ON THE NUMBER OF TIMES AN INTEGER OCCURS
AS A BINOMIAL COEFFICIENT

H. L. AsBOTT, P. ERDOS, AND D, HANSON

Let N(?) denote the number of times the integer ¢ > 1 occurs as a binomial co-
. . . . ny. .
efficient; that is, N(¢) is the number of solutions of ¢t = (r) in integers n and r.

We have N(2) = 1, N(3) = N(4) = N(5) = 2, N(6) = 3, etc. In a recent note in the
research problems section of the MoNTHLY, D. Singmaster [1] proved that

n N(1) = O(log1).

He conjectured that N(f) = O(1) but pointed out that this conjecture, if it is in fact
true, is perhaps very deep.In [1] and [5], Singmaster points out that N(¢) = 6 for
the following values of t < 2*%; t = 120, 210, 1540, 7140, 11628 and 24310. It has
been shown by Singmaster [5] and D. Lind [6] that N(#) = 6 infiaitely often. Sing-
master has verified that the only value of t < 2*® for which N(f) 2 8 is t = 3003,
for which N(1) = 8.

In this note we obtain some additional information about the behavior of N().
In Theorem 1 we prove that the average and normal order of N(t) is 2; in fact, we
prove somewhat more than this, namely, the number of integers t, 1 <t < x, for
which N() > 2 is O(\/x). (See [4] p. 263 and p. 356, for the definitions of average
and normal order.) In Theorem 2 we give an upper bound for N(f) in terms of the
number of distinct prime factors of t. Our main result is Theorem 3, in which we
show that (1) can be improved to N(r) = O(logt/loglogt). Finally, in Theorem 4,
we consider the related problem of determining the number of representations of an
integer as a product of consecutive integers.

THEOREM 1. The average and normal order of N(1) = 2.

Proof. For integral x, let n be defined by (in:ﬁ ) <x= (2:) so that n=0(log x).
We have
T NHp=2 X 1- X 1
<t <(r) s a<(P)ss
2rsm
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=2 X 1+ X 14 X 1}- X 1
i<(Max 1<(@)ax 1<(Msx 1 1<(hse
(2) 3sram/2

= 2x +2,/2x'? + 0(x'*n)
= 2x +2,/2x"% + O(xlogx).

It follows that the average order of N(1) is 2.
Let f(x) be the number of integers t, 1 <t £ x, such that N{t) = 2 and g(x) ths
number such that N(¢) > 2, so that f(x) + g(x) = x — 2. We have

T N = 2f(x)+3g(x)+ 1

1<1s5x
3 = 2Ax—2—-g(x)) +3g(x) +1
= 2x + 2g(x) — 3.

It follows from (2) and (3) that g(x) = O(x'/?) and this implies that the normal
order of N(1) is 2.

THEOREM 2. Let w(t) denote the number of distinet prime factors of the integer
t > 1. For all t satisfying w(t) <logt/loglogt we have

2w(t)logt

@ Nay= logt — w(t)loglogt *

Proof. The theorem can be verified directly for ¢ < 20. In what follows we
therefore assume t = 21. Let k = k(f) be the largest integer for which ¢t = (n ) for

k
some n = 2k. Then clearly

5) N(¥) £ 2k.

By an easy induction argument we have, for k = 4, t = (:);(ik) > ¢, Since
we are assuming ¢ = 21 > e?, the inequality t = €* holds for all k = 1. Equivalently,
(6) k < logt and logk = loglogt.

Let P* be the highest power of the prime P which divides ¢. Then, according to the
well-known theorem of Legendre,

Uoxerl frn n—k k
= E{[5] -] - [=)
Each term in the sum on the right is either 0 or 1. The number of non-zero terms is
therefore o and we must have
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(7 P* < n.

n . . {n n\* .
From ¢ =(k) and the inequality (k) = (E) , we obtain
(8) n < ke'”

and from (7) and (8) it follows that
e P g0 R RO

If we take logarithms and substitute from the second inequality in (6) we get, after
some manipulations,

w(t)logt
= logt — w(n)loglogt’

and this, together with (5), yields (4). This completes the proof of Theorem 2.
We come now to our main result.

THEOREM 3. N(f) = O(logt/loglog?).

Proof. We shall need to make use of the following deep result of A. E. Ingham [2]
on the distribution of the primes: If & 2 5/8, there is a prime between x and x + x*
for all sufficiently large x.
(:) for some k < n/2}. Write S =S, US,

where S; = {n:neS,n>(log))®*} and S, = {n:neS,n < (logn)**}. We first

Foragivenintegert,letS = {n: 1t =

y ; n
estimate the size of S,. Let ne S, and let ¢ = (

k)' We have at our disposal the

following inequalities:

- (=)

(10) t = é* (see the proof of Theorem 2)
11 n > (logn®?.
Thus

k< logt = logt < logt
= lognfk = log(n{logt) = log(logt)!/s

- 0( logt )’
loglogt

where we have used, successively, (9), (10) and (11). It follows that

[S,| = Ologt/loglog ).
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Next we must estimate the size of §,. Let N be the largest number in S, and let

t= (z) . We have the inequalities

N £ (log9)®® and ¢t < NX
from which we get N < (KlogN) %/ This in turn implies, for N sufficiently large,
N < K¥S<K®S 4+ K,
and it is easy to see that this last ineguality implies
(N-K)+(N-K)*®<N.

We are now in a position to apply the theorem of Ingham. By this theorem, there isa
largest prime P satisfying K S N — K <P < N. It follows that P divides ¢t and
hence that n = P for all ne S,. Hence all of the numbers in S, lie between P
and N. The number of numbers in S, is thus

|S,| £ N—P < P¥® < N*® < (log1) ¥* = O(logt/loglog ),

where, in obtaining the second inequality, we again appeal to Ingham’s result. This
completes the proof of Theorem 3.

We remark that if one makes use of the unproved conjecture of Cramér [3]
asserting that there is a prime between x and x + (logx)? for all sufficiently large x,
then our argument gives N(f) = O((logf)****). The proof is basically the same
as before, except that one puts S, = {n:neS, logn > (logt)"*~*}. We omit the
rather laborious details of the argument.

We conclude with a brief discussion of a somewhat related problem. Let G(1)
denote the number of representations of the positive integer ¢ as a product of con-
secutive integers; that is, G(f) is the number of solutions of t = (n 4+ 1)(n + 2)---
(n + D in integers n and [. For any such solution we have ¢t = I! and consequently
we get G(1) = O(logt/loglog?). For this problem, however, we can get a substan-
tially stronger result.

THEOREM 4. G(f) = O(/log?).

Proof. Let S={l:t=(Mn+1)(n+2)---(n+ ) for some n}. Let L, be the
largest number in S and let

S;={l:1eS,L,— C(logN'* <1 £ Ly} and §, = {I: leS,l £ L, — C(log#)*?}.

C is a constant. It is clear that | S, | < C(log#'?. It remains to estimate the size
of | S, ! Let 2 be the highest power of 2 which divides ¢. Then, for some constant C,,

al LO
(12) o 2- ‘Zl T?,}- g LD - Cl logLo.
i=
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Let L be the largest number in S, and let t = (N + 1)(N + 2)---(N + L). Let
2# be the highest power of 2 which divides one of (N + 1),(N + 2), ---,(N +-L), say
N + k. Then

o [L—k e [k—1
(13) t‘Z_ﬁ-l-jgl[ 21 ]+j§1[ ZJ ]
In fact (13) follows from the observation that the first sum on the right is the exponent
to which 2 divides the product (N + k + D)(N + k + 2) -« (N + L), while the second
sum is the exponent to which 2 divides the product (N + 1)(N +2) - (N + k — 1).
It follows from (13) that
14 aéﬁ+2[%]§ﬁ+£..
s=1L2]
Thus,
fza—-L
(Lo — CylogLg) — (Ly — C(logn)''?)
2 C(logt)'"* ~ CylogLo
2 C,(logn)'?,

[\

(15)

where we have used (14), (12), the definition of S, and the estimate L, = O(log?).
We need two further inequalities; the first of which is obvious. These are

(16) N+DE=st
and, for ¢ sufficiently large,
a7 N+1z21,

To obtain (17) we simply have to notice that N + L = N'+ k = 2f, so that N + 1
> 2% — (L — 1) and (17) now follows from (15) and the fact that L = 0 (log¥).

It now follows from (15), (16) and (17) that L £ C; (logf)'/%, where Cj is a
positive constant depending on C,, and hence on C. This completes the proof of
Theorem 4.

We remark that by choosing C = (1 +&)(log2) ~*/%, our argument yields
G(1) < (2 + &) (logt/log 2)'/* for every & > 0, provided t = t,(e).
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