
On a problem of Graham

By E . ERDŐS and E. SZEMERÉDI (Budapest)

GRAHAM stated the following conjecture : Let p be a prime and a 1 , . . ., ap p

pnon-zero residues (mod p) . Assume that if ' a i a i , ei=0 or 1 (not all e i=0) is a
i=1

p
multiple of p then

	

is uniquely determined . The conjecture states that in this
i=1

case there are only two distinct residues among the a's .
We are going to prove this conjecture for all sufficiently large p, in fact we will

prove a sharper result . To extend our proof for the small values of p would require
considerable computation, but no theoretical difficulty .

Our proof is surprisingly complicated and we are not convinced that a simpler
proof is not possible, but we could not find one .

First we prove

Theorem 1. Let ilo be sufficiently small, qi < q, p>po(r1) : A ={a1 , . . ., ar },
l> y1 1I1op is a set of non-zero residues modp. Assume that for every t the number
of indices i satisfying a i - t (mod p) is less than il - p. Then

i
a ia i - r(mod p) e i = 0 or 1, not all e i = 0

i=1

is solvable for every r (mod p) .
This theorem is perhaps of some interest in itself and easily implies Grahams

conjecture in case each residue ossurs with a multiplicity <11op. To see this observe
that if n'1'0-< z we can split our set a1i . . ., ap into two disjoint sets which satisfy

p

	

p
the requirements of Theorem 1 and thus

	

e i cannot be unique for

	

eiai - 0
i=1

	

i=1
(mod p) .

Now we prove Theorem 1 . Put i1' 1' 0 =6 . First we prove the following .
Now denote by F(D) the set of all residues of the form Z e ix i and with

x, ED
X+Y={x+y ; HEX, yEY} .

Lemma . Let B(--A, IB ~ > 2I , (JAI =l >bp) . Then there is a D(-- B so that F(D)I

is greater than 2ö 2 IDI .
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To prove the Lemma observe that we can assume that there is a B, ,,-- B, B,I ::-
z J,BJ that every residue occurs in Br with a multiplicity at least r1 2p;12 . For if

not then a simple argument shows that B contains more that 3p'í 2 distinct residues
and then by a theorem of Erdős and Heilbronn Z s i a i - r (mod p) is solvable

u i E A
for all r [1] which contradicts our hypothesis .

Henceforth we only consider B, . By the theorem of Dirichlet to every bEB,

there is an integer t,<á2 so that the residue of tb • b (mod p) is an absolute value

~82p . We want to show that there is a bEB, for which this tb b (mod p) is an absolute
3

value > 8~ . The number of distinct b's in B, is greater than 4n (B, has at leastleast
S
4 p elements and at most qp of them are in the same congruence class) . Now there

are at most ,2 choices for tb thus there are at most 2 distinct b's for which tb - b
3

is in the same residue class, hence there are at most

	

• 2 8r =

	

distinct values2

	

1

	

n
3

of b for which tb - b is not greater than
81

, but since there are more than
4

distinct
1

	

7
b's in B, there is a bEB, for which

3
(1)

	

ó
< Itb-bl < 52p

as stated .
Now we are ready to construct D . We can assume without loss of generality

that 1 occurs in B, (and is different from the b which we just constructed) . Now
3

our set D consists of tb [ a2, b's and g, 1's (by our conditions we have at least
h

r1 2p1 /'2 1's and b's) . It easily follows from (1) that the number of sums S - i d„ d, ED is
at least

(2)

(3)

we can select another set D, + ,) .

~ ~ 2
1	 1

	

l_

	

~ 3 J~
] L O ~1 7 > lq - 2U2

(tb [
j2

I
+

L
Q
,~

(2) follows from tb _L S2 ] and 6=q`11 which proves the Lemma .

Unit D from A and apply the Lemma repeatedly . Thus we obtain disjoint

sets D i , I ~ i ~ r each of which satisfy the Lemma and their union has at least ALI
(since by the Lemma if

A -- U D; 1 .

	

8
>2AI=11)
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Now denote by F(D) the set of all residues of the form Z a idi by our
Lemma

	

d; E D,

Now clearly

(5)

	

F (
t
.U D

iJ
= F(Dj) + F(D2) + . . . + F(D,) .

-

	

))1

By the Cauchy-Davenport theorem [2]
Y

F U Di
i=1

~F(Di)j > IDil 28 2

r

z min p, A IF(Di)l ) = PA
by (3), (4) and (5), which completes the proof of Theorem 1 .

Henceforth we can assume that at least one residue occurs at least >7 op times
amongst the a's . Without loss of generality we can assume that this residue is 1
and that 1 occurs t_->7 op times .

We have to distinguish several cases. First assume t ::-o p. Several subcases

have to be distinguished . First assume that all a 's are ~p-t, 1<a,< . . .<ap_t-::p-t.
Let a,+ . . .+ak_-p-t be the smallest k with this property, k<p-t is easy to see
also a,+ . . .+ak+,.<p is obvious thus

a,+ . . . +ak+(p-a,,-a2- . . . -ak)1 and a,+ . . . +ak+1+(p-a,- . . . - ak+1)1

(4)

	

1

P

give two representations of 0 with different

	

el .
i=1

Thus at least one of the a's are >p-t. Clearly one cannot have two incongruent
a's in (p-t,p) otherwise Za i is clearly not unique . Let p-t<ap_,<p . If ap _ t --t

it must clearly occur with multiplicity one (since otherwise t ::- o- p again gives

non-uniqueness for Z Ei) . Observe that in this case a,+ . . .+ap_t_,--2(p-t-1)~
.p-t since t_--p-2 . Let now k be the smallest integer satisfying

t-a,+ . . .+ak-p-t

and now a,_,+(p-ap_t)l and a,+ . . .+ak+(p-a,- . . .-ak)l give two different
IJ

values for

	

e i what is contradiction .

Thus we can assume ap_ t<t. But then a,+ap_ 7 <p and thus we again get using
p

p-ap_, resp . p-a,-ap _, ones two different values of 2'e i . This disposes the
i=r

9
case t> TO p .

Henceforth assume q,,p< t - 10 p . Again we have to distinguish several cases .

First assume that there are at most 100 residues amongst the a's greater than
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100 ' Since there are p-t a 's not congruent 1 there clearly are at least P
2

	 t+1 a 's

greater than one but less than 100 ' Their sum is thus greater than p - t. Let a,+ . . .

. . .+a, the smallest r for which a,+ . . .+a,~p-t then also al+ . . .+ar+ar+l<
t< p-t+50 <p thus al+ . . .+a,+(p-a,,- . . .-a,) • 1 and a,+ . . .+a,+a,+,+(p-

P
-a,- . . .-a,-a,+,)1 again give two different values for ZEi .

Henceforth we can assume that there are at least 100 a.'s greater than 100 and

in fact we can assume that they are all less than P2t since as we proved in the

previous case at most one a can be greater than P 2
t
~ .

Let now S, be a set of 100 a's which are congruent one and S2 a disjoint set

of 200 a's which are also congruent one . Let a be one of the residues in

	t

	

P -t Clearly100 1 2

JF(aUS,)J -	
2100t

	

50
and JF(A-S,-S2 --a)J

(6)

IAI - ISII - IS2I -1 -P 100 200 -1 .

Thus by Cauchy-Davenport

~F(aUS,UA-S,-S2-a)J min {p,IF(aUS,)J+JF(A-S,-S 2 -a)J} _
Hence

(7) 0 - 1+ Y
E

Now we again have to distinguish two cases . Assume first

.z aa, - 11óp (t - 11oh)-

As stated previously we can assume by the theorem of Erdős and Heilbronn

that the number of distinct a's is less than 3}áp thus we can assume a„,-3P 1/2

Thus by the theorem of Dirichlet there is an s - 21 for which

ta, ~_ t 100

3

	

t
200
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Ifsay::-p-200 then sa,+(p-saL)1 and 2sa,-(p-2sa,)1 give two representa-

tions of D with different Z E i . Thus we can assume sal <	200
but then sa, can be

replaced by sal ones from Sz and since sa,ss this again gives two distinct value
of ~Ej.

Thus we can assume , aQ_wlop . Thus we have at least p-t-vióp>p2
t
a's

distinct from 1 which have not been used in (7) . By Erdős-Heilbronn (as used before)

at least one of these a 's have a high multiplicity and thus there is an sa<

	

Thus100 .

	

.

ai<	
100 since otherwise we could replace sa of the ones by sa and thus we again

get two distinct values of Z E; .
Now we omit from A all the a's occuring in (6) and we obtain a new set A' .

Using (6) for A' we again get representation of 0 (T) (we remark that we can assume

that a, in (7) and aí in (T) are both - t- 100 thus we do not run out of ones) .

Adding the two representations of D we obtain our contradiciton .
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