On a problem of Graham
By E. ERDOS and E. SZEMERE D1 (Budapest)

Grasam stated the following conjecture: Let p be a prime and ay, ..., a, p

non-zero residues (mod p). Assume that if ﬁ's,a;, =0 or 1 (not all =0} is a
i=1

i
multiple of p then > & is uniquely determined. The conjecture states that in this
i=1

case there are only two distinel residues among the a's,

We are going to prove this conjecture for all sufficiently large p, in fact we will
prove a sharper result. To extend our proof for the small values of p would require
considerable computation, but no theoretical difficulty.

Our proof is surprisingly complicated and we are not convinced that a simpler
proof is not possible, but we could not find one.

First we prove

Theorem 1. Lot #, be sufficiently. small, n=rng p=pyln):d=Aay, ..., a},

I=n'""p is a set of non-zero residues mod p. Assume that for every t the mumber
of indices 1 satisfying ay=1 (mod p) {5 less than n-p. Then

i
Z: gy =r(modp) &=0 or ynot all & =10

is solvable for every r (mod p).
_ This theorem is perhaps of some interest in itsell’ and easily implies Grahams
conjecture in case each residue ossurs with a multiplicity =#,p. To see this observe

that if :-z:."“'-c% we can split our set a,, ..., g, into two disjoint sets which satisfy

n
the requirements of Theorem 1 and thus ¥ & cannot be unique for ﬁ':—:mr =0
=1 =1

{(mod p). .
Now we prove Theorem 1. Put y*'*=3. First we prove the following.
MNow denote by F(D) the set of all residues of the form ¥ #x; and with
=

X+-¥Y={x+y;: x€X, v€T}: :

fd]

Lemma. Let B A, B S

{|d|=1=18p). Then there is @ D B so that |F(D)|

is greater than a5 [



124 P. Erddsand E. Szemerédi

To prave the Lemma observe that we can assume that there is a B, C B, |B,|=
-.=;E|B! that every residue occurs in B, with a multiplicity at least »y*p"“ For if
not then a simple argument shows that 8 contains more that 3p"* distinet residues
and then by a theoréem of Erdés and Heilbronn 3 sg=r (modp) is solvable

o e
for all # [1] which contradicts cur hypothesis. :
Henceforth we only consider &,, By the theorem of Dirichlet to every A8,

. ’ 1 . )
there is an integer f, -1-3- so that the residue of #,-6 (modp) is an absolute value

=d*p. We wanl to show that thereisa be B, for which this b {mudp} is an absolute

value -—-;—q The number of distinct #'% in B, is greater than — {BI has at least
:1- p elements and at most yp of them are in the same congruence c]ass}. Now there
are at maosi Elj choices for #, thus there are at most },l'z distinct b's for which 7,-6
1% in the same residee class, hence there are al most TL-E%::% distinet values
of b for which r, - & is not greater than E_:r' but since there are more than 4% distinet
#'s in By there 15 a £ 8, for which

(1) fg-;ir- = |ty B] = 8%p

as stated.
MNow we are ready to construct D. We can assume without loss of generality
that | occurs in 8; (and is different from the & which we just constructed). Now

i
our set D consists of f, [%] h's and [%-?] I's (by our conditions we have at least

*p'* 1's and b's). It easily follows from (1) that the number of sums ¥ g,d,, dED is
at least

o Bl 4 sblg)

(2) follows from ?&—[ ] and d=n'" which proves the Lemma.

Unit I} from 4 and apply the Lemma repeatedly, Thus we obtain disjoint
4]

sets I, 1=i=r each of which satisfv the Lemma and their union has at least 5

elements (since by the Lemma if
r 1 ]
(3) ‘A—U D.\'??I-fil':'?p

we can select another set D, ..,



b
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MNow denote by F(I) the set of all residues of the form 2 gd by our

Lemma dE Dy
. 1

(4 |F{Dl’” = |D"':E’j_ﬂ'

Mow clearly

(5 F ‘t_Jl ﬂa] = F(Dy)+ F(Dy)+ -+ F(D,).

By the Cauchy—Davenport theorem [2]

F[I:J D,-] =i [;:, 2.-‘ [F{ﬂeﬂl =p

by (3), (4) and (5), which completes the proof of Theorem 1,

Henceforth we can assume that at least one residue occurs ai least n,p times
amongst the ¢'s. Without loss of generality we can assume that this residue is 1
and that 1 occurs t=n, p times.

e i i 9
We have to distinguish several cases. First assume f=-— p. Several subcases

10
have to be distinguished. First assume that all @’s are =p—1, |l =ay=...=a,_=p-1.
Let a,+...+a;=p—t be the smallest & with this property, k=p—t is easy to sec

also a,+ ... +a,.,=p is obvious thus

ay+ o tomtp—ay—ay— ... —ag)l and a4 o Fag g Hip—a— o —ap) !

L
give two representations of 0 with dillerent X g;.
=1
Thus at least one of the a's are =p—¢. Clearly one cannot have two incongruent
a's in (p—1, p) otherwise 3'g is clearly not unique. Let p—r=a, ,=<p. If a,_, =t

it must clearly occur with multiplicity one (since otherwise r=-——p again gives

10
non-uniqueness for ¥ &). Observe that in this case @+ ...+ ay_ iy =2(p—t—1)=
=p—1t since i=p—2. Let now k be the smallest integer satisfving

t= o+ ...+, =p—1
and now a,_,+H{p—a,-)1 and a+.. ‘e +ip—a—.. —a)l give two different

ol
values for 3 g; what is contradiction,
=]

Thus we can assume a,_,~1. But then a,+a,_,—p and thus we again get using
& % :
P—p-, TCSP. p—ay—d,., ones two different values of 21::,;, This disposes the

Case f= —'.}:I
[~ ;m;.

9 J Ny s
Henceforth assume n,p<t¢ ﬁTﬁp. Again we have to distinguish several cases.

; I 2 .
First assume that there are at most 60 residues amongst the a's preater than
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f ; =il
155 Since there are p—1 a's not congruent | there clearly are at least = =—+1a's

r ; ;
greater than one but less than 106 ° Their sum is thus greater than p—r. Let a;+...
vio+a, the smallest r for which ay+...+a,=p—t¢ then also a+...+ata =

t
-:p—.r+—$ﬁ-—:p thus @y 4.+ a+H{p—ay—io—a)-1 and g+ e to+(p-

—iy — i~ @, | again give two different values for ﬁ’e;.
i=1

; e ]
Henceforth we ean assume that there are at least 100 a's greater than 100 and
i ==& -
in fact we can assume that they are all less than PT {since as we proved in the
. p—1
previous case at most one @ can be greater than ——).

2

f . LR
Let now S§; be a set of 100 a's which are congruent one and 5. a disjoint set

of a’s which are also congruent ome, Lel @ be one of the residues in

i3
200
iy p—!) .

lﬁlﬂ“}'_l . Clearly

’ o 21 ! .
[FaU8) = 7o =< and  [F(A—S8,~S,~a)| =
(6)
[A]—[8;] —|8a| — 1 x;a—L—L—l.
e 5 100 200

Thus by Cauchy-Davenport
|FlgU 8; U4 —8, — 8i—a)| = min { g [Fla U8+ |[F{d =5, — 5= a)l} = p.

Hence

+ =g
(N (T E=N. 5 [+i2'a_,‘u,-, = e

Now we apgain have to distinguish two cases. Assume first
2ty =P (= mp).

As stated previously we can assume by the theorem of Erdds and Heilbronn

iy . - My
that the number of distinct a's is less than 3)p thus we can assume qm:—% e

oy

Thus by the theorem of Dirichlet there is an s = 5 for which

el
= s

Jii

1/d
[say| = p

=
=il
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bes
200

: ! t
tions of D with different ¥ g,. Thus we can assume T but then sa;, can be

replaced by say, ones from S, and since sa;=s this again gives two distinct value

uf 25.'.-

il F
Thus we can assume ¥ o, =n;p. Thus we have at least p—r—ij p:—PT a's

If say=p— then sa,+(p—say) 1 and 2va,—(p—250,) 1 give two representa-

distinct from 1 which have not been used in (7). By ErdGs—THeilbronn (as used before)

at least one of these a’s have a high multiplicity and thus there is an .m-—:ﬁ. Thus

- : ; ;
T otherwise we could replace sa of the ones by sa and thus we again
get two distinct values of 3 g;.

Now we omit from 4 all the a’s occaring in (6) and we obtain a new set A’
Using (6) for 4° we again get representation of 0 (7") (we remark that we can assumec
that @, in (7) and &; in (7"} are both %:——I-I%a thus we do not run out of ones).
Adding the two representations of D we obtain our contradiciton.
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