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Very Slowly Varying Functions
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Abstract

A real-valued function f of a real variable is said to be g-slowly varying (g-s.v.) if limzo=
@(x) [f(x-+a)— f(x)]=0 for each a. It is said to be uniformly g-slowly varying (u. @-s.v.) if
limz 4o SUPaet @(x) | f{x-+a) — f(x)| =0 for every bounded interval I.

It is supposed throughout that ¢ is positive and increasing. It is proved that if ¢ increases
rapidly enough, then every p-s.v. function f/ must be u.g-s.v. and must tend to a limit at =, Regard-
less of the rate of increase of p, a measurable function f must be u.g-s.v. if it is g-s.v. Examples of
pairs (@, f) are given that illustrate the necessity for the requirements on ¢ and f in these results.

Introduction

The theory of slowly varying functions plays a role in analysis and number theory
and has recently come to the fore in probability theory [3]. We consider here some
simple, but basic questions about slowly varying functions. We prove four theorems
and a lemma.

1. Statement of Results

Let ¢ be a positive non-decreasing real-valued function defined on [0, oo) and
let f be any real-valued (not necessarily measurable) function defined on [0, o). The
object of this paper is to study the condition

forevery . @(x)[f(x+a)— f(x)]=>0 asx— w. (1.1)

Whenever (1.1) holds, we will say that f is ¢-slowly varying, and abbreviate this by
@-s.v. If (1.1) holds uniformly for o in each bounded interval, then we say that fis
uniformly @-slowly varying (u.¢-s.v.). In other words, fis u.@-s.v. if

lim supo(x)|f(x+«)— f(x)]=0 for each bounded interval I.

x—+co xelf

Throughout this paper, the words ‘measurable’ and ‘measure’ refer to Lebesgue
measure.
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Of course, if f is u.¢-s.v. then it is @-s.v. The converse is “almost” true.

THEOREM 1. If f is @-slowly varying and measurable, then f is uniformly -
slowly varying.

THEOREM 2. If f is @-slowly varying and if ¢ satisfies

1
Zaﬁ){o@, (1.2)

then f tends to a finite limit at co. Conversely, if

oo

1

then there is a continuous function [ (whose choice depends on @) that is @-slowly
varying (and, hence, uniformly @-slowly varving by Theorem 1), but that does not
tend to a limit, finite or infinite, at <.

THEOREM 3. (a) If f is @-slowly varying and if ¢ satisfies

1
o (x ——— < B<ow forallx=0, (1.4)
)Zco(x +17) -
j=o
or, equivalently, w
dt
(p(.t)J——éCéoo forall x = 0, (1.4
(1)

then f is uniformly @-slowly varying.

(b) Conversely, if ¢ does not satisfy (1.4), then there is a function f=f (@) which
is @-s.v. but not uniformly @-s.v.?)

The proof of the first part of Theorem 3 may be easily modified to prove the next
result.

THEOREM 3'. If f is @-slowly varying and if \ is a positive increasing function
on [0, o0) such that o)\ is increasing, then f is uniformly @/\j-slowly varying provided

3) The completion of this half of the theorem, together with Theorem 4, was inspired by a
note communicated to us by Tord Ganelius [5].
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that

3 1
e Z o S ®

for all x=0 and some finite constant B.
The following result shows that the more strongly (1.4) fails, the more disjoint
become the conditions of slowly varying and of uniformly slowly varying.

THEOREM 4. If

ol

Z 1
e T R
@ (n)
n=1
then there is a function f=f (@) which is @-slowly varying, but not even uniformly
1-slowly varying.
The changes of variables h=e™*, a=e % f(x)=g(e ™), n(h)=1/p(log 1/h)
convert condition (1.1) to
g(ah) — g ()
n (h)

and conditions (1.2) and (1.4) respectively, to

for every a > 0, -0 ash—-0+ (1.6)

L= o

Zn(eh”koo

1
——— ) e <B<w.

and

From (1.6), we see that for studying differentiation theory, the function ¢ (x)=¢%,
which corresponds to # (fi)=Ah, is of special import. In fact, Theorem 2 with @ (x)=¢*
provides a negative answer to question (¢) on page 501 of [1]. Another change of
variables converts our study to that of multiplicatively slowly oscillating functions -
we omit the details (see [6], p. 79). The next lemma supplies an affirmative answer
to question (b) on page 501 of [1].

LEMMA 1. The function f is @-slowly varying if it satisfies the apparently weaker
condition

(1.7)

for each i belonging to a set E of positive measure
pX)[f(x+24)— f(x)]>0 as x—o0.
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I1. Proofs of Results

Proof of Theorem 1. We give a slight variation on the proof given in [6; pp. 81-82]
for the case ¢ (x)=1. We assume that f is measurable and ¢-s.v. For simplicity, we
will prove that

lim snp @(x)|f(x+a)— f(x)|=0. 2.1)
x—x ae[0, 1]
Supposing, by way of contradiction, that (2.1) fails, there is a 6>0, and there exist
sequences {x,} and {a,} such that x,—o0 and 2,€[0,1] such that for each positive

integer n,
@ (x,) | f(xs + 2,) — f(x,) | > 9. (2.2)
Let

Vo= {xe[0,2]: |/ (x + %) — £(x) | @ () <32 for all k> n},
W, = {Be[0, 11: |f(B + o + x) — /(o + %) | @ (xu+24) < /2 for all k> n}

and let
W, =a,+ W,=1{n: n=uo,+ p for some feW,}.

Since V,, €V, ., and since every a€[0, 2] lies in some V,. we have |V,|> % if n is suffi-
ciently large, where |-| denotes Lebesgue measure. Similarly, [W,|=|W,|>1 if n is
sufficiently large. Since W, [0, 2], we see that W, NV, is not empty for some large 7.
This leads to a contradiction, since if ye W,, we have

If(?+xn)_f(xn)I(P(xn);lf(gn"'xn)_f(xn)l(p(xu)
y 5 — f oy 2] I G ) — 2 )
{17+ 5= St s oG o) S EE
>5—58/2=45/2

so that y cannot belong to V.

Proof of Theorem 2. We begin with the proof of the first assertion, and suppose
that ¥ 1/¢(n)< oo. If f satisfies (1.1), then f cannot tend to an infinite limit at co,
since for every positive integer 7,

NSO+ 1741 = 7RI W1+ B 3 1o () <co.

Therefore, if f does not have a finite limit at 0o, we may assume without loss of gener-

ality that
lim sup /(x)>1 and lim inff(x)<—-1, (2.3)

Xy

since we could otherwise replace f by ¢f+d for suitable constants ¢ and d. Since f is
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¢-s.v., we see in particular that

e(x)|f(x+1)=f(x) <1 (24
if x is sufficiently big, say x> M. Also, since ). 1/¢ (n) converges, we have
Z . <1 (2.5)
L o) '

if x= N, say. By (2.3) we may find two numbers x and y with x>y and

x>max(M,N), f(x)>1
and
y>max(M,N), f(y)<-1.

This leads to a contradiction since on the one hand
e(+m)[f(+n+(x—-y)-f(y+n)]
@(y +n)

for n a sufficiently large positive integer, while on the other hand, for any positive
integer n,

<1

|f(x+n)=f(y+n)l=
|

[ =10+ ) G40 frk-D]> 7@ =) o ho

1
> f(x)- Z m>1 -¥=1,

k=[x]
and similarly f(y+n)< —14, so that f (x+n)— f (y+n)>1.

To prove the second half of Theorem 1, let a non-decreasing positive function
¢ be given that satisfies (1.3), namely, ¥ 1/ (n)=o0c. We will construct a continuous
function f that is ¢-s.v. and that satisfies

lim sup f(x) = + 0, lim inf f(x) = — . (2.6)

Let A=A () be the set of positive integers m satisfying @ (m+1)<2¢ (m). By (1.3), we
have o

Zé;F):Xm:T)_Zcp_(l?):w @7

. ned n=1 ngA
since
1 & 1 +1 1 +1 1 L 2 {
g —— EaTTO LaE S S e — o0,
o) (1) 2¢(1) 2%°¢(1) @ (1)

ngA
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In particular, A is infinite, and we write 4 = {m;,, m,, ms,...}. Now there are positive
constants a; with a;,; <a; for i=1, 2, 3,... and a;¢ (m;)—0 as i»co0 and ) {2, ;=0
(see [2], p. 47). We now define a sequence {b;} by b;= +a,, where the signs are chosen
in blocks so that Y b, has both -+ oo and — oo as limits of subsequences of its partial
sums. We define f by f=0o0n [0, m],f=b,on[m,+1, m,],f =b,+byon[m,y+1, m,],
wof=by+by+--+bon[m+1, m.],..., and extend f to be linear and continuous
on each interval [my, m,+ 1], k=1, 2, 3,.... It is clear that (2.6) holds. To verify that
f1s @-s.v., we note that

() 1S (x+ )= F(x) = @) 1 f(x + ) — f([x + 2] + 1)

[x+a]—[x]

+ Y U]+ i+ 1) = f([x] + i)}

i=

+ f([x]) = f(x) ]| <
LA([x+e]) = f([x+a] + 1) o ([x + 2] + 1)

[x+a]=[x]

+ ¥ fxI1+i+1)

i=

— f([x] + ) lo([x] + 1+ 1)
+17([x]) = Ax] + Do ([x] + 1),
since fis menotone between consecutive integers and ¢ is non-decreasing. For fixed o,

there are at most [o]+4 terms on the right hand side of (2.8), and as x— o0, each
term tends to 0 since

Lf(m) = f(m +1) |@(m + 1) ={

(2.8)

0 if me¢A

awp(mg+1) if m=med
and

@ (m + 1)

@ (my)

app(my + 1) = a0 (my) < 2a,p (my)
which tends to 0 as k— 0.

Proof of Theorem 3(a). We prove a stronger result than asserted, using the same
idea we used to prove Theorem 2. Namely, we prove that if f is ¢-s.v. and if ¢ satisfies
(1.4), then

lim sg]gm(x) |f(x +a)— f(x)| =0. (2.9)

Since (1.4) implies (1.2), we know by Theorem 2 that f tends to a finite limit L at co.
It follows from (2.9), on letting % — co, that

lim @ (x) [ f(x) - L| =0. (2.10)

X=+

For the proof of (2.9), suppose it is false. Then we can find 6 >0 and arbitrarily large
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x such that for 2=2(x)>0 we have

If(x+a+k)—f(x+k)!=‘£ {(fG+a+j+1)— f(x+a+j)}

(SO )+ 1) = s +0)} + /G4 2) = 1) @.11)
. ‘is(xﬂﬂ)ﬂ(ﬂj)’
el) £ (x+J)

where £(y)=0(»)| f (y+1)—f (»)|, which tends to 0 as y—oo. Now choose x so
large in (2.11) that e(y)<d/4Bfor y=x, to get @ (x+k)|f(x+u+k)— f(x+k)[>d/2,
which contradicts the hypothesis that fis ¢-s.v., since (x+u+ k) — (x+ k) =2, which is
independent of k.

Proof of Theorem 3(b). From the geometrically evident identity

ol [}

[5%‘“; DT j 0}

it follows that (1.4) and (1.4)' are equivalent. Assume now that (1.4)" fails. Let
{f,} be a Hamel basis for the real numbers, i.e., every real number x has a unique
representation x=)y_, rif;, with a finite number n=n(x) of non-zero rationals
{re}. Evidently, [n(x+«)—n(x)|<n(x). One may easily construct a function v | 0
such that also

liinqs:p(;o(x)v[ :%%dr = 00. (2.12)
Let
xtnlx)—1
J' v
TGN

If o is fixed, then, since /¢ | and both limits of integration are greater than x,
x+a+n(x+a)—1
| vy

e If (x+2) = f(x)| = o(x)
| @ (r)

x+nix)—1

v(x),

o) o+ alx + o) — n(x) <P (x) (@ + n(a)),

< o (x) —=
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which tends to 0 as x tends to infinity so that f'is ¢-s.v. But f'is not uniformly ¢-s.v.
In fact,

limsup ( sup @(x)|f (x+2)—f(x)]) =00

x—=+o ae[0,1]

To see this, let M >0 be given. Pick y,> M such that

@ (¥0) wd‘>M

1'0

Pick y, >y, such that n(y,)=1 and so close to y, that

o) 1)j_fff>M

also. (This can be done since all the members of the dense set {rf, : r is rational}
satisfy n=1.) Finally, pick «€[0, 1] so that n(y, +«) is so big that
yitaetn(y+a)—1
¥ (1)
@ (1) ——dt=0(y,) 1S (31 +2) — f ()l
@ (1)
yi+noly)—1
is also greater than M. This shows the lim sup to be greater than (an arbitrarily
chosen) M and hence infinite.
Proof of Theorem 4. The proof proceeds essentially as the proof of 3(b) above,

so we will be brief. Equivalent to our assumption is the equality (7 dr/o(¢)= 0.
Choose ¥ | 0 such that [7 y/(1)/@(t) dt=o0. Define

x+n(x)
g [
S ToN

For fixed « we have
x+atn(x+ax)

[ v(® I sfl()

P (x)1f(x +a) = f(x)i =0 (x) m‘“ S

x+n(x)

(cx + n(x))

which tends to 0; while for each x

x+z+nix+a)

[ 54~

x+n(x)

sup |f(x+a) = f(x)| = sup

a=[0, 1] ae[0, 1]

since #1(x+ o) may be arbitrarily large.
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Proof of Lemma 1. Assume that (1.7) holds and that 4, pe E with A> u. We must
prove that (1.1) holds. First we have the inequality

@ (x)
o(x+2—p)
— f(x+ A—p)} +¢(x){f(x+1)-f(x)}%
So(x+A=-p)f(x+ A=) +p) = fx+2=p) | +o(x)|f(x+1)— f(x)].

Then we apply Steinhaus’ Theorem (see [4; p. 68] or [8; pp. 97-99]) that the difference
set of a set of positive measure contains an open interval that contains 0, to deduce
that (1.1) holds for all sufficiently small . Now repeated application of the inequality
e(x)f(x+20) = f(x) | <@(x+a)[f(x+22)— f(x+a)|

+ @ (x)1f(x + o) — f(x) ]

completes the proof. (See also [7; pp. 266-267], and [1; p. 493].)

e(X) I fx+i-p)—f(x)|=|- @x+4—p) {f(x+4)
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