On Graphs of Ramsey Type

S.A. Burr AT&T Long Lines
P. Erdos Hungarian Academy of Science
L. Lovasz Eotvos L. University

If F, G, and H are graphs, write $F \to (G, H)$ to signify that if the edges of F are colored red and blue in any fashion, either the red subgraph of F contains a copy of G or the blue subgraph contains a copy of H. Various properties of such graphs F are studied. For instance, for given G and H, the minimum chromatic number X of any graph F for which $F \to (G, H)$ can be determined, at least in principle. In particular, if $F \to (K_m, K_n)$, $X(F) \ge r(m, n)$, where r(m, n) denotes the ordinary Ramsey number. Thus $A \to K_n = K_$

OPTIMAL REARRANGEABLE GRAPHS

F.R.K. Chung Bell Laboratories

Let G be a finite graph with vertex set V = M \cup N. We say that G is rearrangeable if for all choices of distinct vertices i_1, i_2, \ldots, i_t in M and j_1, j_2, \ldots, j_t in N, there exist vertex disjoint paths between i_k and j_k for all k. For example, a complete bipartite graph with the vertex sets M and N is rearrangeable. However, this graph will usually have many more edges than is necessary for rearrangeability.

We determine the <u>minimal</u> number of edges any rearrangeable graph may have for all choices of M and N. We also discuss generalizations in which V is strictly greater than M U N and/or t is bounded by a predetermined value.

The Characterization of Certain Sets of Graphs Using a Generalized Closure Operation

WILLIAM H.E. DAY, Southern Methodist University

Jardine and Sibson investigated flat cluster methods and characterized them in terms of certain sets of graphs called indicator families. In this paper I characterize indicator families in terms of certain closure operations ferfined on a set of graphs. This is a special case of a more general result in which I characterize certain subsets of lattice elements in terms of closure operations defined on a complete lattice.

¹Nicholas Jardine and Robin Sibson, Mathematical Taxonomy, John Wiley & Sons Ltd. (1971).