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CONDITIONS FOR A ZERO SUM MODULO »n

BY
1. D. BOVEY, PAUL ERDOS AND IVAN NIVEN

In this paper the following result is proved.
THEOREM. Let n>0 and k=0 be integers withn—2k>1. Given any n—k integers

(1 Ay, Gy Gy s v 5 By
there is a non-empty subset of indices I={1,2,...,n—k} such that the sum

Yier 4;=0(mod n) if at most n—2k of the integers (1) lie in the same residue class
modulo n.

The result is best possible if n>3%—2 in the sense that if “at most n—21" is
replaced by “at most n—2k+1" the result becomes false. This can be seen by
taking a,=1 for 1<j<n—2k+1 and a,=2 for n—2k+2<j<n—k, noting that
the number of 2's here is n—k—(n—=2k+ )=k —1<n—2k+1.

Lemma 1, Let n be a positive integer. For i=1,2,,..,r let A; be a set of v,
positive integers, incongruent modulo n, and none=0(mod n). If ¥7_, v,>n then
the set ¥ iy ({0} U A4,) containg some non-zero multiple of n.

Proof. Suppose the result is false. We may presume that A, is not empty. We use
a result of 1. H. B. Kemperman and P. Scherk [1] as follows. Let A be the union of
r incongruent residue classes 0, ay, @y, ..., 8. ;(mod n) and B the union of s
incongruent classes 0, by, by, ..., b,_y(mod n). Suppose that if a4 and be B
and at-b=0(mod ») then a=b=0{mod n). Then A+ 5 is the union of at least
min{n, r+s5—1) distinet residoe classes modulo n. If we apply this result to the two
sets {01 w A4; and {0} w 4, we conclude that the set

[{0} v 4,]4-[{0} w 4]

contains representatives from at least min(n, v, 4w, 1) distinct classes modulo .
Continning by induction we conclude that

r=1
20y v a)
contains representatives from at least

r=1
mjn(n, 1+ 3 ut) = n—u.+1
=1
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distinct residue classes modulo », and so it contains representatives from at least
n—u, distinct non-zero residue classes modulo n. But —4, has representatives
from ¢, non-zero residue classes modulo n, and so there must be a representative
from a non-zero residue class in common because there are only n—1 such classes.
From this observation the lemma follows.

If § is a set of integers (not necessarily distinet) we let ¥ § denote the set of
distinct non-zero residue classes (mod n) represented by sums of integers in S.
We call a set of three integers which are incongruent modulo n a triple, and any
incongruent pair of integers a double.

LemmMa 2. If §is a triple with ne subset having a zero sum modulo n then ]Z Sl=5,
and if § does not contain nj2{mod n) then | ¥ 8|2 6. (The notation | > S| has the usual
meaning, the number of elements in . S.)

Proof. Let S={a, b, c}. Il two of the congruences
{2} a+b=c, adc=b, b4-¢c = a (mod n)

are false, say a+-bskc, a+czh, then ¥ § contains the six distinct non-zero residue
classes a, b, ¢, a+b, a+c, a+b+c(mod n), because for example if a+b4c=a
then we have the contradiction b4e=0{mod n),

Therefore we may assume that at least two of the congruences in (2) hold, say
a+b=cand a+c=b. In this case, by addition we see that 2a=0, i.e. a=n/2(mod n),
and ¥ § contains the five distinct non-zero residue classes a, b, ¢, b+e, a+b+
c(mod n), because for example if b+r=a we obtain the contradiction g-+b+c=
2a=0{mod n).

LEMMA 3. If S is a double having no zero sum then |3 §|=3.

The proof is obviens.

Now we turn to the theorem itself, giving a proof by contradiction. Let a,
€y + « + 5 Bgp De @ sequence of n—k positive intepers with no zero sums modulo #,
and such that at most n—2k terms belong to the same residue class modulo .
We will show that there is a partition of the index set {1, 2, ..., n—k} into dis-
joint sets Py U+ -+ U P, in such a way that if {, j € P, and i%¢ then a,5%a,(mod n),
and so that

3':1|zs¢1 >n

where §,={a, | i€ P} for 1<t<r. Then Lemma 1 gives us the required contra-
diction.

First suppose that the sequence (1) contains no integer=nf2(mod n). Select
from the sequence (1) in any manner whatsoever, triples of elements if possible
until all that is left in the sequence (1) is a single repeated clement @ modulo n,
or two repeated elements a and b modulo n, with asb. Suppose by this process
we get j triples, with j =0, and the remaining elements a (with say 4 occurrences)
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and b (with say u occurrences), and we may presume A>p>0. Since there are
n—i elements in the sequence (1) we see that

n—k = 34+At  J = Hn—k—i—p).
In addition to the j triples we form g doubles of the form {a, b} and i—u singles
of the form {a}. Call the triples 8, with 1 <i<j, the doubles §; with j+1<i<j+u,
and the singles §, with j+pu+14+ <i<j+ 4. By Lemmas 2 and 3 we conclude that

:.;:E:IE Sil= G B = Bk (=2 =4 > i,

the last inequality holding because n—2k>1, there being at most n—2k identical
elements modulo # in the sequence (1).

Finally, suppose that n/2 is in the sequence (l). It can occur only once since
n{2+-n/2=0(mod n), By the same process as in the first part we choose j triples
Sy, . . ., S; without using the element /2, so that what remains in the sequence
(1) are the element n(2 once, the element a occurring A times, and the element b
occurring w times, again with 2>pu>0. We deal with three special cases: 1> u;
A=p>0; A=p=0. In all cases we have n—k=3/+i+p+1.

In case 4> p we choose u doubles of the form {a, b} and an additional double
{a, nf2}, and also A—u—1 singles of the form {a}. Thus we get

313 S| 2 643+ D (A—p—1) = n+-(n—2k)—i > n

as before.
In case 1=p>0 we have, in addition to the j triples without the element n/2
also the triple {n/2, a, b} and the A—1 doubles of the form {a, b}. This gives us

T |3 8] = 6j4543(A—1) = nd(n—2k)—=1 > n.
In case I=pu=0 we have one single {n/2} and we get

TIE S| = 6j4+1 = n+(h—2k)—1 > n.
i
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