (B) fails, and since 8 < w, we have o << N(8, y, §) again conira-
dicting the choice of N8, y. 8). Thus, § == w as claimed.

Mext we claim that & = 4. Suppose instead & = 5. Then by Lemma 2,19,
A = wand hence 8 = w. Since (10} fails, 3 == w. But then, by Lemma 2.18,
{ar {30, a contradiction.

We thus have that = 2, B = w, and 3 = § = 4. Suppose now that
d = 4. By Lemma 2.18, we have ¢ < w. Since (10) fails; B > w. Since (7)
fails, we must have « < ¥, , where § =¥, . Since we assume that no
inaccessible cardinals bigger than w exist, there are three cases to consider:

(i} Bisalimit cardinal and 8 = efif) = w;
(i) A isa limit cardinal and B = cfif) = w;
(ii) B is a successor,
Case (i) is impossible by exclusion {(b). In either of the cases {ii) ar (iii) we
have, by exelusion (¢). that « = 5. But then, case (i1) i3 impossible by

Lemma 2.14 (note that cf(j3) is regular and hence, under our assumptions,
a suceessor). Case (i) is impossible by Lemma 2,10,
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Thus & =3, Since (5) fails, we have either = = # or both 8 < « and
yt = . But by Lemma 2.8(b), this latter alternative is impossible. Thus
we have o= f,

We claim 8 = w. Indeed, if § = w, then % = w since (10) fails. But, we
have w +»(w); so, by Lemma 2.7 we have <3 - <8°% a contradiction.
Since (6) fails, we have either cf(8) = @ or both ef{iff) = w and 3 = w, In
the former case we have, by Lemma 2.10 or 2.14 depending on whether #
is @ successor or a limit, <o) o (32 which is a contradiction. Thus,
cf(B) = w and 3 = w. But then <@ - {3, so (#) » (8%, This is a
contradiction, and the proof is complete.

There are several obvious questions arising from the exclusions of
Thearem 3.1 as well as its assumption of the generalized continuum
hypothesis and of the nonexistence of inaccessible cardinals greater than
w. Of particular interest, in view of the fact that, under the above assump-
tions, (@) (@3 when cf(f) = . is the following question.

3.2, QuesTion, Does (f) —+ {(#  when y < wand § = ¢f{f) — w?

The statement ¢a> — ¢33% can, in its set theoretic version, be restated
with 4" replaced by “[ L. We have not attempted to deal with this
question, since our interest arose from the algebraic statement.
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