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I. INTRODUCTION AND NOTATION
A fraction a/b is said to be written in Egyptian form if’ we write
a | 1
I i et ot My o= By ST bes = My
b Hy + + M i - 5

where the n; are integeérs. The problem of existence of such an expansion
wat settled in 1202 by Fibonacci who gave an algorithm which was
vered and more deeply investizgated by Sylvester [7] in 1880, Since
then several algorithms have been given in an attempt to find a4 more
putable one and the one for which & is minimal, The algorithms to date
may be summarized as follows:

I. The Fibonacci-Sylvester algorithm for which & < o and #n; grow
exponentially.

2. The algorithm given by Erdis in 1950 [3] for which & = 8ln bflnIn b
and 1, = 4% In b/In In b for b large.

3. The algorithm of Golomb [4] in 1962 for which k = @ and
ng ""‘:: b[b T o I.)

4. The algorithm based on Farey series given by Bleicher in 1968 [1]
for which k = a and n; = b6 — 1).

‘5, The algorithm based on continued fractions given by Bleicher [2]
in 1972 for which & = min{a, 2(In #)*/In In b} and m, = &b — 1).

In this paper we concentrate on giving an algorithm which minimizes n,
and relaxes the attempt to minimize k.
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158 BLEICHER AND ERDOS

Let fNa. b) be the minimal value of #; in all expansions of a/b. Let D{b)
be given by Dib) = max{D{a, b): 0 <~ a < b}. In this work we show
Theorem 2, that £(k) = Kb(ln b)* for some constant K. On the other hand
in Theorem 1 we show that for P a prime D(FP) = P{{log, F}} wher
a1} = —[—x]is the least integer not less than x, There is both theoreticy
and computational eévidence to indicate that D{N)/N is maximum when
is a prime.

For more historical details and bibliography see [1] and [2].

II. Tue Man THEOREMS
We begin by obtaining the lower bound for D{N).

Treorem 1. If P is a prime then D(P) = P{{log, P}}, where {{x}} =
—[—x] is the least integer not less than x.

Proof. 1f aflP = Ef_i Wy, 1y = me < == = m,, then some of the #
are divisible by P, while perhaps others are not. Let x; <2 ap <<+ =
be all those integers divisible by P which occur in an expansion ¥
minimum my of a/P fora = 1, 2,...; P — 1. Thus for each choice of a

e . 1 .1 T Ry NI |
e -+ = Txi,+}’1+ +.i’:'

£ 4, Ty

where P| x; and P 1 y, . Let x; be defined by x,'P = x,, then (x,; P) = |
or the theorem is obviously true. It follows that

-

; e . . i
AX}, sova Xij— 3.7 Xy 4oy Xi, = O tiivd P,

where * x{ ..., x; | denotes the symmetric sum of all products of j — 1
distinet terms from {x{ ... x;}. For each of the P — 1 choices of a we
must get a different subset {x{ ..., x;} of {x, x',..., x/}. Since there are
at most 2t — | such, subsets we see that 2 — 1 = P— 1, whence
t = log; F. Since x; << x, < -+ =< x; and-are all multiples of P, it follows
that x, = P{{log. P}}. Since x, occurs in some minimal expansion of a/F,
the theorem follows,

We next prove some lemmas needed in our proof of an upper bound for
D(N),

We use P, to denote the kth prime. In our notation P, = 2.

B = il - = L e

s

Demwrmion.  Let Il = Py - Py~ Py be the product of the first &
primes, with the convention that IT, = 1 for k-= 0.
As usual oin) denotes the sum of the divisors of n.
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Lemuia 1. If L = r = a(l1y) then v can be written as a sum of distinct
divisors of IT. .

FProgf. The lemma is clearly true for & = 0,1, 2. We proceed by
induction on k. Suppose the lemma is true for & < N. Let r = o{ITy).
Ifr < o(ITy_,) we are done by induction. Therefore we suppose o(ITy_;} <
r = oflly). Sinee o(lly) = ollly_4) - Py(l + 1[Py) = oIl )Py + 1),
wesee that o(11y) — o(lly 3} = Pyolll, ). Tufoliows that r — offTy_;) =
Poa(lT, i) Alse for N 2= 3. r = oflfs;)) = 2Py > P,;. Thus we can
find & number s such that

L 0 <r—sPy < o(lly,).
2. <y < o(lly,)

Thus s = 3 o' where d' | ITy,_, and the d;" are distinct and r — 5P = ¥ 4,
where d; | IT;.; and the d; are distinct. Butd,' Py | {1 while d; Py #1015 .
Thus

s Z{dfr'p.\':' i E i,

& a representation of rin the desired form. The lemma is proved.

Lemma 2. Let P be a prinie and k an integer with 0 = k < F. Given
any k integers {xy ..., 2} none of which is divisible by P then the 2% sums of
subsets af (X ... Xz lie inat least k + 1 distinct congruence classes mod P.

Proaf, Although this lemma is known we give a proof since neither
of the authors knows where to find this lemma in the literature.

The proof'is by induction on k. For & = 0 the result is obvious. Suppose
P = k = Oand the resultis true for fewer than & integers. From xg ,..., X
form all possible sums. If there are more than k distinet sums mod P
we are done if not by induction there are exactly & such sum. Add x; to
tach of these sums if at least one new congruence class is obtained then
there are enough distinct congruence classes. If no new congruence classes
are obtained then let &, = xpy = X = ** = Xuyp, and note that by
adding each of these x; , one at a time, we still remain at & distinet valoes,
but this is absurd since from P values in the same class we can obtain all
values mod P. The lemma follows,

We note that if we don’t allow the empty sum the lemma remains true
except that the number of distinct sums is reduced by omne.

Lemma 3. Ifris any integer satisfying IT(1 — 1K) = r < T2 — 1K)
then there are distinet divisors dy of IT, such that

L r=3Yd,
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etyiel

2o oy Sl
Sar some constant ¢,

Proof. We choose N, sufficiently large that all of the inequalities in the
remainder of the proof which are claimed to be true for sufficiently large N
are valid for & = N,. We pick ¢ suificiently small {¢ = II3" 5 will
certainly work) that the lemma is true for & = N, This can be June by
Lemma 1, since ofIT) =012 — 1Jk) for &k = 1; while & = 0 can be
handled trivially.

We proceed by induction suppose N = N, and the lemma is true for
k< N. Let ITy(l — 1IN) < r < Hy(2 — 1/N).

Step 1. Let % be the set of divisors of IT, defined as follows
= Z{d:dﬁﬂy_lfpipjpk, [N,."Z] = lr":._j{-: k<= NJ'. when [I} is the
greatest integer in x. Simce | | = (N/2WN/2 — D)(N/2 — 2)/6 while
Py = N(ln N + In In N) (see: [6, p: 69]) it follows from Lemma 2 that we
can choose s < Py elemenis ;€% such that for r\=r —d —
dy — +—d,, r, =0nod Py. Further r, = ITy(l — 1IN —1)). To
prove this it suffices to show that o + ds + -~ -+ d, = ITy(l — 1/N)—
ITy(1 — (N — 1)) since r = IT (1 — 1/N). To see that this is so we notg
that d; = ITy_i/p* where p = Ppy e While s = Py, Thus d, + - <+ d, <
Iy \[p* - Py = IT/p*. Since [6.p.69] p = Piym = [N/2] In[N/2] we
see that for large N, p* = (N)(N — 1). Thus d, -+ = + d, = Hyjp* <
I IN(N — 1) = Tl — 1/N) — IT(1 — 1/(N — 1)). The claim is estab-
lished,

If ry = ITy(2 — L{{N — 1)), the process of Step I now stops.

If ry == (2 — I{{N — 1)) we proceed to subtract more-elements of 5
from r, until it becomes sufficiently small; however this must be done in
such a way that the result, say r; . staisfies

L. ¢'=0modPy,,
2. Ihyl — I{(N — 1)) < r’ < IIy@2 — L{(N — 1)).

In order to assure that r' = 0 mod P, we subtract off elements from &, at
most P, at a time, such that the sum of the divisors subtracted is
= () mod Py and condition 1 will hold. Since the divisors are all less than
IT,;; and we are subtracting P, al a time and the interval ¢ we wish
in which to be has length Il = IT,, , - P,;, we can subtract in such
a way as to end up in the desired interval, if the total of all available
divisors, properly grouped, is large enough (o bring the largest value of
below IT (2 — 1/(N — 1)), Since ry << r == ITy(2 — 1/N), we must show that




EGYPTIAN FRACTIONS 161

the sum of the divisors is at least [Tu(2 — |/N) — ITy(2 — L[N — 1)) =
AT IN(N — 1). But we can continue to subtract groups of at most Py
divisors from % until there remains less than P, elements. Thus of all the
divisors in & we will be able, if needed, to subtract all but at most Py,
of them. Tt follows that we may subtract at least

(2N — N2 —2)
6

Ph-)

R A Lo

divisors each of which is at least as large as IT,_,. For N sufficiently
large the number of divisors is at least N%100, so that we are done if
ATy, (N3100) = IT\/N(N — 1) which is equivalent to

NE— N = 100P, Py Prs

which holds for N sufficiently large since P, = N{In ¥ + In In V). Thus
Step 1 can be completed.
We note that we have thus written r = ry =+ dy 4+ ds + = + dy where

dy | Iy, , d, distinct,

d =1y 4,

ry = Dmod Py,

I(Y — N — D)) < iy < IT(2 — (N — 1))

e e L R S IS
oW =

- Step 11. Let r3 = ry/Py. Then by conditions 3 and 4 we see that ry
js an integer and

Iy (1 — TN — 1)) < ry < T (2 — TAN — 1))

‘Thus, by induction there are &' | I, , d; distinct, 4" = IT_, such that
o= Y d/. Let d! = Pyd,. Thus d | I, d" ¢ ITy_, . so that the d are
distinct both from each other and from the &, choosen in Step I. Further-
more, o = eIl Py = el o . Also since r = Py + ¥ d; we see that

r=Yd + Y4,

t

5 isan expansion which satisfies all the conditions of Lemma 2 for k = N,
1 | The lemma follows by induction.

v

| Lo 4 [T, < N < T, then

1 - In'N Ininln N

t kﬁ:lnlnﬁ(l—i_ InlnN)

figr/Hja-3
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Proof. From [6,p.70], we see that Indly = Pi{l — 1210 P
Thus an upper bound for k is the smallest integer &, such that
Pl._{l — 12 In P,_._} = In N where Py = kiln k<4 Inink — 3. For ki
equal to the bound given in the lemma this yields

L) klin ko + In In kg — 3/2)

In 17y, = (1 — 55—

= (1 - 3m7; =) ﬁnT.i—vw (1+ hﬂ:ﬂ"}'ﬁ“

Inlnin ¥
Inlny |

Inlnln N
m(1+.—)
Inlnln N In In
4’“"(‘_ BN WA L
(l_|_in]nln_£'ur)ﬁ In N — 2.

X {inmﬁ-rm(t +

Iln N
= Inin N

Since for large N the two middle logarithmic terms in the braces are both
close to zero. Thus,

Infl, = lnN(l 4—%}[1 —ﬁ) =In N.

Thus for A large enough there is an integral value of & less than the given
bound which would also satisfy

Inff, = In N,

THeoreM 2. There is a constant K sa that for every N = 2, DIN) =
ENiln N

Proof. Given the fraction a/V in the unit interval we find £ so that!
Iy = N =1II,, If N1, we rewrite g/N = &/l and by Lemmz |,
b =% d ., d |[IT,. This yields an Egyptian expansion of a/N with the
largest denrominator at most I, . Since Py < E(lnk -+ Inln &) = &* and
Lemma 4 gives a bound for &, we get that the denominators in this case
are certainky less than ¥(ln N

We next consider the case in which N 417, . In this case:

a _alh  gN+tr q

;
K UNETg o NIk el NI
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where r is chosen so that TI(1 — 1/k) = r = T2 — 1/k). This can be
done since we may assume ¢ = 2 and since N < [T, , The fraction g/IT,
can be handled as the case N |II., We¢ need only consider
HNIT, = (1N )r/T,). If we get an expansion for #/[IT, and multiply each
denominator by N then since N+ T, , they will all be distinct from those
wsed 1o expand ¢/, . By Lemma 3 there are divisors d, of IT, such that

r=Yd di=clliy.

Thus the denominators: in the expansion of rfI, are al most
PPy P .. Thus the denominators in expansion of r/NIT. are al
miost ¢ NP P Prs . Using the upper bound in Lemma 4 for &
ong can show after some caleulation that

| ll_lN-F;P.l,\_LPH_g = 2C'_1N{I|T NF.
Thus the thearem is established,

I11. Some SPECIAL CASES aND NumisrRicar Resurrs

THEOREM 3. DIN)=Njfor N=2% 0T ornl,m'= 1,2 3...

Proaf. For af2" we write a as a sum of powers of 2 (base 2) and cancel
to get an Egyptian expansion. For N = T, we use Lemma |. For & = n!
- we use the analog of Lemma 1 with IT, replaced by »! . Since this modified
Lemma 1 is easy to prove, we omit the proof.

Treorem 4. For n = 1, 2, 3.0, we have D(3") = 2+ 37,

Proof. Given a/3" we tewrite it as 24/2 - 3" and expand 2o according to
jts base 3 expansion 20 — T €3 where &, = 0, 1, or 2 since each of the
terms in the sum divides 2 - 3" we see D(3) = 2 - 3", Al least one denominat-
or in the expansion of 2/3* must be divisible by 3%, If only one denominator
i so divisible, and it is 3, then the remaining terms would be an ex-
pansion of 1/3* in which no term is divisible by 3", a contradiction.
BHence, D{3%) = 2 - 31,

el

Tueorem 5. For N = P, P a prime we get DIPY) = 2P -'D{P).

We may restrict our attention to P =5, since the preceding two
ttheorems handle P = 2 and P —3.

IFafP" = 1/2 we consider B2P" = a/P* — 1]2 where b < P otherwise
- we consider 2a/2P" = bf2P" where again b < P, We next expand b/2 P
in the Egyptian form with denominators at most 2P"-IDN(P), since
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biP* < 142, 1/2 will not be used and can be added on at the end i
alPh = 102, We write b = 'Z;_,u e, PL 0O = ¢ = P. Thus

[ oL

e

Z n—i-1 *
P P

Foreach i, 0 =i<n— | we can expand /P — T, 1/nth, 2 <
D{P). Thu_-. b Pr— SIS 12ntpa-ict A slight difficulty arises '_
that the denominators may not be distinct, However we know that for all P'-
D(P) = P(P — 1) (see [2, Theorem 3, p. 347]), thus the only equalities

which can arise are of the form

1 1 :
A pa—i-l = IplTEpa-i t f, }
e s

So that nj = ny = Pn, = Pnj’'™". Since p, = P(P — 1) we see that
#a = (P —1). In all instances where equalities like (*) occur we replace
these two terms by the one terim 1/ P*, If 0, is odd it can not be equal

to any other term. If n, is even it may be that I/m,P" " is equal to anothes 3
term, which is of the form 1/2a!" P21 ar 1/2a), 7 P*~%, but not both singe
otherwise these would have been reduced. Let ny = ni ™", These two 5
equal terms may be replaced by 1/m P,

If ny is odd it is distinet from all other terms, since the only way 1/a,P*! .
could have occured was if it came from the reduction of two terms at the
previous stop, but in that case both 1/2nl P12 and 1/2n{ P~ would
have been replaced earlier, and 1/n.P"~" could not have equaled any other u
term. If my, is even possible new equalities may occur, but since ny, <<
after at most log, P steps, this process must terminate yielding the desired 13
expansion. The theorem is proved.

The last theorem of this section has to do with the nonunicity of b -
Egyptian Fractions,

14

THEOREM 6%, If my <wmy < my <<+ Is.an infinite sequence of positive
integers such that every rational mumber (0, 1) can be represented as A

&yt g Bgepran syl
S 7 Negi My 24
for some k and distinet n; in the sequence. Then there is at least one rational 3

murther wiich has more than one representation.

y 5 a7
* The authors would like to thank Drs. Grakam and Lovasz for helpfol discussions

about this theorem. —
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~ Proof. Since o 1421 = | we see that for some value of 4, my << 2m; .
Thus 1/m — 1/my < 1fagg. By ﬂm hypothesis 1/n; — 1/ny = Eoq Liny .
8o that for 4y = 1 4 1, 1/ = Ej,, I/n;, . But each side of this equation
Jyields an acceptable expansion of 1/, . Thus the theorem is proved.

. We also note that either 1/n, is used infinitely often or there is another
Subscript f such that ., < 2ny , which in turn is used infinitely often or
there is another subscript / such that my,, < 2n,, etc, Thus there are in
fact infinitely many rationals with more than one representation. It is
probably true that some fraction must have infinitely many representations.
We conelude this section with some numerical results, The following
fable gives an indication of what happens for the first few primes. A

N {lloge N} DAN)N occurrence of DI

B =

ke =
S

TR

R s

B : BBt RS

e s Aedehesetaty
19 5 6 T2'=|lz+1-1_19+5.1ﬁ

3 : ‘ e ST
29 5 6 2_59.._.%4_%
3 5 6 LSS SR N T

31 E ST T 631
i ¢ g %%-%+;_+1]3?_3]37'_4.13?' 313-?
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comparison of the second and third columns shows that the bound of! by
Theorem 1 is frequently low, ]
We conclude with a numerical example which illustrates that whichey

something to be desired, We expand 5/121 by several algorithms., ;
The Fibonacci-Sylvester [7] algorithm yields - whic

5 bl ! I
S5 B T T §73960180913

121 257 aT Teda08
|

+ e b L Wt s S——

15276 184 876 404 402 665 313 °

The Erds algorithm [3] yields considerably smaller denominators, b i
15 longer:

e

T o | | |
121 48 ' 72

R T T v

| 1
T §7130 "

4354 " 8712

The continued fraction algorithm [2] vields

e dity I 3 | | |
S I LA L v M T TR T kv

The algorithm presented here in Theorem 2 yields:

= o T T 2121 == 203

T TRAZ53:57  H-2-3:577

Since 203 — 7(3 -5+ 2-5 - 3 4 1), this gives

3 1

o | 1
121 _3ﬂ+m+3_63 1210

T 3630

which is considerably better,
However modifying cur present algorithm in an ad hoc way yields thei
following two better expansions. We have

&

5 - 121 482

2 121235?

By replacing 82 by 77 + 5 and 8 by 5 -~ 3 we get a good short expansion s

namely, o)
5 | 1 1 1

121 42 70 T 30 5082
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replacing 82 by 33 -+ 35 + 14 vields

1V, Some CoMIECTURES

In working on these and related problems some conjectures arose which
we are not yer able to prove.

Corsecyure 1. The constant in Lemma 2 can be replaced by |,

Hummm! evidence for low values of k support this and of course
since the induction doesn't change the constant, a finite but difficolt
computation can settle this. Hopefully a clever trick can do it more easily.
An affirmative answer to this conjecture implies the constant in
Theorem 2 can also be taken to be 1,

ConiecTure 2. IXN) v submultiplicative, ie., DN - M) = D(N)-
BIM ). If rrue, relative primeness of M and N is probably .{rrr.!m:.rr

. This would enable onc to concentrate on N = P in proving bounds
for D{N). One might note that instead of splitting cases on N | [T, , N+ [T,
could in general use denominator NI, when N = Nid, d = (N, IT}),
0 get & more efficient method of expanding a/ NV with small denominators.

Consecture 3. For cvery € = 0 there is a constant K = K(e) such
that D{N) <= KN(ln N)'*+.

COMIBCTURE 4, Lt my << hy ==+ be an infinite sequence of positive
integers such that ny/n, = ¢ = 1. Can the set of rarionals afb for which

. U & et el
e M T
"y, ", ny

= k-

' mlmb.fr Jor some 1 contain all the rationals in some interval (x, B). We

W this conjecture is true then according to Graham [5] this is best
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