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ON THE NUMBER OF TIMES AN INTEGER OCCURS
AS A BINOMIAL COEFFICIENT

H. L. ABBOTT, P . ERDőS, AND D. HANSON

Let N(t) denote the number of times the integer t > 1 occurs as a binomial co-

efficient ; that is, N(t) is the number of solutions of t = ( n in integers n and r .
r

We have N(2) = 1, N(3) = N(4) = N(5) = 2, N(6) = 3, etc . In a recent note in the

research problems section of the MONTHLY, D. Singmaster [1] proved that

N(t) = O(log t) .

He conjectured that N(t) = 0(1) but pointed out that this conjecture, if it is in fact

true, is perhaps very deep . In [1] and [5], Singmaster points out that N(t) = 6 for

the following values of t <_ 248 ; t = 120, 210, 1540, 7140, 11628 and 24310 . It has

been shown by Singmaster [5] and D . Lind [6] that N(t) >_ 6 inflaitely often . Sing-

master has verified that the only value of t <_ 2 48 for which N(t) >_ 8 is t = 3003,

for which N(t) = 8 .
In this note we obtain some additional information about the behavior of N(t) .

In Theorem 1 we prove that the average and normal order of N(t) is 2 ; in fact, we

prove somewhat more than this, namely, the number of integers t, 1 < t 5 x, for

which N(t) > 2 is 0( \/x). (See [4] p. 263 and p . 356, for the definitions of average

and normal order.) In Theorem 2 we give an upper bound for N(t) in terms of the

number of distinct prime factors of t . Our main result is Theorem 3, in which we

show that (1) can be improved to N(t) = O(log t/log log t) . Finally, in Theorem 4,

we consider the related problem of determining the number of representations of an

integer as a product of consecutive integers .

THEOREM 1 . The average and normal order of N(t) = 2 .

Proof. For integral x, let n be defined by(nn 12) < x <_ (2n)

We have

E N(t) = 2

	

E 1- E 1
1<t!x

	

1<(' ) Sx

	

1< (kk ) 5_ s
2r5m

256

so that n = 0(log x) .
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(2)

= 2{ E 1 +

	

1 + E 1~ -
1<(i)Sx

	

1<(Z)Sx

	

1<(m)Sx

	

1<(k Sr
1

3S_r5_m/2
= 2x + 22x1/2 + O( x i/3 n)

= 2x + 2 á/2x i / 2 + O(x 113 log x) .

It follows that the average order of N(t) is 2 .
Let f(x) be the number of integers t, 1 < t <- x, such that N(t) = 2 and g(x) the

number such that N(t) > 2, so that f(x) + g(x) = x - 2. We have

(3)

	

= 2(x - 2 - g(x)) + 3g(x) + 1

= 2x + 2g(x) - 3 .

It follows from (2) and (3) that g(x) = O(x112) and this implies
order of N(t) is 2 .

THEOREM 2. Let w(t) denote the number of distinct prime factors of the integer
t > 1 . For all t satisfying w(t) < log s/loglogt we have

2w(t) log t
(4)

	

N(t) < log t
- w(t) log log t

Proof. The theorem can be verified directly for t S 20. In what follows we

therefore assume t >- 21 . Let k = k(t) be the largest integer for which t = (k ) for

some n >- 2k . Then clearly

(5)

E N(t) >_ 2f (x) + 3g(x) + 1
1<t5x

that the normal

N(t) < 2k .

By an easy induction argument we have, for k >- 4, t = (k) >_ k) >_ ek . Since

we are assuming t >- 21 > e3 , the inequality t ? e k holds for all k >_ 1 . Equivalently,

(6)

	

k 5 log t and log k S log log t.

Let Pa be the highest power of the prime P which divides t . Then, according to the
well-known theorem of Legendre,

[1lRpl]

~LPiJ

- [ n
Ptk] -

[k

Each term in the sum on the right is either 0 or 1 . The number of non-zero terms is
therefore a and we must have
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(7) P' S n .

From t = n' and the inequality (k) >_ (n , we obtaink)

	

k)

(8)

	

n < kt 1Ik

and from (7) and (8) it follows that

t = IIP° < n '(`) < kw() tw( .)lk

If we take logarithms and substitute from the second inequality in (6) we get, after
some manipulations,

k <

	

w(t) log t
- log t - w(t) log log t '

and this, together with (5), yields (4) . This completes the proof of Theorem 2 .
We come now to our main result .

THEOREM 3 . N(t) = O (log t/log log t) .

Proof. We shall need to make use of the following deep result of A . E. Ingham [2]
on the distribution of the primes : If a >= 5/8, there is a prime between x and x + x'
for all sufficiently large x .

For a given integer t, let S = {n : t = (k ) for some k _<_ n/2} . Write S = Sl V SZ

where S l = {n : n e S, n > (log t) 615 } and S z = {n : n e S, n _5 (log t) 615 } . We first

estimate the size of S, Let n e S l and let t = ( k ) . We have at our disposal the
following inequalities :

t =
( k) > (k

)
k

(10)

	

t > ek (see the proof of Theorem 2)

(11)

	

n > (log t)6rs

Thus

k < tog t <

	

log t <

	

log t
log n/k - log (n/log t) - log (log t)u 5

_ - O
log t

log log t '

where we have used, successively, (9), (10) and (11) . It follows that

Sl Í = O(log t flog log t) .

(9)
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Next we must estimate the size of S 2 . Let N be the largest number in S2 and let

t =
(
K)

. We have the inequalities

N <_ (logt) 6 f 5 and t _< N R

from which we get N <- (K log N) 6t5 This in turn implies, for N sufficiently large,

N 5 K 815 < K 815 + K,

and it is easy to see that this last inequality implies

(N - K) + (N - K) 5t8 < N.

We are now in a position to apply the theorem of Ingham . By this theorem, there is a
largest prime P satisfying K S N - K < P _<_ N. It follows that P divides t and
hence that n ? P for all n e S 2 . Hence all of the numbers in S2 lie between P
and N. The number of numbers in S2 is thus

SZ I <_ N - P <_ P5/8 < N518 <_ (log t)
3/a = O (log t/log log t),

where, in obtaining the second inequality, we again appeal to Ingham's result . This
completes the proof of Theorem 3 .

We remark that if one makes use of the unproved conjecture of Cramér [3]
asserting that there is a prime between x and x + (log x) Z for all sufficiently large x,
then our argument gives N(t) = 0((logt) 213+E ) The proof is basically the same
as before, except that one puts S, = {n : n e S, log n > (log t) 113-E } . We omit the
rather laborious details of the argument .

We conclude with a brief discussion of a somewhat related problem . Let G(t)
denote the number of representations of the positive integer t as a product of con-
secutive integers ; that is, G(t) is the number of solutions of t = ( n + 1)(n + 2) . . .
(n + 1) in integers n and 1. For any such solution we have t >_ 1! and consequently
we get G(t) = O (log t1log log t) . For this problem, however, we can get a substan-
tially stronger result .

THEOREM 4 . G(t) = O (J log t) .

Proof. Let S = fl : t = (n+ 1)(n+2) . . . (n + l) for some n} . Let L o be the
largest number in S and let

S, = {1 : l e S, L o - Clog t) 1 1 2 < 1 <_ Lo} and S2 = { 1 : 1 e S,1 <_ L o - C(log t) 1 i 2 } .

C is a constant . It is clear that IS, I <_ C(logt) 112 . It remains to estimate the size
of I S2 I . Let 2" be the highest power of 2 which divides t . Then, for some constant C 1 ,

(12)

	

a >_ E [L0
1

>= LO - C, log Lo .
i=1 2j
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Let L be the largest number in S2 and let t = (N + 1) (N + 2) . . (N + L). Let
2° be the highest power of 2 which divides one of (N + 1), (N + 2),, . . ., (4V + L), say
N + k . Then

CD

	

-

	

'-].

(13)

	

a - + jFIr 2' kJ +
jI1 [k21 1

In fact (13) follows from the observation that the first sum on the right is the exponent
to which 2 divides the product (N + k + 1) (N + k + 2) . . . (N + L), while the second
sum is the exponent to which 2 divides the product (N + 1) (N + 2) . . . (N + k - 1) .
It follows from (13) that

(14)

	

a<_fl+EILI<=tg+L .
J=1 2'

Thus,

>_ a-L

>_ (L o - Cl logL,,) - (Lo - C (log t) 1/2)

(15)

	

>_ C (log t) 112
- CI Iog Lo

> CZ (log t)1/2 ,

where we have used (14), (12), the definition of S2 and the estimate Lo = O (log t) .
We need two further inequalities ; the first of which is obvious . These are

(16)

	

(N + 1) L _< t

and, for t sufficiently large,

(17)

	

N + L > 2f-1

To obtain (17)' we simply have to notice that N + L >_ N + k > 2f, so that N + 1
20 - (L - 1) and (17) now follows from (15) and the fact that L = O (log t) .
It now follows from (15), (16) and (17) that L 5 C3 (log t) 1 / 2 , where C3 is a

positive constant depending on C2 , and hence on C . This completes the proof of
Theorem 4.

We remark that by choosing C = (1 +6)(log 2)
-1/2

,, our argument yields
G(t) < (2 + s) (log t/log 2) 1 / 2 for every s > 0, provided t >- t o(s) .
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